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Abstract

A simple method for calculating finite-gap elliptic potentials and corresponding spec-
tra of the one-dimensional Schrödinger operator which is based on a general repre-
sentation of the potentials in a form of rational functions of the Weierstrass function
and trace formulae is proposed. It is shown that the 1-3-gap even elliptic potentials
can be expressed only in a form of some linear combinations of the Lamé potentials
with shifted arguments. The expressions for the 1-3-gap even elliptic potentials and
corresponding spectral polynomials (the roots of which are spectrum boundaries) are
obtained.

1 Introduction

A spectral theory of linear differential operators (in particular, the one-dimensional Schrö-
dinger operators), which is connected with a reconstructing of periodic coefficients of
these operators in terms of finite-gap spectral data, is based on the study of analytic
properties of the Baker–Akhiezer function defined on the corresponding Riemann surfaces
[1-5]. A sufficiently general algebraic geometric approach of this theory permits to obtain
general expressions for finite-gap linear differential operators and corresponding spectra
that allows to obtain solutions of hierarchies of integrable nonlinear equations in partial
derivatives. These results were obtained in terms of n-dimensional theta functions [6]
containing implicit parameters, a calculating of which is a special problem.

Explicit expressions for finite-gap elliptic linear differential operators and solutions of
hierarchies of nonlinear partial differential equations were obtained using the reduction
[7, 8] of n-dimensional theta functions to the one-dimensional Jacobi theta functions [9].
In the mentioned papers and in the papers [4, 11] the elliptic differential operators (specif-
ically, the one-dimensional Schrödinger operator) and corresponding spectra were studied
by means of the elliptic ansatz for the corresponding Baker-Akhiezer functions.
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In the paper [12] in the framework of the algebraic geometric approach, the finite-gap
elliptic solutions were found using an ansatz for the spectral n-sheeted Riemann surfaces.
Introducing a representation of even elliptic potentials as a linear combination of the Lamé
potentials with shifted arguments, there were obtained elliptic even potentials and spectra
of the Schrödinger equation and corresponding solutions of the KdV equation for the case
of the 1–2 gaps.

However, there were not considered relations of the above mentioned Lamé potentials
with shifted arguments in the general formula for even elliptic potentials and a computation
of corresponding spectra for an arbitrary number g of spectral gaps. It was also reasonable
to build a more simple method for the calculating of elliptic potentials and spectra by
means of a simple algorithm on the basis of an unified system of equations.

In this paper a simple general method is proposed to calculate the finite-gap elliptic
potentials and spectra of the Schrödinger operators based on the representation of elliptic
potentials by rational functions of the elliptic Weierstrass function [9] and an usage of so-
called trace formulae [2, 13]. It is shown that substitution of these rational functions into
the trace formulae yields, under the condition of vanishing the principal parts at poles,
a system of algebraic equations on potential parameters and the symmetrized products
of spectrum boundaries. The compatibility conditions of these equations bring up to
possible potentials and spectral polynomials such that the set of their roots is the set of
boundary points of a one-dimensional spectrum. It is shown that even elliptic potentials
of the Schrödinger operator are described by only two types of the linear combinations of
the Lamé potentials with shifted arguments. Using a simple algorithm of the proposed
method and the well-known program package “Mathematica” for analytic calculations
[14], we have calculated even 1–3-gap elliptic potentials and corresponding spectra. These
results are compared with previous ones.

2 Equations for potential parameters and spectral

polynomial coefficients

Finite-gap eigenfunctions of the one-dimensional Schrödinger operator H = −d2/dx2 +
U(x) which satisfy the equation HΨ(x,E) = EΨ(x,E)) have the form Ψ(x,E) =√

χR(x,E) exp(
∫ x dxχR(x, E)), where χR is the real function that can be represented

as the asymptotic series

χR(x,E) =
√

E
(
1 +

∞∑
n=0

(−1)n

22n+1
χ2n+1(x)E−(n+1)

)
(1)

(further we shall omit the argument of the functions χn for simplicity). Coefficients of (1)
satisfy the well-known [2] recurrent relation

χn+1 =
d

dx
χn +

n−1∑
k=1

χkχn−k, χ1 = −U(x) . (2)

