Commutator representations of nonlinear evolution equations: Harry-Dym and Kaup-Newell cases

Zhijun QIAO
Department of Mathematics, Liaoning University, Shenyang, Liaoning 110036, People's Republic of China

Submitted by A. NIKITIN
Received September 10, 1994

Abstract

A general structure of commutator representations for the hierarchy of nonlinear evolution equations (NLEEs) is proposed. As two concrete examples, the Harry-Dym and Kaup-Newell cases are discused.

Recently, the commutator representations of the hierarchy of nonlinear evolution integrable equations (NLEEs) and the related Lax operator algebra properties have been intensively discussed [1-6]. It is well-known for the spectral problem $L \psi \equiv L(u) \psi=\lambda \psi(u=$ $\left(u_{1}, \ldots, u_{N}\right)^{T}$ is a potential vector, λ is a constant parameter) that if its hierarchy of evolution equations possesses commutator representations, then its key lies in solving an operator equations of the differential operator $V=V(G)[1,3,5]$

$$
\begin{equation*}
[V, L]=L_{*}(K G)-L_{*}(J G) L \tag{1}
\end{equation*}
$$

where K, J are the pair of Lenard's operators corresponding to the spectral problem $L(u) \psi=\lambda \psi, G=\left(G^{(1)}, \ldots, G^{(N)}\right)^{T}$ is an arbitrary given vector function,

$$
\left.L_{*}(\xi) \triangleq \frac{d}{d \varepsilon}\right|_{\varepsilon=0} L(u+\varepsilon \xi)
$$

Now, consider the spectral problem

$$
\begin{equation*}
\psi_{x}=U(u, \lambda) \psi \tag{2}
\end{equation*}
$$

where $\psi=\left(\psi_{1}, \ldots, \psi_{n}\right)^{T}$, each element of the $n \times n$ matrix $U(u, \lambda)$ is the polynomial of λ, λ^{-1} and the coefficients of its every term depend on u.

According to the methods proposed in ref. [7, 8], we can always acquire the spectral gradient $\nabla_{u} \lambda=\left(\delta \lambda / \delta u_{1}, \ldots, \delta \lambda / \delta u_{N}\right)^{T}$ of the spectral parameter λ with respect to the potential vector u. Generally, $\nabla_{u} \lambda$ is related to λ, u, and the special function ψ. The integro-differential operators $K=K(u), J=J(u)$ depending on the potential vector an satisfying the following linear relation

$$
\begin{equation*}
K \nabla_{u} \lambda=\lambda^{\theta} \cdot J \nabla_{u} \lambda \quad(\theta \quad \text { is a fixed constant }) \tag{3}
\end{equation*}
$$

are called the pair of Lenard's operators of (2). The operators K, J can be obtained with (2) and the concrete expression of $\nabla_{u} \lambda$ after some delicate calculations.

As $U(u, \lambda)$ is linear on λ, (2) can always lead to

$$
\begin{equation*}
L \psi \equiv L(u) \psi=\lambda \psi \tag{4}
\end{equation*}
$$

Otherwise, (2) can't read the form like (4). Nevertheless, because each element of the $n \times n$ matrix $U(u, \lambda)$ is the polynomial in λ, λ^{-1} and the coefficients of its every term depend on u, the spectral problem (2) can be usually rewritten as

$$
\begin{equation*}
L \psi \equiv L(u, \lambda) \psi=\lambda^{\gamma} \psi \tag{5}
\end{equation*}
$$

where γ is the highest order of λ in $U(u, \lambda), L=L(u, \lambda)$ is a differential operator related to u and λ. A basic problem is: what is conditions under which the isospectral hierarchy of evolution equations (5) posesses the commutator representations?

