

Code generation for accurate array redistribution on automatic distributed-memory
parallelization

Bo Zhao
State Key Laboratory of Mathematical Engineering and

Advanced Computing
 Zhengzhou, Henan, China

E-mail: zhaobo197359@gmail.com

Rui Ding
State Key Laboratory of Mathematical Engineering and

Advanced Computing
Zhengzhou, Henan, China

E-mail: dr2012earth@gmail.com

Lin Han
State Key Laboratory of Mathematical Engineering and

Advanced Computing
Zhengzhou, Henan, China

Jinlong Xu

State Key Laboratory of Mathematical Engineering and
Advanced Computing

Zhengzhou, Henan, China
E-mail: longkaizh@126.com

Abstract

Code generation belongs to the backend of parallelizing compiler, and is for generating efficient computation and
communication code for the target parallel computing system. Traditional research resolve array redistribution mainly
by generating communication code that each processor sends all data defined in its local memory to all processors, but
this will bring large amount of communication redundancy, which increase with the growth of number of processors.
Focusing on this problem, this paper presents an accurate code generation algorithm of array redistribution for
distributed-memory architecture. The algorithm determines source processor and goals processor of each array
element’s migration in array redistribution by the transformation of data decompositions, then generate accurate
communication code. The experimental results show that algorithm proposed by this paper can effectively reduce
communication redundancy with the processor scale growth, and improve the parallel performance of applications.

Keywords: automatic parallelization; data decomposition; array distribution; communication code generation;

International Journal of Networked and Distributed Computing, Vol. 2, No. 1 (January 2014), 11-25

Published by Atlantis Press
Copyright: the authors

11

willieb
Typewritten Text
Received 19 February 2013

willieb
Typewritten Text
Accepted 19 November 2013

willieb
Typewritten Text

willieb
Typewritten Text

willieb
Typewritten Text

willieb
Typewritten Text

Bo Zhao et al.

1. Introduction

Every computing node has its own memory on
distributed-memory parallelizing computers, and needs
explicit message passing to exchange data between
nodes. This means that automatic parallelization not
only have to partition computation and data onto each
computing node, but also have to generate
communication code to keep data consistency. Since
local memory access speed of computing node is much
faster than remote memory access, the efficiency of
communication code has a direct impact on
performance of parallel programs. Code generation
belongs to backend of parallelizing compiler, and its
task is based on program’s parallelism analysis result of
frontend to generate suitable parallel code for execution
on target parallel system.

For the communication code generation on
automatic distributed-memory parallelization, people
have done a lot of research. Ancourt and Irigoin use a
series of projections of Fourier-Motzkin elimination
(FME) to generate loop nests after loop transformation1.
Amarasinghe and Lam represent data decompositions,
computation decompositions and the data flow
information all as systems of linear inequalities, and
showed that the problems of communication code
generation and communication optimization can all be
solved by projecting polyhedra represented by sets of
inequalities onto lower dimensional spaces [2]. Based on
the theories of Ref.3, Ferner built an open source
parallelizing compiler Paraguin to generate message-
passing code for distributed-memory computer
systems3. In addition, to reduce the number of inter-
processor messages, he extended these algorithms to
incorporate the mapping of virtual processors to
physical processors4. In Refs. 5 and 6, Martin proposes
a method on suppressing independent loops in
packing/unpacking loop nest to reduce message size for
message-passing code. In Ref 7, Griebl provides a
discussion on distributed-memory automatic
parallelization using the polyhedral framework. In Ref 8,
Classen et al. construct communication polytopes for
each flow-dependence to complete distributed memory
code generation scheme of Ref 7, though with very
limited implementation and experimental evaluation.
Bondhugula reported an end-to-end automatic

distributed-memory parallelization and code generation
framework on Ref 9, and presents techniques for
optimizing communication code, such as the
communication set is not sent to processors that do not
need any value from this communication set.

When handling pipeline communication of intra-
loop, the above studies can generate accurate
communication code by using the result of dependence
testing. However, the dependence test mainly is data
flow analysis within loop, so this method is not suitable
to generate accurate communication for inter-loops data
exchange.

Works that translate OpenMP to MPI address a
subset of problems of communication code auto-
generation. In Refs. 10, Kwon et al. introduce a hybrid
compiler-runtime translation system, which analyses
accurate array access section on runtime and generate
communication code in communication point.

As a matter of fact, a great many large-scale
scientific computing applications contain irregular
problems and it is necessary to discuss the data
decomposition and code generation for irregular
instances. For example, when dealing with the programs
with sparse matrix, the index of the data array should be
implemented through other array’s value and such
indirect index leads to the data access mode greatly
irregular. This subscript expression relies on variable or
non-affine functions so we can only confirm the data
accesses under data access mode are irregular array
references or not. Basumallik and Eigenmann propose
techniques that create inspectors to analyze actual data
access patterns for irregular accesses at runtime, and
enable computation-communication overlap by
restructuring irregular parallel loops11. In Refs 12 and
13, Ravishankar et al. propose a code generation
approach for effective parallel execution of a class of
irregular loop computations in a distributed-memory
environment, using a combination of static and runtime
analysis and generating inspector/executor (I/E) code.
The inspector captures the data-dependent behavior of
the computation in parallel and the executor performs
the computation in parallel. In Ref 14, Kim et al. present
automatic pipelined parallelization for distributed
memory with speculation.

Characteristics of above studies are generating
communication code on runtime, although it is possible
to make an accurate judgment on the flow of array

Published by Atlantis Press
Copyright: the authors

12

Array redistribution code generation

element, the cost of run-time analysis will eventually be
passed on to the parallel performance of the program.