According to this equation, the functions χ2n+1 can be represented in the form

χ2g+1 = −U (2g) + (−1)g+1const U (g+1) + · · · , (3)
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where superscripts in parentheses mean order of a derivative, (· · ·) means a polynomial on
the potential with its derivatives containing lower powers of U than the first two terms
in the right-hand side of (3). In the case of g-gap spectra (which have g gaps and 2g + 1
boundaries {Ei}), the real function χR is described by the expression [2]

χR(x,E) =
√

P (E)
Q(E, x)

, (4)

P (E) =
2g+1∏
n=1

(E − En), Q(E, x) =
g∏

n=1

(E − µn(x)) ,

which after removal of parentheses transforms into the form

χR(x,E) =

√
2g+1∑
n=0

anE−n

g∑
n=0

bnE−n

, a0 = 1, b0 = 1. (5)

Here an and bn are symmetrized products of spectral boundaries Ej and µ-functions of
the nth order, respectively:

an = (−1)n
2g+1∑

j1, 6=j2,...,6=jn

n∏
i=1

Eji , bn = (−1)n
g∑

j1, 6=j2,...,6=jn

n∏
i=1

µ(x)ji ,

The expression (5), as in the case (1), can be represented as the asymptotic series

χR ∼
√

E
(
1 +

∞∑
n=1

AnE−n
)
, (6)

with coefficients

An =
1
n!

dn

dzn

√
2g+1∑
n=0

anzn

g∑
n=0

bnzn

|(z=0) . (7)

Comparing coefficients at equal powers of the independent variable E−1 in expressions (1)
and (6) we obtain trace formulae in the form

An+1 =
(−1)n

22n+1
χ2n+1, (8)

which in view of equation (7) and equation (2) are relations between symmetrized prod-
ucts bn, an and polynomials of the nth order on the potential U(x) with its derivatives.
In accordance with the definition of equation (7), bn = 0, if n ≥ g. The first g equations
(8) are a system of algebraic equations that defines values (b1, . . . , bg) as polynomials on
the potential and its derivatives. If we substitute them into the left-hand side of equation
(8), it will leads for n ≥ g to the system of equations, which we look for. A substitution
into this system of equations of the general expression for the elliptic potential in a form
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of the rational function of the Weierstrass function leads to equations both for potential
parameters and for symmetrized products of boundaries (which are coefficients of a spectral
polynomial P (E)).

By substituting of the derived elliptic potentials U(x) into expressions for bi and taking
into account P (E), we obtain the explicit expressions both for finite-gap eigenfunctions and
zone spectra. The elliptic zone spectrum follows from the expression for an eigenfunction
shifted on the period T , Ψ(x+T,E) = exp(kT )Ψ(x, E). Taking into account (4) gives the
relation

k =
∫ E

0

< Q(E) >

P (E)
, < · · · >=

1
T

∫ T

0
Q(E, x, ),

which determines the dependence of E on the wave vector k.
The finite-gap elliptic potentials under consideration as elliptic functions are rational

functions of the elliptic Weierstrass function ℘(z | ω, ω′) (ω, ω′ are real and imaginary
half-periods) and can be written in the form [9]

U(z) =
{ N∑

n=1

αn℘n(z) +
∑

i

Mi∑
ni=1

αni(℘(z)− hi)−M−ni

}
+ ℘(1)R̃(℘), (9)

where the expression in braces {· · ·} and the last term in (9) correspond to even and odd
parts of the elliptic potential, R̃(℘) is a rational function of ℘ with new coefficients and
indices N ′, M ′. Maximum values of the integers N, N ′, M = max(Mi), M ′ in (9) are
determined by a comparing of maximum values of exponents at independent variables in
equation (8) for n = g. Hence, taking into account expression (3) gives the equalities

N + g = N(g + 1), M + 2g = M(g + 1), M ′ + 2g = M ′(g + 1),

N ′ + g =
3
2
g + N ′(g + 1),

according to which N = 1, M = M ′ = 2, N ′ = 0. In a similar way, can be shown
that the function R̃ has no positive degree of ℘(z). In the case hi = ei (e1 = ℘(ω), e2 =
℘(ω + ω′), e3 = ℘(ω′)), the values M and M ′ satisfy the equalities M + g = M(g + 1) and
M = M ′ = 1. Thus, the general expression for the elliptic g-gap potential (9) takes the
form