For the spectral problem of its form like (5), here we construct a wider operator equation with the differential operator $V=V(G)$ than (1)

$$
\begin{equation*}
[V, L]=L_{*}(K G) L^{\beta}-L_{*}(J G) L^{\alpha} \tag{6}
\end{equation*}
$$

where $[\cdot, \cdot]$ stands for the commutator; $L=L(u, \lambda) ; K, J$ are the pair of Lenard's operators determined by $(3) ; G=\left(G^{(1)}, \cdots, G^{(N)}\right)^{T}$ is an arbitrary given vector function,

$$
\left.L_{*}(\xi) \triangleq \frac{d}{d \varepsilon}\right|_{\varepsilon=0} L(u+\varepsilon \xi, \lambda), \quad \xi=\left(\xi_{1}, \ldots, \xi_{N}\right)^{T}
$$

α, β are two fixed constants associated with (5) and $\beta<\alpha$.
Let $\eta=\alpha-\beta$, choose $G_{-\eta} \in \operatorname{Ker} J=\{G \mid J G=0\}$, and define Lenard's recursive secuence $\left\{G_{j \eta}\right\}$:

$$
\begin{equation*}
K G_{(j-1) \eta}=J G_{j \eta}, \quad j=0,1,2, \ldots \tag{7}
\end{equation*}
$$

The NLEEs $u_{t}=X_{m}(u) \quad(m=0,1,2, \ldots)$ produced by the vector field $X_{m} \triangleq J G_{m \eta}$ ($m=0,1,2, \ldots$) and called the hierarchy of evolution equations (5).

The following two theorems give a simple and clear approach that the hierarchy of isospectral evolution equations $u_{t}=X_{m}(u) \quad(m=0,1,2, \ldots)$ of (5) owns the commutator representations.
Theorem 1 Let $\left\{G_{j \eta}\right\}_{j=-1}^{\infty}$ be the Lenard's recursive sequence of (5). For any $G_{j \eta}$, the operator equation (6) has the commutator solution $V_{j}=V\left(G_{j \eta}\right)$. Then the operator $W_{m}=\sum_{j=0}^{m} V_{j-1} L^{(m-j) \eta-\beta}$ is the Lax operator (4) of the vector field $X_{m}(u)$, that is, W_{m} satisfies

$$
\begin{equation*}
\left[W_{m}, L\right]=L_{*}\left(X_{m}\right), \quad m=0,1,2, \ldots . \tag{8}
\end{equation*}
$$

Proof.

$$
\begin{aligned}
{\left[W_{m}, L\right] } & =\sum_{j=0}^{m}\left[V_{j-1}, L\right] L^{(m-j) \eta-\beta} \\
& =\sum_{j=0}^{m}\left(L_{*}\left(K G_{(j-1) \eta}\right) L^{(m-j) \eta}-L_{*}\left(J G_{(j-1) \eta}\right) L^{(m-j+1) \eta}\right) \\
& =L_{*}\left(J G_{m \eta}\right) \\
& =L_{*}\left(X_{m}\right)
\end{aligned}
$$

From this theorem, we can also further discuss the Lax operator algebra generated by the Lax operator W_{m} which is left to a later paper.

Theorem 2 Let the conditions in Theorem 1 be satisfied, and the Gateaux derivative mapping $L_{*}: \xi \rightarrow L_{*}(\xi)$ of the spectral operator L in the direction ξ is an injective homomorphism. Then the isospectral hierarchy of evolution equations $u_{t}=X_{m}(u)$ of (5) possesses the commutator representations

$$
\begin{equation*}
L_{t}=\left[W_{m}, L\right], \quad m=0,1,2, \ldots \tag{9}
\end{equation*}
$$

Proof. $L_{t}=L_{*}\left(u_{t}\right)$,

$$
L_{t}-\left[W_{m}, L\right]=L_{*}\left(u_{t}\right)-L_{*}\left(X_{m}(u)\right)=L_{*}\left(u_{t}-X_{m}(u)\right)
$$

The above equality implies Theorem 2 holds because L_{*} is injective.
By Theorem 1 and Theorem 2, we can evidently see that in order to secure the commutator representations (9) of NLEEs $u_{t}=X_{m}(u)$, its key lies in constructing the corresponding operator equation (6) according to the form of (5) and finding an operator solution of (6).
Corollary The potential $u=\left(u_{1}, \ldots, u_{N}\right)^{T}$ satisfies a stationary nonlinear equation $\sum_{k=0}^{1} \alpha_{k} X_{1-k}-0$ if and only if $\left[\sum_{k=0}^{1} \alpha_{k} W_{1-k}, L\right]=0$, where $\alpha_{k} \quad(k=0,1,2, \ldots, l)$ are some constants, $l \in Z^{+}$.