If array has different distribution strategies between
loops, then array redistribution must be brought to
ensure processors reference data in its local memory.
Array redistribution is the most common inter-loops
communication in parallel programs. The traditional
researches solve it by generating redundancy
distribution communication, which each processor
conservative sends all data defined in its local memory
to all processors. This native approach provides a very
clean way to generate communication code and
guarantees that each processor’s data access pattern will
be satisfied in local. But this means a processor may
receive more data than necessary, and processor that
need not receive any data may receive some[9].
Redundancy distribution communication is shown in
figure 1. We use cubes to represent array elements, and
assign cubes with same color to same processor. Then
the grey planes represent data decomposition to
partition data space, which is the set of array elements.

a2

a3

a1

0

2
3

processor

1

0 2 31 processor

Communication

Figure 1. redundancy distribution communication

Suppose the data size that array defined in loop is
N， then the local data size that assign to processor is
N/np, np is the total number of processors. In
redundancy redistribution communication, each array
element not only migrate from its producer (processor
define it) to consumer (processor use it), but also be sent
to processor without the producer-consumer relation,
then increase (np-1) communication redundancy per
data. So each processor generate (N/np)*(np-1)
communication redundancy, and total amount is
(N/np)*(np-1)*np= N*(np-1). This indicates that with
the growth of number of processors, communication

redundancy will continue to increase. For the expensive
cost of remote data exchange on distributed-memory
architecture, increasing communication redundancy will
undoubtedly reduce the parallel benefit of program.

To solve this problem, this paper proposes an
accurate communication code generation algorithm for
distributed-memory architecture. The algorithm
confirms source processor and goals processor of each
array element’s migration in array redistribution by the
transformation of data decompositions, then generate
accurate array redistribution communication code and
can effectively reduce communication redundancy with
the processor scale growth.

The rest of the paper is organized as follows.
Section 2 provides some necessary notion and formal
description. Section 3 introduces our accurate
communication code generation algorithm of array
redistribution. Section 4 is the experiment and analysis.
Finally, we conclude in Section 5 with a summary of the
contributions of this paper.

2. Background and Notation

To describe code generation algorithm better, we
provides some necessary notion and formal description
in this section.

2.1. Affine decomposition

Affine decomposition, first proposed by Anderson and
Lam in Ref 15, is an effective method to represent and
find computation partition and data distribution, also is
the basis of code generation algorithm proposed in this
paper. It’s for the domain of dense matrix code where
the loop bounds and array subscripts are affine functions
of the loop indices and symbolic constants. Most of the
practical applications satisfy this condition15.

Affine decomposition first maps the computation
and data onto a virtual processor space which scale is
not limited. The computation decomposition of the loop
nest onto n -dimensional processor space is an affine
function : , ()c I P c i Ci g® = +

, where C is an n l

linear transformation matrix, is a constant vector, i

is an index vector for a loop nest and I is a l-
dimensional iteration space. The data decomposition of
the array onto n -dimensional processor space is an
affine function : , ()d A P d a Da

, where D is

an n m linear transformation matrix,

 is a constant

Published by Atlantis Press
Copyright: the authors

13

Bo Zhao et al.

vector, a

 is index vector for an array and A is a m-
dimensional array space15.

After virtual mapping stage, affine decomposition
maps the processors of the virtual processor space onto
the physical processors of the target machine by the
physical mapping function ()sM p

. To use Block

mapping, ()sM p

 can be expressed as equation (1) [4]:
() / /s pM p pid p lb bk p bk

 (1)

where p

 is virtual processor, bk

 is block size and plb

is the lower bound of virtual processors. Because
physical mapping always start from virtual processors
0

, so plb

 always equal to 0

 in ()sM p

. Physical
processors space is non-negative integer space, so we
can equivalent transform the equation of ()sM p

 to

inequality (2) 4:

(1) 1bk pid p pid bk

 (2)
where pid

 is physical processors. According to

definition of data decomposition, mapping data space of
array to physical processors can be expressed as
inequalities group (3):

(1) 1bk pid Da pid bk

lb a ub

 (3)

where lb

 is lower bound of array’s data space and ub

is upper bound. The processor in the conventional sense
refers to the physical processor. So the “processor” is
“physical processor” in the following if no special
instructions.

2.2. Symbol linear inequalities

To generate computation and communication code in
parallelizing compiler, we need to represent the iteration
space of the loop nests and the data space of the arrays
as different multi-dimensional integer spaces. Since
many of the iteration and data spaces found in practice
are multi-dimensional convex regions, these spaces can
be represented as convex polyhedrons 17.

We represent all possible values of a set of integer
variables (v1,…,vk∈Zn) as an n-dimensional discrete
cartesian space, where the k-th axis corresponds to
variable vk. Coordinate [x1,…,xk]∈Zn corresponds to the
value v1=x1,…,vn=xn. A parameterized convex
polyhedron in the n-dimensional space of the variables
v1,…,vn, parameterized by symbolic constants u1,…,uk,
is represented by a system of linear inequalities with the
variables and v1,…,vn and the symbolic constants

u1,…,uk. All the solutions satisfying the inequalities
correspond to the integer points within the polyhedron

[17].
A parameterized convex polyhedron

)(: nkn ZPZS of n dimensions and k parameters is
represented by the system of inequalities (4):

1 1 1 1 1
1 1 1 1

1

1 1 1 1

... ... 0

(,...,)

... ... 0

k k n n
n

k

m m m m m
k k n n

a b u b u c v c v

S u u

a b u b u c v c v

 (4)

where all a’s, b’s and c’s are integers, u1,…,uk are
integer symbolic constants and v1,…,vn are integer
variables[17].