U(z) =
{
α℘(z) +

3∑
i=1

∆i

℘(z)− ωi
+

∑
i

2∑
ni=1

αni

(℘(z)− hi)ni

}
+ ℘(1)R̃(℘). (10)

The odd part of (10) corresponds to the odd part of the known formula for the elliptic
potential

U(z) = 2
N∑
j

℘(z − zj),
∑
i,j

℘(1)(zi − zj) = 0,

which can be rewritten in the form

U(z) = α℘(z) +
∑
j

{6h2
j − 1

2g2

℘(z)− hj
+

h
(1)2

j

(℘(z)− hj)2
− hj

}
+ ℘(1)(z)

∑
j

2h
(1)
j

(℘(z)− hj)2
,
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where the notation hj = ℘(zj) is introduced.
By unique independent parameters of the potential (10) are the parameters ω and

τ = ω′/ω which are expressed by means of a relative width of the spectral gap. These
spectral parameters in equation (8) are input for determination of the potential parameters
and coefficients of the spectral polynomial P (E). The coefficients of the rational expression
(10) are determined from the condition of vanishing of the principal parts at poles relative
to the variable ℘ and 1/℘ (where the argument z will be omitted for simplicity) in equation
(8) with n ≥ g after of a corresponding substitution of the expression (10).

3 Calculating even elliptic potentials and boundaries

Let us consider even elliptic potentials described by the general expression (10) in which
R̃ = 0 for cases of 1–3-gap spectra. We calculate parameters of the elliptic potentials and
corresponding spectral polynomials P (E) in the above mentioned way from equation (8).

3.1 One-gap elliptic potentials

According to equation (8) for the case of one-gap elliptic potential, b1 6= 0 and bn = 0
when n ≥ 2. Taking into account the expressions

h3 = U2(x)− U (2)(x), A2 =
1
2!

{(
a2 −

1
4
a2

1

)
+ 2(b2

1 − b2)− a1b1

}
,

h5 = U (4) − 5U (1)2 + 6UU (2) − 2U3,

A3 =
1
3!

{(3
8
a3

1 −
3
2
a1a2 +

3
2
a3

)
+ 3

(1
4
a2

1 − a2

)
b1 + 3a1(b2

1 − b2) +

(12b1b2 − 4!b3 − 6b3
1)

}
,

that follow from the recurrent relations (2) and the definition (7), where

b1 =
1
2
(U(x) + a1),

b2 =
1
8
(3U2 − U (2)) +

1
4
a1U +

1
2
a2 −

1
8
a2

1,

we shall obtain the system of equations which can be written in the form

b2 =
1
8
(3U2 − U (2)) +

1
4
a1U +

1
2
a2 −

1
8
a2

1 = 0, (11)

b3 = − 1
32

(U (4) + 10U3 − 5U (1)2 − 10UU (2))− 1
16

a1(3U2 − U (2)) +

1
16

U(a2
1 − 4a2) +

1
2
a3 +

1
4
a1a2 −

1
16

a3
1 = 0. (12)

Substituting the general expression (10) in equation (11) and equating to zero principal
parts at poles ℘ = h, ℘ = ei and at pole y = ∞, where y = 1/℘, we obtain the system

α = 2; α2i = 2h′2; α1i = 2Ω, a1 = 0; (13)

Ω = 6h2 − 1
2
g2; Ω2 = 24hh′

2
(h = ℘(ϕ(1))); (14)
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∆i = 2Λi (Λi = 3e2
i −

1
4
g2); (15)∑

i

∆i

h− ei
≡ 2

∑
i

{℘(ϕ(1) + ωi)− ℘(ωi)} = 0; (16)

∑
i

{ α1

ei − h
+

α2

(ei − h)2
+

∆i6=j

ej − ei

}
≡ 2

∑
i

{℘(ωi + ϕ(1)) +

℘(ωi − ϕ(1)) − 2℘(ϕ(1)) + 2℘(ωi − ωj)} = 0, (17)

where g2 is an invariant of the elliptic Weierstrass function [9]. It follows from expressions
(13)–(15) that α- and h-parameters of the elliptic potential are determined by the spectral
parameters τ, ω and do not depend on the index i (which will be omitted henceforth). If
∆i 6= 0, then the system of equations (16)–(17) is valid only if ϕ(1) = 0 that corresponds to
the condition α1,2 = 0. If ϕ(1) 6= 0 and consequently α1,2 = 0, then the indicated system
of equations can be valid only if ∆i = 0. The conditions of compatibility of equations
(13)–(17) can be expressed by the relations