In the following, as two concrete examples of the above approach, we shall discuss the Harry-Dym and Kaup-Newell hierarchies, present the corresponding operator equation (6), solve it, and finally give the commutator representations of these two hierarchies.

1. Consider the spectral problem

$$
\psi_{x}=U(u, \lambda) \psi, \quad U(u, \lambda)=\left(\begin{array}{cc}
-i \lambda & (u-1) \lambda \tag{10}\\
-\lambda & i \lambda
\end{array}\right), \quad \psi=\binom{\psi_{1}}{\psi_{2}}, \quad i^{2}=-1
$$

(10) is equivalent to the famous Sturm-Liouville equation

$$
\begin{equation*}
-\partial^{2} y=\mu u y \tag{11}
\end{equation*}
$$

via the transformations $\psi=i y-\lambda^{-1} y_{x}, \quad \psi_{2}=y, \quad \mu=\lambda^{2}$. The isospectral property of the Harry-Dym hierarchy was studided in [9], and the nonlinearization of the Lax pair for the Harry-Dym equation $u_{t}=\left(u^{-(1 / 2)}\right)_{x x x}$ was discussed in [10]. In the present paper, using
the above skeleton, we further give the commutator representations of each equation in the Harry-Dym hierarchy including the Harry-Dym equation $u_{t}=\left(u^{-(1 / 2)}\right)_{x x x}$.

The spectral gradient $\nabla_{u} \lambda$ of (10) with regard to u is

$$
\begin{equation*}
\nabla_{u} \lambda=\lambda \psi_{2}^{2}\left(\int_{\Omega}\left(2 i \psi_{1} \psi_{2}-u \psi_{2}^{2}-\psi_{1}^{2}\right) d x\right)^{-1} \tag{12}
\end{equation*}
$$

Noticing the relation $\partial^{-1} u \partial \psi_{2}^{2}=2 i \psi_{1} \psi_{2}+\psi_{2}^{2}-\psi_{1}^{2}$ and (9), only choosing Lenard's operators

$$
\begin{equation*}
K=\partial^{3}, \quad J=-2(\partial u+u \partial) \tag{13}
\end{equation*}
$$

we have

$$
\begin{equation*}
K \nabla_{u} \lambda=\lambda^{2} \cdot J \nabla_{u} \lambda \tag{14}
\end{equation*}
$$

Let $G_{-2}=u^{-(1 / 2)} \in \operatorname{Ker} J$, define the Lenard recursive sequence $\left\{G_{2 j}\right\}$ of (10): $K G_{2(j-1)}=J G_{2 j}, \quad j=0,1,2, \ldots$. The Harry-Dym vector fields $X_{j}(u) \triangleq J G_{2 j}$ yield the isospectral hierarchy of NLEEs (10): $u_{t}=X_{j}(u)(j=0,1,2, \ldots)$, in which the first system is the well-known Harry-Dym equation $u_{t}=K G_{-2}=\left(u^{-(1 / 2)}\right)_{x x x}$.
(10) can be rewritten as

$$
L \psi=\lambda \psi, \quad L=L(u)=\frac{1}{u}\left(\begin{array}{cc}
i & 1-u \tag{15}\\
1 & -i
\end{array}\right) \partial, \quad \partial=\partial / \partial x
$$

The Gateaux derivative mapping L_{*} of L in the direction ξ is

$$
L_{*}(\xi)=\frac{\xi}{u^{2}}\left(\begin{array}{cc}
-i & -1 \tag{16}\\
-1 & i
\end{array}\right) \partial=\frac{\xi}{u}\left(\begin{array}{cc}
0 & -i \\
0 & -1
\end{array}\right) L
$$

and L_{*} is an injective homomorphism.
Let $G(x)$ be an arbitrary smooth function. For the spectral problem (15), we establish the corresponding operator equation of $V=V(G)$ as follows

$$
\begin{equation*}
[V, L]=L_{*}(K G) L^{-1}-L_{*}(J G) L \tag{17}
\end{equation*}
$$

which is equivalent to (6) with $\alpha=1, \quad \beta=-1$.
Theorem 3 The operator equation (17) has the operator solution

$$
V=V(G)=G_{x x}\left(\begin{array}{ll}
0 & 1 \tag{18}\\
0 & 0
\end{array}\right)+G_{x}\left(\begin{array}{cc}
1 & -2 i \\
0 & -1
\end{array}\right) L+(-2 G)\left(\begin{array}{cc}
i & 1-u \\
1 & -i
\end{array}\right) L^{2}
$$