Take code in figure 2(a) as example, data space of
array b is shown in figure 2(b). The shaded area in
figure 2(b) is the data space accessed by loop nest, we
can represent it by linear inequalities group in figure
2(c), which is obtained based on inequalities system (4).

(b) Data space of b[i][j] (c)Linear inequalities

1 0

1 0

1 0

1 0

i

n i

j

n j

double a[9][9], b[9][9];
for (i = 1; i < 8; i++){

for (j = i; j < 8; j++){
a[i][j]=b[i][j];

}
}

(a) Sample code

0
0 8

8
i

j

Figure 2. Linear inequalities system

Adding the inequalities relation (2) of Block
mapping into inequalities system of figure 2(c), code
generation can confirm the local data space of array
distributed onto each processor. Assume data
decomposition of array b is 1 0 0

i

j

, then

(1) 1bk pid i pid bk can be obtained
according to (2). Combining it with inequalities system
of figure 2(c), we can get inequalities system in figure
3(a). Loop nest in figure 3(a) can be generated by using
FME to this system. Symbol bk and pid is unknown in
compile time, therefor we call it symbol linear
inequalities.

1 0, 1 0,

0, 1 0,

0,
(1) 1 0

i n i

j i n j

i bk pid
pid bk i

Figure 3. Symbol linear inequalities system

Published by Atlantis Press
Copyright: the authors

14

Array redistribution code generation

2.3. Two stage mapping model

The data distribution algorithm in this article will adopt
two level mapping model, which is usually used by
most of the data distribution research. The two level
mapping model is shown in figure 4. The first stage of
the model is virtual mapping and it maps the
computation and data into a size unlimited virtual
processor space. The second part of the model is
physical mapping through which we can map the virtual
processor space into physical processor according to the
data distribution equation. Virtual processor space
offers an intermediate-layered and hardware platform
independent mapping templet for automatic
computation partition and data distribution. The
templet focuses our attention on the design and
optimization of the algorithm in first stage mapping.

()f i Fi k

()c i Ci
 ()d a Da

Figure 4. Two level mapping model

Virtual mapping
Virtual mapping comes down to the mapping through

three spaces, that is iteration space, data space and
processor space. Through the first stage of virtual
mapping, data decomposition affine function describes
the mapping from data space to virtual processor space
and computation decomposition affine function
represents the mapping from iteration space to virtual
processor space while array access affine function
explains the mapping from iteration space to virtual data
space. The relationship of the mapping through three
spaces is shown in figure 5.

Iteration space I

Array space A Processor space P

Arr
ay

 a
cc

es
s f

un
ct

io
n

Com
putation decom

position

Data decomposition

d

c
f

Figure 5. The mapping relationship through three spaces

The essence of the mapping process is space
partition and alignment through different spaces. Space
partition can be represented in matrix form, for example,

one two dimension data space use vector

2

1

a

a
a

 to

represent the nodes in the data space where 1a and 2a

represent the index of the array’s first and second
dimension.

Physical mapping

The mapping mode between virtual processor set and
physical processor set includes Block mapping, Cyclic
mapping and Block_Cyclic loop mapping. Block
mapping divides the virtual processor space object into
several pieces equally with virtual processor in each
piece consecutive and then map the pieces into physical
processor one-to-one. Cyclic mapping circularly places
the virtual processor space object on each physical
processor according to index-increasing order.
Block_Cyclic loop mapping divides the virtual processor
space object into several pieces equally first and then
circularly places the virtual processor space object on
each physical processor according to index-increasing
order. Figure 6 is the case of a one-dimensional sixteen
virtual processors mapped into a one-dimensional four
physical processors in the pattern of Block mapping,
Cyclic mapping and Block_Cyclic loop mapping.

Published by Atlantis Press
Copyright: the authors

15

Bo Zhao et al.

Figure 6. Case of physical mapping pattern

When dealing with the mapping from virtual
processor to physical processor, we should confirm the
mapping mode first. The choice of mapping mode refers
to the loop index type of nest loops, the existence of
parallelism in distributed loops and the existence of load
balance in nest loops etc.

After completing the virtual mapping, two stage
mapping model maps virtual processor space into
physical processor space according to fuction

()
s

M p

.Mapping fuction ()
s

M p

 is represented by

equality (5) with Block mapping mode.

 / /s pM p pid p lb bk p bk

 (5)

Where p

is the vector of mapped virtual processor,

bk

 is the vector of piece size which is determined by
the ratio upper bound of virtual processor number and

run-time physical processor number. That is bk

=

/Np Npid

=

 1 / 1p p pid pidub lb ub lb

=

 1 / 1p pidub ub

, where Np

 is the virtual

processor number, Npid

 is the physical processor

number, pub

 and plb

 are the upper bound and lower

bound vector mapped into the virtual processor by

decomposition, pidub

 and pidlb

 are upper bound and

lower bound vector of physical processor. When dealing
with physical mapping we always begin the partition

with virtual processor 0

, so the value of plb

 in

mapping function ()
s

M p

is always 0

. Due to the

physical processor spaces are all non-negative and

integeral, we can transform the equality of ()
s

M p

into

corresponding inequality (6) equaivalently.

 1 1bk pid p pid bk

 (6)

According to the definition of data decomposition,
we can get the inequalities (7) that array’s data space
mapped into physical processor in Block mapping mode.

 1 1bk pid Da pid bk

lb a ub

 (7)

Where lb

 is the lower limit of the divided array’s

index while ub

 is the upper limit.