1) α1 = α2 = 0, ∆i = 0;
2) ∆i = 0 (i = 1, 2, 3), αi 6= 0, (i = 1, 2),

which determine two types of solutions of the system (11)–(12) for the desired parameters
of 1-gap elliptic potentials and coefficients of spectral polynomials. Taking into account
the well-known formulae of sums for ℘-functions [9], we can express potentials and spectral
polynomials in the following form:

1) U(z) = 2℘(z), P (E) = E3 − 1
4
g2E − 1

4
g3, Ei = ei, (i = 1, 2, 3);

2) U(z) = 2℘(z) + 2(℘(z − ϕ(1)) + ℘(z + ϕ(1))− 4℘(ϕ(1)),

P (E) = E3 +
1
4
(11g2 − 120℘2(ϕ(1)))E − 1

4
g3 +

4℘(ϕ(1))(12℘2(ϕ(1))− g2)− 4℘(1)2(ϕ(1)),

Ej =
10℘(ϕ(1))ej + 6e2

j − 4℘2(ϕ(1))− g2

2(℘(ϕ(1))− ej)
,

ϕ
(1)
i =

2
3
ωi, (i = 1, . . . , 4), ω4 = ω1 − ω3,

where z = ix + ω means a complex variable.
In view of the known relations [9]

℘(z | ω

2
, ω′) = ℘(z) + ℘(z + ω1)− e1, (18)

℘(z | ω,
ω′

2
) = ℘(z) + ℘(z + ω3)− e3, (19)

℘(z | ω,
ω + ω′

2
) = ℘(z) + ℘(z + ω2)− e2, (20)

℘(z) +
3∑

i=1

℘(z + ωi) = 4℘(2z), (21)
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the elliptic potentials
U(z) = 2℘(z) + 2℘(z + ωj)

and

U(z) = 2℘(z) + 2
3∑

j=1

℘(z + ωj)

together with corresponding spectral polynomials

P (E) = E3 − (3e2
j − 2Λj)E + 2ej(e2

j + 4Λj), E1 = −2ej ,

E2,3 = ej ± 2
√

Λj

and
P (E) = E3 − 4g2E − 16g3, Ei = 4ei (i = 1, 2, 3)

are also placed to the type 1. Potentials 1 and 2 coincide with the known Lamé potential
[9] and the potential obtained by Smirnov in [12] by an algebraic geometric method.

3.2 Two-gap elliptic potentials

In the case of 2-gap spectra, the elliptic potentials and corresponding spectra are described
by a system of equations of the form (8) with bi |i≤2 6= 0 and bi |i≥3= 0. The first three
from these equations are reduced to (12) that determines the potential parameters and
coefficients ai, (i = 1, . . . , 3) of the spectral polynomial P (E). The two rest equations

A4 |bi>2=0= − 1
27

χ7, (22)

A5 |bi>2=0= − 1
29

χ9, (23)

determine the coefficients a4, a5. Substituting the general elliptic potential formula (10)
into (12) for b3 = 0 and equating to zero principal parts at poles ℘ = h, ℘ = ei and pole
y = ∞, where y = 1/℘, we obtain the system

α = 6, α1 = 2Ω, α2 = 2h′2, a1 = 0; (24)

8h′4 + 12hh′2Ω − Ω3 = 0, (Ω = 6h2 − 1
2
g2, h = ℘(ϕ(2))) (25)

∆i = 2Λi (Λi = 3e2
i −

1
4
g2); (26)∑

i

∆i

h− ei
≡ 2

∑
i

{℘(ϕ(2) + ωi)− ℘(ωi)} = 0; (27)

∑
i

{ α1

ei − h
+

α2

(ei − h)2
+

∆i6=j

ej − ei

}
≡ 2

∑
i

{℘(ωi + ϕ(2)) +

℘(ωi − ϕ(2)) − 2℘(ϕ(2)) + 2℘(ωi − ωj)} = 0. (28)