Proof. Let

$$
W=\left(\begin{array}{cc}
-i & u-1 \\
-1 & i
\end{array}\right), \quad V_{0}=G_{x x}\left(\begin{array}{cc}
0 & 1 \\
0 & 0
\end{array}\right)
$$

$$
V_{1}=G_{x}\left(\begin{array}{cc}
1 & -2 i \tag{19}\\
0 & -1
\end{array}\right), \quad V_{2}=-2 G\left(\begin{array}{cc}
i & 1-u \\
1 & -i
\end{array}\right)
$$

Then the commutator [V, L] of $V=V_{0}+V_{1} L+V_{2} L^{2}$ and L is $\left(L=W^{-1} \partial\right)$:

$$
\begin{align*}
{[V, L]=} & -W^{-1} V_{0 x}+\left(V_{0}-W^{-1} V_{0} W-W^{-1} V_{1 x}\right) L+ \\
& \left(V_{1}-W^{-1} V_{1} W-W^{-1} V_{2 x}\right) L^{2}+\left(V_{2}-W^{-1} V_{2} W\right) L^{3} \tag{20}
\end{align*}
$$

Substituting every expressions of (19) into (20), through lengthy calculations we can find that the right-hand side of (20) is equal to $L_{*}(K G) L^{-1}-L_{*}(J G) L$.

Thus, the conditions of both Theorem 1 and Theorem 2 hold. So, the Harry-Dym hierarchy of NLEEs $u_{t}=X_{m}(u) \quad(m=0,1,2, \ldots)$ possesses the following commutator representations

$$
\left\{\begin{array}{l}
L_{t}=\left[W_{m}, L\right], \quad m=0,1,2, \ldots, \\
W_{m}=\sum_{j=0}^{m}\left\{G_{2(j-1), x x}\left(\begin{array}{cc}
0 & 1 \\
0 & 0
\end{array}\right)+G_{2(j-1), x}\left(\begin{array}{cc}
1 & -2 i \\
0 & -1
\end{array}\right) L-\right. \\
\left.2 G_{2(j-1)}\left(\begin{array}{cc}
i & 1-u \\
1 & -i
\end{array}\right) L^{2}\right\} L^{2(m-j)+1}
\end{array}\right.
$$

Particularly, as $m=0$, the Harry-Dym equation $u_{t}=X_{0}(u)=(u)_{x x x}$ has the commutator representation

$$
\left\{\begin{array}{l}
L_{t}=\left[W_{0}, L\right] \\
W_{0}=\left(u^{-(1 / 2)}\right)_{x x}\left(\begin{array}{cc}
0 & 1 \\
0 & 0
\end{array}\right) L+ \\
\\
\left(u^{-(1 / 2)}\right)_{x}\left(\begin{array}{cc}
1 & -2 i \\
0 & -1
\end{array}\right) L^{2}-2 u^{-(1 / 2)}\left(\begin{array}{cc}
i & 1-u \\
1 & -i
\end{array}\right) L^{3} .
\end{array}\right.
$$

2. Consider the spectral problem proposed by Kaup and Newell [11]

$$
\psi_{x}=U(u, v, \lambda) \psi, \quad U(u, v, \lambda)=\left(\begin{array}{cc}
-i \lambda^{2} & \lambda u \tag{21}\\
\lambda v & i \lambda^{2}
\end{array}\right), \quad \psi=\binom{\psi_{1}}{\psi_{2}}, \quad i^{2}=-1
$$