3. Array redistribution code generation

Communication will occur when the data is non-local to
the processor that references that data. If array has
different distribution modes in loops of define point and
use points, then needs communication to redistribute, so
it can make sure the data accessed by the processor is in
local. According to the data decomposition,
communication of array redistribution can be classified
into two classes:

(a) data-reorganization communication. In case of
that the data decomposition matrix D changes, it makes
array distribution mode reorganized inter-dimensions,
and requires general movement of the entire data
structure.

(b) nearest-neighbor communication. In case of that
the data decomposition matrix D is steady, but the offset

changes, it makes array distribution mode shift in
intra-dimension, only boundary data is needed to
transfer between nearest-neighbor processor.

Next is the approach of accurate communication
code generating for the data-reorganization

Published by Atlantis Press
Copyright: the authors

16

Array redistribution code generation

communication and the nearest-neighbor
communication.

3.1. Data-reorganization communication

Data-reorganization communication will occur when the
data decomposition of array has inter-dimension
changes, the data elements would be mapped on
processors through the new data distribution strategy.
The code segment in figure 7 is derived from the kernel
of the program BT, an application in NAS Parallel
Benchmark (NPB). We based on this code segment to
explain the data-reorganization communication and the
accurate communication code generation.

Supposing that the target parallel computing system
has 6 processors numbered from 0 to 5, the block size
bk is 1,and the data decomposition of the three-
dimensional array rhs in loop 1 is[1 0 0]+[0], in loop 2
is [0 0 1]+[0]. At here a data-reorganization
communication for rhs is necessary between loop 1 and
loop 2. The figure 8(a) is the data distributed status of
rhs in loop 1 when the partition happens in the first
dimension, while the figure 8(b) is the result of data
reorganization for rhs in loop 2 when partition the third
dimension. The gray plane in figure means the partition
of data decomposition to data space, the array element
with the same color in each data space are distributed to
the same processor; when the data’s color changes in
figure 8(a) and (b), it means the data must migrate to
corresponding color processor.

#define n 7
double rhs[n][n][n]; int A, B;
for (i = 1; i < n; i++) //Loop 1

for (j = 1; j < n; j++)
for (k = 1; k < n; k++){

rhs[i][j][k]= rhs[i][j][k]-A* rhs[i][j-1][k];
}
for (i = 1; i < n; i++) //Loop 2

for (j = 1; j < n; j++)
for (k = 1; k < n; k++){

rhs[i][j][k]= rhs[i][j][k]-B* rhs[i][j][k-1];
}

1
2
3
4
5
6
7

8
9

10
11
12

Figure 7. Code to illustrate data-reorganization
communication

After data redistribution of array rhs, all of the
processors exchange data with each other, and
according to the transformation of data decomposition,
the data transfer in a regular way. Using the data
decomposition of before and after data-reorganization
communication, we can analysis the “producer -

customer” relation of the data’s migration between
processors and generate the accurate communication
code.

Figure 8. Data-reorganization communication

Communication code consists of three main parts:
packing code, unpacking code and the communication
primitive. The packing code set up the number of the
data which the local processer send to the others and the
offset of the data in the send-buffer, then copy the data
sent into the send-buffer. The unpacking code set up the
number of the data which the local processer receive
from the others and the offset of the data in the receive-
buffer, then copy the data received back to array from
the receive-buffer. The communication primitive is used
for inter-processors data exchange with the setup of the
buffer. The accurate packing and unpacking code is the
core part of the communication code generation.

3.1.1. Packing code generation.

The primary function of the packing code is filling the
data sent into the send-buffer, and the crucial point is
for each one of processor to judge which array element
will mapping on the local and which will needs to be
sent to other processors. First of all, the current
processor needs to send data only from local data space
of array mapped to this processor, and it is easy to
acquire the local data space according to global data
space and former data decomposition of array in the
define point loop. Secondly, after array redistribution,

Published by Atlantis Press
Copyright: the authors

17

Bo Zhao et al.

the local data space mapped into processor by former
data decomposition will be partitioned by the new data
decomposition and be distributed into different
processor. The array element remapped into other
processor from the current processor is the data that
needs to be sent to the processor.

Figure 9. Data-reorganization communication

Supposing n-dimensional array a needs a data-
reorganization communication. For the data space of a
in define point loop, the lower and upper bound is (lb

,

ub

), and data decomposition is ()d a Da

; For the
data space of a in use point loop, the lower and upper
bound is ('lb

, 'ub

), and data decomposition is
'() ' 'd a D a

. Assuming target parallel computer

system consists of nprocs processors numbered from 0
to nprocs-1. According to the block mapping function

()sM p

, data decomposition ()d a

 and the array bounds
(lb

, ub

), we based on the inequality (3) can acquire the
local data space Lk mapped into the current processor
k(0≤k≤nprocs-1) before array redistribution, and the
boundary of Lk is (kplb

, kpub

). In the same way,
according to ()sM p

, '()d a

 and ('lb

, 'ub

) we can
acquire the local data space 'pidL mapped into any
processor pid (0≤ pid ≤nprocs-1) after array
redistribution, and the boundary of 'pidL is
(' pidplb

, ' pidpub

).