Equations (24)–(26) uniquely determine α, ∆, and h-parameters of the even 2-gap elliptic
potentials through the spectral parameters τ and ω. Equation (27) can be valid if ϕ(2) =
0 that corresponds to the condition α1,2 = 0. Equation (28) can be valid if ωi = 0
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that corresponds to the condition ∆i = 0. The conditions for equations (24)–(28) to be
compatible can be expressed by the relations

1) α1 = α2 = 0, ∆i = 0;

2) α1 = α2 = 0; ∆i =
{

Λi, if i = j;
0, if i 6= j;

3) α1 = α2 = 0; ∆i =
{

Λi, if i = j, k;
0, if i = l;

4) ∆i = 0, (i = 1, 2, 3), αi 6= 0, (i = 1, 2),

determining the full system of the solutions of equations (12), (22), (23) for the parameters
(α, α1, α2) and (a1, . . . , a5). Then, the corresponding even elliptic 2-gap potentials and
the spectral polynomials can be written in the form

1) U(z) = 6℘(z), P (E) = E5 − 21
4

g2E
3 − 27

4
g3E

2 +
27
4

g2
2E − 81

4
g2g3,

E1 = −
√

3g2, Ej=1,2,3 = −3ej , E5 =
√

3g2;
2) U(z) = 6℘(z) + 2℘(z + ωi)− 2ei,

P (E) = E5 − 7(9e2
i + 2Λi)E3 + 18(3e3

i − 5eiΛi)E2 +
27(36e4

i + 16e2
i Λi + 3Λ2

i )E − 54(36e5
i − 52e3

i Λi − 9eiΛ2
i ),

E1 = 6ej , E2,3 = −(ek + 2ej)± 2
√

(7ej + 2ek)(ej − ek),

E4,5 = −(ei + 2ej)± 2
√

(7ej + 2ei)(ei − ek);

3) U(z) = 6℘(z) + 2℘(z + ωi) + 2℘(z + ωk) + 2ek,

P (E) = E5 + (161Λj − 378e2
j )E

3 + (531ejΛj + 108e3
j )E

2 +

27(240Λ2
j + 1280e2

j − 1159e2
jΛj)E + 27(1594ejΛ2

j +

8100e5
j + 120e3

jΛ
2
j ) ≡ (E2 − 3ejE + 81Λj − 180e2

j )

×(E3 + 3ejE
2 + (80Λj − 189e2

j )E + 528ejΛj − 1215e3
j ;

4) U(z) = 6℘(z) + 2℘(z − ϕ(2)) + 2℘(z + ϕ(2)))− 4℘(ϕ(2))),

P (E) = E5 − 7
2
(18h2 + 7Ω)E3 +

9
4
(24h3 − 25h′2 − 34hΩ)E2 +

27
4

(144h4 + 44hh′2 + 112h2Ω + 23Ω2)E −
27
2

(144h5 + 6h2h′2 − 148h3Ω− 41h′2Ω− 75hΩ2).

These expressions exhaust an all system of 2-gap elliptic potentials and corresponding
spectral polynomials. Taking into account the above mentioned relations (18)–(21), we
refer the potentials

U(z) = 6℘(z) + 6℘(z + ωi)− 6ei,

and

U(z) = 6℘(z) + 6
3∑

i=1

℘(z + ωi),
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to the type 1. The potentials 1 and 2, 3 are the known Lamé and Trebich-Verdier potentials
[11, 15], respectively, and the potential 4 coincides with that obtained by Smirnov in [12]
by an algebraic geometric method.

3.3 Three-gap elliptic potentials

The even elliptic potentials and spectral polynomials in the case of 3-gap spectra are
determined by the parameters (α, α1, α2) and by the seven parameters (a1, . . . , a7), re-
spectively, which are solutions of the system of the equations

Aj+1 |bi≤3 6=0 =
(−1)j

22j+1
χ2j+1 (j = 1, 2) (29)

A4 |bi>3=0 = − 1
27

χ7; (30)

A5 |bi>3=0 =
1
29

χ9; (31)

A6 |bi>3=0 = − 1
211

χ11; (32)

A7 |bi>3=0 =
1

213
χ13, (33)

the first two of which determine the symmetrized products (b1, b2, b3) of the above men-
tioned µ-functions.