It isn't difficult to get the spectral gradient $\nabla_{(u, v)} \lambda$

$$
\nabla_{(u, v)} \lambda=\binom{\delta \lambda / \delta u}{\delta \lambda / \delta v}=\left(\begin{array}{cc}
\lambda & \psi_{2}^{2} \tag{22}\\
-\lambda & \psi_{1}^{2}
\end{array}\right)\left(\int_{\Omega}\left(v \psi_{1}^{2}+4 i \psi_{1} \psi_{2}-u \psi_{2}^{2}\right) d x\right)^{-1}
$$

which satisfies

$$
\begin{equation*}
K \nabla_{(u, v)} \lambda=\lambda^{2} \cdot J \nabla_{(u, v)} \lambda \tag{23}
\end{equation*}
$$

where

$$
K=\left(\begin{array}{cc}
\frac{1}{2} \partial u \partial^{-1} u \partial & \frac{1}{2} i \partial^{2}+\frac{1}{2} \partial u \partial^{-1} v \partial \\
-\frac{1}{2} i \partial^{2}+\frac{1}{2} \partial v \partial^{-1} u \partial & \frac{1}{2} \partial v \partial^{-1} v \partial
\end{array}\right), \quad J=\left(\begin{array}{cc}
0 & \partial \\
\partial & 0
\end{array}\right)
$$

are the pair of Lenard's operators of (21).
Let $G_{-1}=(1,0)^{T} \in \operatorname{Ker} J, \quad G_{0}=J^{-1} K G_{-1}=(v, u)^{T}$. The Lenard recursive sequences $G_{j} \quad(j=0,1,2, \ldots)$ are determined by

$$
\begin{equation*}
K G_{j-1}=J G_{j}, \quad j=0,1,2, \ldots, \tag{24}
\end{equation*}
$$

which produces the Kaup-Newell hierarchy of NLEEs

$$
\begin{equation*}
(u, v)_{t}^{T}=X_{j}(u, v) \triangleq J G_{j}, \quad j=0,1,2, \ldots \tag{25}
\end{equation*}
$$

with the representative equation

$$
\begin{equation*}
(u, v)_{t}^{T}=X_{1}(u, v) \equiv\left(\frac{1}{2} i u_{x x}+\frac{1}{2}\left(u^{2} v\right)_{x},-\frac{1}{2} i v_{x x}+\frac{1}{2}\left(v^{2} u\right)_{x}\right)^{T} . \tag{26}
\end{equation*}
$$

As $j=1$ and $v=u^{*},(26)$ reduces to the famous derivative Schrödinger equation (DSE):

$$
\begin{equation*}
u_{t}=\frac{1}{2} i u_{x x}+\frac{1}{2}\left(u|u|^{2}\right)_{x} . \tag{27}
\end{equation*}
$$

(21) is equivalent to

$$
L \psi=\lambda^{2} \psi, \quad L=\left(\begin{array}{cc}
i \partial & -i \lambda u \tag{28}\\
i \lambda v & -i \partial
\end{array}\right)
$$

The Gateaux derivative L_{*} of L is

$$
L_{*}(\xi)=\left(\begin{array}{cc}
0 & -i \xi_{1} \tag{29}\\
i \xi_{2} & 0
\end{array}\right) L^{1 / 2}, \quad \forall \xi=\left(\xi_{1}, \xi_{2}\right)^{T}, \quad L_{*} \quad \text { is injective. }
$$

Let $G(x) \triangleq\left(G^{(1)}(x), \quad G^{(2)}(x)\right)^{T}$ be any given smooth vector field. For the spectral problem (28), we construct the related operator equation with $V=V(G)$ as follows

$$
\begin{equation*}
[V, L]=L_{*}(K G) L^{-(1 / 2)}-L_{*}(J G) L^{1 / 2} \tag{30}
\end{equation*}
$$

which is exactly (6) with $\alpha=\frac{1}{2}, \quad \beta=-\frac{1}{2}$.
Theorem 4 The operator equation (30) possesses the operator solution

$$
\begin{gather*}
V=V(G)=\left(\begin{array}{cc}
0 & \frac{1}{2} i G_{x}^{(2)}+\frac{1}{2} u \partial^{-1}\left(u G_{x}^{(1)}+v G_{x}^{(2)}\right) \\
-\frac{1}{2} i G_{x}^{(1)}+\frac{1}{2} v \partial^{-1}\left(u G_{x}^{(1)}+v G_{x}^{(2)}\right) & 0
\end{array}\right)+ \\
\left(\begin{array}{cc}
-\frac{1}{2} i \partial^{-1}\left(u G_{x}^{(1)}+v G_{x}^{(2)}\right) & 0 \\
0 & \frac{1}{2} i \partial^{-1}\left(u G_{x}^{(1)}+v G_{x}^{(2)}\right)
\end{array}\right) L^{1 / 2} . \tag{31}
\end{gather*}
$$

Proof. The method of prooving this Theorem is similar to that used in Theorem 3. The process is omitted.