Figure 10. Code of data-reorganization communication

For current processor k, the data remapped from Lk
into 'pidL is the communication set needs to be sent
from k to pid. If restrain Lk by the boundary
(' pidplb

, ' pidpub

) of 'pidL , then as pid change from 0 to
nprocs-1, it means partition the data space Lk of
processor k by '()d a

, and the local data distributed to

pid is need to be remapped from k into pid. In the data-
reorganization communication, the sending
communication set of processor k can be represented as:

[,]_ (,) {(,)

(,) (,) (' , ') ()}

k pid

k k pid pid

comm set l u l u

l u plb pub plb pub k pid

(8

)
Expression (8) indicates that (,)l u

 is the data set sent to

the other processor from the current processor k. With
expression (8), we can calculate the sending
communication set of k to any processor, and generate
the packing code of k to fill the sending data into send-
buffer. For example, figure 9(a) present the local data
space mapped into processor 5 before array
redistribution and the sending communication set
generated by the partition of new data decomposition

'() [010] [0]d a

.

Published by Atlantis Press
Copyright: the authors

18

Array redistribution code generation

After determined sending communication set of
each processor through expression 5, we can express it
as inequalities, and use the FME to generate the
accurate packing code, including the setting and filling
the send-buffer. Figure 9 is the data-reorganization
communication code of the program in Figure 7, from
first to 13 lines is the packing code, where mpid is the
current processor number, comm_size is the total
number of processors in the communication, array
sendcounts records the size of the sending data to each
processor, array sdipls records the offsets of the sending
data to each processor in the buffer. Setting and filling
code of the send-buffer is ahead of the communication
primitive, buffer filling code is to place the array
element into continuous buffer and the processor sends
data according the buffer setup.

3.1.2 Unpacking code generation.

The primary function of the unpacking code is copy the
data in the receive-buffer back into array after the
communication, the crucial point is for each one of
processor to judge which data element will remapping
on the local and which processor is the data’s producer.
First of all, the data needing to be received by the
current processor is the data non-local and used for
computing in the loop. In another word, it is array’s
local data space remapped into processor by the new
data decomposition after the redistribution, and it is
easy to acquire this space according to the global data
space and new data decomposition of array in used
point loop. Secondly, if partitioning local data space
with the former decomposition, then the data distributed
apart from local memory is need to be received from
processors that the data remapped to.

According to the block mapping function ()sM p

,
data decomposition ()d a

 and the array bounds (lb

,

ub

), we can acquire the local data space Lpid mapped
into the any processor pid (0≤pid≤nprocs-1) before
array redistribution, and the boundary of Lpid is (pidplb

,

pidpub

). In the same way, according to ()sM p

, '()d a

and ('lb

, 'ub

) we can acquire the local data space 'kL
mapped into any processor k (0≤k≤nprocs-1) after array
redistribution, and the boundary of 'kL is
('kplb

, 'kpub

). For the current processor k, the data
remapped from Lpid into 'kL is the communication set
needs to be received from pid to k.

If restrain 'kL by the boundary (pidplb

, pidpub

) of
Lpid, then as pid changes from 0 to nprocs-1, it means
partition the data space 'kL of processor k by ()d a

,

and the local data distributed to pid is need to be
remapped from pid into k. In the data-reorganization
communication, the receiving communication set of
processor k can be represented as:

[,]_ (,) {(,)

(,) (,) (' , ') ()}

pid k

pid pid k k

comm set l u l u

l u plb pub plb pub k pid

(9)

Expression (9) indicates that (,)l u

 is the data set
received from the other processor by the current
processor k. With expression (9), we can calculate the
receiving communication set of processor k from any
processor, and generate the unpacking code of processor
k to copy the receiving data back into array from the
receive-buffer. For example, figure 9(b) present the
local data space mapped into processor 5 after array
redistribution and the receiving communication set
generated by the partition of former data decomposition

() [10 0] [0]d a

.
After determined receiving communication set of

every processor through expression 8, we can express it
as inequalities, and use the FME to generate the
accurate unpacking code, including the setting and
copying data from receive-buffer. In figure 10, the code
from 14 to 20 lines and from 23 to 28 lines is the
unpacking code, where array recvcounts records the size
of the receiving data from each processor, array rdipls
records the offsets of the receiving data from each
processor in the buffer. Setting code of the receive-
buffer is ahead of the communication primitive, by
which the processor receives data according the buffer
setup. While the filling code of the receive-buffer is
behind the communication primitive, and copy the data
from buffer back to array.

After generating the packing and unpacking code,
the code generation algorithm inserts the alltoall
communication primitive of MPI message passing
library between the receive-buffer setting and data
writing back, to complete accurate communication code
generation for data-reorganization communication. In
Figure 10, the code of line 21 to 22 is the
communication primitive generated by the algorithm.

Published by Atlantis Press
Copyright: the authors

19

Bo Zhao et al.

3.2. Nearest-neighbor communication generation

Nearest-neighbor communication will occur when the
data decomposition of array has intra-dimension shift, a
little of boundary data should be transferred. It is just
slight inter-processor data exchange compared with the
data reorganization communication, and has better data
locality. The next, we take Jacobi method as example to
introduce the nearest-neighbor communication and its
accurate communication code generation. Jacobi is a
common iterative method, the new value of one point is
the average value of the old value of this point and its
neighbors’, its parallelization brings typical nearest-
neighbor communication. Figure 12(a) represents the
core code of the Jacobi iterative method, figure 12(b)
show the nearest-neighbor communication for the data
decomposition shifting in one dimension of array a.