Substituting the general formula (10) in (30) and equating to zero principal parts at
poles ℘ = h, ℘ = ei and at pole y = ∞, where y = 1/℘, we will obtain the system

α = 12, α1 = 6Ω, α2 = 12h′2, ∆i = 12Λi, a1 = 0;

Ω2 − 12hh′2 = 0, (Ω = 6h2 − 1
2
g2, h = ℘(ϕ(3)),

and equalities following from (27)–(28) by the formal passing ϕ(2) → ϕ(3). The conditions
that these equalities are compatible can be expressed by the classifying relations

1) α1 = α2 = 0, ∆i = 0;

2) α1 = α2 = 0; ∆i =
{

Λi, if i = j, k;
0, if i = l;

3) ∆i = 0, (i = 1, 2, 3), αi 6= 0, (i = 1, 2),

which determine types of solutions of the system (29)–(33) both for the potential param-
eters and above mentioned parameters a1, . . . , a7. The corresponding expressions for the
even 3-gap elliptic potentials and spectral polynomials can be written in the form

1) U(z) = 12℘(z), P (E) = E7 − 63
2

g2E
5 − 297

2
g3E

4 +
4185
16

g2
2E

3 −
18225

8
g2g3E

2 +
(91125

16
g2
3 −

3375
16

g3
2+

)
E;

2) U(z) = 12℘(z) + 12(℘(z + ωi) + ℘(z + ωj)) + 12ek;
P (E) = E7 + (721Λi − 147e2

i )E
5 + (1531eiΛi + 1312e3

i )E
4 +

(1140Λ2
i + 846e4

i − 509e2
i Λi)E3 + (1932eiΛ2

i +
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7650e5
i + 3201e3

i Λ
2
i )E

2 +
(432Λ2

i e
2
i + 5641Λie

4
i − 1016Λ3

i )E +
(1017Λ3

i ei − 301Λ2
i e

3
i − Λie

5
i );

3) U(z) = 12℘(z) + 12{℘(z + ϕ(3)) + ℘(z − ϕ(3))− 2℘(ϕ(3))},

P (E) = E7 +
945
11

(2h2 + 3Ω)E5 +
297
2

(8h3 − 27h′2 − 30hΩ)E4 +

529497
121

(h4 + 27hh′2 + 3h2Ω)E3 +

729
484

(208944h5 + 1074794h2h′2 + 381356h3Ω−

222189h′2Ω)E2 +
243
1936

(7301760h6 − 843322848h3h′2 +

35596627h′4 − 66565488h4Ω− 610253088hh′2Ω)E +
729h

2662
(45109488h6 − 48566951728h3h′2 −

14375034553h′4 − 65505732h4Ω− 27593771259hh′2Ω).

Taking into account the relations (18)–(21), the potentials

U(z) = 12℘(z) + 12℘(z + ωi)− 12ei,

and

U(z) = 12℘(z) + 12
3∑

i=1

℘(z + ωi),

can be also placed to the type 1. As distinguished from 1–2-gap elliptic potentials, the
3-gap potentials can not be expressed as a linear combination of the two Lamé potentials,
one of which has an argument shifted on values ωi. The expressions 1–3 describe the
system of the even 3-gap elliptic potentials and spectral polynomials, from which the
first and the second ones can be placed to the Lamé and the Trebich-Verdier potentials.
The third potential can be placed to the type of potentials obtained by Smirnov in [12].
The expression for the spectrum 1 agrees with the known Hermite result for the 3-gap
Lamé potential. Another elliptic even 3-gap spectra have been obtained for the first time.
Similary to the above considered 1–2-gap elliptic potentials, the 3-gap potentials can be
expressed only as a linear combination of the Lamé potentials without and with shifts
of arguments on half-periods ωi or with a shift on the value ϕ(3) depending on spectral
parameters τ, ω.

4 Conclusion

Thus, an usage of the representation of a rational function of the elliptic Weierstrass
function for g-gap elliptic potentials in trace formulae brings up the simple general method
for a calculating of arbitrary finite-gap elliptic potentials and spectral polynomials. On the
basis of this method we have shown that the known general formula for g-gap even elliptic
potentials in cases of 1–3-gap spectra can have only a form of linear combinations of the
Lamé potentials without and with shifts of arguments on half-periods ωj or on the value
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ϕ(g) determined by the corresponding above mentioned equations. We have calculated
the explicit expressions for even elliptical potentials and corresponding spectra for both
known 1–2-gap and unknown 3-gap cases.
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