So, the Kaup-Newell hierarchy of NLEEs $(u, v)_{t}^{T}=X_{m}(u, v) \quad(m=0,1,2, \ldots)$ has the commutator representations

$$
\left\{\begin{array}{l}
L_{t}=\left[W_{m}, L\right], \quad m=0,1,2, \ldots, \\
W_{m}=\sum_{j=0}^{m}\left\{\left(\begin{array}{cc}
0 & \frac{1}{2} i G_{j-1, x}^{(2)}+\frac{1}{2} u \partial^{-1}\left(u G_{j-1, x}^{(1)}+v G_{j-1, x}^{(2)}\right) \\
-\frac{1}{2} i G_{j-1, x}^{(1)}+\frac{1}{2} v \partial^{-1}\left(u G_{j-1, x}^{(1)}+v G_{j-1, x}^{(2)}\right) & 0
\end{array}\right)+\right. \\
\left.\left(\begin{array}{cc}
-\frac{1}{2} i \partial^{-1}\left(u G_{j-1, x}^{(1)}+v G_{j-1, x}^{(2)}\right) & 0 \\
0 & \frac{1}{2} i \partial^{-1}\left(u G_{j-1, x}^{(1)}+v G_{j-1, x}^{(2)}\right)
\end{array}\right) L^{1 / 2}\right\} L^{m-j+(1 / 2)}
\end{array}\right.
$$

Especially, if one lets $m=1, v=u^{*}$, then the $\operatorname{DSE}(27)$ has the commutator representation

$$
\left\{\begin{array}{l}
L_{t}=\left[W_{1}, L\right], \\
W_{1}=\frac{1}{2}\left(\begin{array}{cc}
0 & i u_{x}+u|u|^{2} \\
-i u_{x}^{*}+u^{*}|u|^{2} & 0
\end{array}\right) L^{1 / 2}+\frac{1}{2}\left(\begin{array}{cc}
-i|u|^{2} & 0 \\
0 & i|u|^{2}
\end{array}\right) L+ \\
\\
\left(\begin{array}{cc}
0 & u \\
u^{*} & 0
\end{array}\right) L^{3 / 2}+\left(\begin{array}{cc}
-i & 0 \\
0 & i
\end{array}\right) L^{2}
\end{array}\right.
$$

References

[1] Cao C., Commutator representation of isospectral equation, Chin. Sci. Bull., 1989, V.34, N 10, 723724.
[2] Cheng Y. and Li Y., Lax operator algebra of the AKNS hierarchy, Chin. Sci. Bull., 1990, V.35, N 19, 1631-1635.
[3] Ma W., Commutator representations of the Yang hierarchy of integrable evolution equations, Chin. Sci. Bull., 1991, V.36, N 16, 1325-1330.
[4] Ma W., The algebraic structure of isospectral Lax operator and applications to integrable equations, J. Phys. A: Math. Gen., 1992, V.25, N 21, 5329-5340.
[5] Qiao Z., Lax representations for the Levi hierarchy, Chin. Sci. Bull., 1991, V.36, N 20, 1756-1757.
[6] Qiao Z., Commutator representations of the D-AKNS hierarchy of evolution equations, Mathematica Applicata, 1991, V.4, N 4, 64-70.
[7] Cao C., Nonlinerization of Lax pair for the AKNS hierarchy, Sci. Sin. A, 1990, V.33, N 5, 528-536.
[8] Tu G., An extension of a theorem on gradient of conserved densities of integrable systems, Northeastern Math. J., 1990, V.6, N 1, 26-32.
[9] Li Y., Chen D. and Zeng Y., Some equivalent classes of soliton equations, Proc. 1983 Beijing Symp. on Diff. Geom. and Diff. Equ's, Science Press, Beijing, 1986, 359-368.
[10] Cao C., Stationary Harry-Dym equation and its relation with geodesics ellipsoid, Acta Math. Sin., New Series, 1990, V.6, N 1, 35-45.
[11] Kaup J.D. and Newell A.C., An exact solution for a derivate nonlinear Schrödinger equation, J. Math. Phys., 1978, V.19, N 4, 798-801.