Assuming the target parallel computer system
consists of 3 processors numbered from 0 to 2, the block
size bk is 2, the data decomposition of the array
reference a[i][j] in loop 1 is [1 0] + [0], and the data
decomposition of the array reference a[i+1][j] in loop 2

is 1

0
[10]

 . The figure 10(b) represents the data

distributed status of a[i][j] and a[i+1][j],the gray plane
in figure means the partition of data decomposition to
data space, the array element with the same color in
each data space are distributed to the same processor.
When the data distributed to different processor after
remapping, it should migrate among processors
according as the decomposition displacement in
dimension, the dotted line represents the nearest-
neighbor communication. Figure 12 show that, each
processor only exchange data with its adjacent
processors in nearest-neighbor communication, if which
handled as the data-reorganization communication will
cause a large amount of redundant communication.
Therefore, the code generation needs to judge the data
exchanged from one processor with its neighbor
according to the displacement of data decomposition in
dimension.

Figure 11. Jacobi interative

Supposing that we only partition one dimension of
array, or partition multi dimensions but just one
dimension there has decomposition displacement. Data
decomposition of n-dimensional array a is

()d a Da

 in define point loop, and is
'() 'd a Da

 in use point in the loop. These two

data decompositions have displacement just in i (0≤i≤n)
dimension. According to the definition of data
decomposition, the array elements a

 shall be mapped

on the virtual processor ()p d a

 in define point loop
and be mapped on the virtual processor ' '()p d a

 in

use point loop. If 'p p p

, that is
'() () ()p d a d a D D a

 (')

So we

need to move a

 through p

 virtual processors
along the i dimension to complete the redistribution
from ()d a

 to '()d a

.

Assuming that the processor number increases in
left-to-right order and starting from 0 to P. The local
space of array a mapped on processor k (0≤k≤P) is Lk
before the redistribution and changes to 'kL after the
redistribution. The lower and upper bound in i
dimension of Lk is (lbk, ubk), and the boundary of 'kL in
i dimension is ('klb , 'kub). For every array element
needs to move through p

 virtual processors

while remapping, and a virtual processor only

Published by Atlantis Press
Copyright: the authors

20

Array redistribution code generation

corresponds to an array elements, we can draw the
following conclusions: i. when 0

, the data set

(| | 1kub

,)kub of Lk will be remapped to the
right-neighbor processor of k (has lager number than k),
the data set (', ' | | 1)k klb lb

 of 'kL is remapped

from the left-neighbor processor of k (has smaller
number than k), as shown in figure 12(a); ii. when

0

, the data set (, | | 1)k klb lb

of Lk will be
remapped to the left-neighbor processor of k, the data
set (' | | 1, ')k kub ub

 of 'kL is remapped from the

right-neighbor processor of k, as shown in figure 12(b).

(', ' | | 1)k klb lb

(| | 1,)k kub ub

(' | | 1, ')k kub ub

(, | | 1)k klb lb

0

0

Figure 12. Nearest-neighbor communication

Therefore, the sending communication set of
processor k in the nearest-neighbor communication can
be expressed as:

0

(,) =(send to +1) (- | | +1,)

0 0

(,) =(send to -1) (, + | -1)

k k k k

k k k k

i i
L k k L

i i
L k k L

if k P

send_com l u k ub ub

elseif k

send_com l u k lb lb

 (10)

The expression (10) expresses that, if we restrain the
data space Lk of processor k by the boundary (,)i i

k kl u in
i dimension, the data set we got is the sending
communication set of k. Moreover, the receiving
communication set of processor k can be expressed as:

'

'

0 0

(,) =(recv from -1) (', '+ | | -1)

0

(,) =(recv from +1) ('-| |+1, ')

k k k k

k k k k

i i
L k k L

i i
L k k L

if k

recv_com l u k lb lb

elseif k P

recv_com l u k ub ub

 (11)

The expression (11) expresses that, if we restrain the
data space 'kL of k by the boundary (,)i i

k kl u in i
dimension, the data set we got is the receiving
communication set of k.

When | | ibk

, the data mapped on processor k
only will be redistributed to the neighbor processors k-1
or k+1,so k only needs to exchange data with these two
processors, (10) and (11) expressed in this default
condition. In some extreme conditions, would occur
| | ibk

, all data in Lk will be redistributed to the

other processor along i dimension, and all data in 'kL is
redistributed from the other processor. According to the
symbol

 and the value of | | mod ibk

, we can get

the data set which needed to be exchanged with the
neighbor-processor by the boundary of each processor.
In this paper, we consider | | ibk

 is a default

condition. Nearest-neighbor communication consists of
three main parts: packing code, unpacking code and the
communication primitive. Getting the sending
communication set by expression (10) and adding the
boundary of the offset dimension in communication set
as constraint to the inequalities system of processors’
local data space, we can use the FME method to
generate the packing code, including the setting and
filling the send-buffer. Similarly, according the
expression (11), we can generate the unpacking code,
including the setting and copying data from receive-
buffer. Then, insert the alltoall communication
primitive of MPI message passing library between the
receive-buffer setting and data writing back, to complete
accurate communication code generation for nearest-
neighbor communication.

According to 3.1 and 3.2, the accurate code
generation algorithm of array redistribution is shown in
figure 14.

Published by Atlantis Press
Copyright: the authors

21

Bo Zhao et al.

Figure 13. Nearest-neighbor communication code

2

1

1

1

1

1

1

1

1 2

3

3

4

3

1
2
3
4
5
6

7
8
9
10
11
1

'

()

'

2
13

14

15
16
17

18

19

20

21

22

23

'

'

24

k

k

k

k

1

1

p

p s

k

k

k
i

i

i

i

lbln
lb ln

L d

L d M p
D

G
G
G

d
lb
lb

l

G l

G

l

G l

G

2

 calculate boundary (,) of 's data space in ;
 calculate (', ') of 's data space in ;
 use to represent current processor;
 use to represent arbi

1lb ub a ln
lb ub a ln

k
pid

Begin

1

2

1 1

trary processor;
 calculate local space of by (), and (,);

 calculate local space of by (), and (', ');
 ()
 calculate (

pid s

pid s

L pid M p d lb ub

L pid M p d lb ub
D D

pl
if

1

1

,) of and (' , ') of ' by (3);
 get inequalities system of 's sending communicaiton set by (5);
 use FME on to generate packing code;

k k k k k kb pub L plb pub L
G k

G

2

2

1 2

2 1 2 1

 get of 's receiving communicaiton set by (6);
 use FME on to generate unpacking code;

 ()

 () () ;
 calculate (,k

G k
G

p d a d a
lb ub

else if

3

) of in offset dimension by (3);
 calculate (', ') of ' in offset dimension by (3);

 calculate (,) of 's sending communicaiton set by (7);

 get by using

k k

k k

k k k
i i

L
lb ub L

l u k

G

3

4

 (,) to restrain ;

 use FME on to generate packing code;

 calculate (', ') of 's receiving communicaiton set by (8);

 get by using (', ') to restrai

k k

k k

k k

i i
k

i i

i i

l u L

G

l u k

G l u

4

n ' ;

 use FME on to generate unpacking code;
 insert collective communication primitive;

kL

G

1d

2d

1 1 1() ()d a D a

2 2 2() ()d a D a

Figure 14. Codegen algorithm of array redistribution

4. Experimental evaluation

We conducted experiments on an 8-node Sunway
cluster and a 4-processor Supermicro server. Sunway
cluster has 1 service node, 8 compute nodes with 2
quad-Core Xeon processors per node, and 96GB of
main memory. MPICH-1.2.7 was used for MPI
communication on this cluster. Supermicro server has 4
Intel Xeon X5670 processors with 6 cores per node and
a clock speed of 2.93 GHz. On this sever, main memory
is 36 GB and MPICH2-1.3a2 was used for MPI
communication.

To verify the correctness and effect of our
algorithm, we evaluate performance on four selected
commonly used applications: BT, SP, 2D-Heat and
Jacobi. BT and SP come from Nas Parallel Benchmarks
(NPB) and mimic the computation and data movement
in computational fluid dynamics (CFD) applications;
2D-Heat is a practical application of the alternating
direction implicit (ADI) method, which is a finite
difference method for solving parabolic, hyperbolic and
elliptic partial differential equations; Jacobi is most
commonly used method with a lot of parallelism for
solving large sparse linear systems.

Our communication code generation algorithm has
been implemented on Open64 compiler. For
comparison, the compiler generated two kinds of
parallel programs. First one was generated based on
traditional researches, and used the redundancy
distribution communication to redistribute array.
Therefore we marked this parallel program as RPEM
(Redundancy Parallel Execution Model) in experimental
result. Second parallel program that generated based on
our algorithm used the accurate communication to
redistribute array and was marked as Accurate in
experimental result. Table 1 listed communication data
amount of these two kind parallel programs for each
application.

TABLE I. COMMUNICATION AMOUNT COMPARISON

Program
Communication amount

RPEM Accurate Redundancy reduced

BT 2*np*N3*5 (np+1)*N3*5 (np-1)*N3*5

Jacobi np*N2 np*2 np*(N2-2)

2D-Heat 2*np* N2 2*N2 2*(np-1)*N2

SP 2*np*N3*5 (np+1)*N3*5 (np-1)*N3*5

Published by Atlantis Press
Copyright: the authors

22

Array redistribution code generation

Firstly, we did a speedup test for 2D-Heat and
Jacobi and listed the result on figure 12. 2D-Heat solves
a 2D heat equation: ut=b1uxx+ b2uyy using the alternating
direction implicit (ADI) method, which reduces two-
dimensional problems to a succession of one-
dimensional problems16. Kernel code of 2D-Heat is
divided into column sweep and row sweep. 2D array u
and v has one data-reorganization communication
between two sweeps respectively. Compared with the
redundancy distribution method, our algorithm reduced
2*(np-1)*N2 amount of communication redundancy, and
the experiment achieved significant speedup upgrade on
Supermicro server and Sunway cluster. The detailed
code of 2D-Heat can refer to Ref 16.

2 D - H e a t

N u m b e r o f p ro c e s s o rs

2 4 6 8 1 2

S
p

ee
dU

p

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9
R P E M o n S u p e rm ic ro
A c c u ra te o n S u p e rm ic ro
R P E M o n S u n w a y
A c c u ra te o n S u n w a y

Ja c o b i

N u m b e r o f p ro c e s s o rs

2 4 6 8 1 2

S
pe

ed
U

p

0

1

2

3

4

5

6

7

8

9

1 0

1 1

0

1

2

3

4

5

6

7

8

9

1 0

1 1

R P E M o n S u p e rm ic ro

A c c u ra te o n S u p e rm ic ro

R P E M o n S u n w a y

A c c u ra te o n S u n w a y

Figure 15. Expermental result of 2D-heat and Jacobi

Jacobi has good locality, thus we focus its use on
testing the effects of nearest-neighbor communication.
Figure 10(a) represents the kernel code of Jacobi. After
partitioning data into blocks, except adjacent elements
between blocks needs to be communicated, each block
can be completely independent parallel computed. The
computation volume of Jacobi is relatively small, so is
more sensitive to the communication. Due to parallel
program RPEM using redundancy distribution
communication to redistribute array, thus brought more
communication redundancy, and speedup achieved
during the experiment was bad or even less than 1.
Program that generated by our algorithm reduced
np*(N2-2) amount of communication redundancy,
therefore significantly improved the parallel
performance.

Secondly, we did a speedup test for BT and SP on
class W, A and B. The experiment result was listed on
figure 13. These two applications belong to NPB
benchmarks, which is widely used in parallel computer
performance evaluation. BT is block tri-diagonal solver.
The kernel code of this application can be divided into

three main parallel regions. Each parallel region
contains a lot of loops, and dominant array Rhs has two
inter-regions data-reorganization communication. After
the optimization of our algorithm, the amount of
communication redundancy reduced from 2*np*N3*5 to
(np-1)*N3*5, thus the speedup of parallel program
Accurate is higher than REPM. SP is scalar Penta-
diagonal solver. SP and BT are similar in many
respects, but there is a fundamental difference with
respect to the communication to computation ratio. SP
has lesser computation than BT, thus its speedup in
experiment was overall lower than BT.

B T C la s s B

N u m b e r o f p ro c e s s o rs

2 4 6 8 1 6

S
p

e
ed

U
p

1

2

3

4

5

6

7

8

9

1 0

1

2

3

4

5

6

7

8

9

1 0
R P E M o n S u p e rm ic ro
A c c u ra te o n S u p e rm ic ro
R P E M o n S u n w a y
A c c u ra te o n S u n w a y

S P C la s s B

N u m b e r o f p ro c e s s o rs

2 4 6 8 1 2

S
p

ee
d

U
p

1

2

3

4

5

6

1

2

3

4

5

6
R P E M o n S u p e rm ic ro
A c c u ra te o n S u p e rm ic ro
R P E M o n S u n w a y
A c c u ra te o n S u n w a y

B T C la s s A

N u m b e r o f p ro c e s s o rs

2 4 6 8 1 6

S
pe

ed
U

p

1

2

3

4

5

6

7

8

9

1

2

3

4

5

6

7

8

9
R P E M o n S u p e r m ic r o

A c c u r a te o n S u p e r m ic r o

R P E M o n S u n w a y

A c c u r a te o n S u n w a y

S P C la s s A

N u m b e r o f p ro c e s s o rs

2 4 6 8 1 2

S
pe

e
dU

p

1

2

3

4

5

6

1

2

3

4

5

6
R P E M o n S u p e rm ic ro
A c c u ra te o n S u p e rm ic ro
R P E M o n S u n w a y
A c c u ra te o n S u n w a y

B T C la s s W

N u m b e r o f p r o c e s s o r s

2 4 6 8 1 2

S
p

ee
d

U
p

1

2

3

4

5

6

7

8

9

1

2

3

4

5

6

7

8

9

R P E M o n S u p e rm ic ro
A c c u ra te o n S u p e rm ic ro
R P E M o n S u n w a y
A c c u ra te o n S u n w a y

S P C la s s W

N u m b e r o f p ro c e s s o rs

2 4 6 8 1 2

S
pe

ed
U

p

1

2

3

4

5

6

1

2

3

4

5

6

R P E M o n S u p e rm i c ro

A c c u r a te o n S u p e r m i c ro

R P E M o n S u n w a y

A c c u r a te o n S u n w a y

Figure 16. Expermental result of BT and SP

For Supermicro server and Sunway cluster, there is
a difference with respect to parallel performance. That
is why the speedups of each application in two
environments are not entirely consistent. But comparing
two parallel programs for each application, programs
generated by our algorithm always achieve better
performance and faster upward trend in speedup. On the
one hand, this shows that communication redundancy

Published by Atlantis Press
Copyright: the authors

23

Bo Zhao et al.

has enormous impact on performance of parallel
programs under the mismatching of communication and
computing capacity. On the other hand, this also shows
that the communication code generation algorithm
proposed by this paper can effectively reduce
communication redundancy of array redistribution and
can improve performance of parallel programs.

In allusion to the irregular problems, we did a test
for CG and IS on class A and B. The testing platform is
Sunway Blue light. Two kinds of parallel programs
were generated in the test. First on the foundation of
traditional data decomposition and code generation
algorithm we produced parallel program for irregular
problems that could not be managed before optimization
and marked it with Affine in the testing result. Then we
used redundance replica technique to generate parallel
program for irregular loops and marked it with
Optimized. In order to explain the parallel performance,
we did a test for the parallel version of MPI offered by
NASA and marked it with Manual in the testing result.
The testing results for CG and IS are shown in figure17
and figure 18.

CG - A on Bluelight

Number of processors

2 4 8 16 32 64

Sp
ee

dU
p

0

2

4

6

8

10

12

14

0

2

4

6

8

10

12

14

Affine
Manual
SW-VEC

CG - B on Bluelight

Number of processors

2 4 8 16 32 64

Sp
ee

dU
p

0

5

10

15

20

25

0

5

10

15

20

25

Affine
Manual
SW-VEC

Figure 17. Expermental result of CG

In the benchmark of CG, a conjugate method is used
to compute an approximation to the smallest eigenvalue
of a large, sparse, symmetric positive definite matrix.
This kernel is typical of unstructured grid computations
in that it tests irregular long-distance communication
and employs sparse matrix-vector multiplication. The
kernel loops are irregular loops and occupy 93%
execution time of conjugate gradient methods. Parallel
program Optimized is generated after using the
algorithm raised in this article. It is able to divide the
loop and generate correct correspond code to get
promise speedup.

IS - A on Bluelight

Number of processors

2 4 8 16 32 64

S
pe

ed
U

p

0

5

10

15

20

25

0

5

10

15

20

25

Affine
Manual
SW-VEC

IS - B on Bluelight

Number of processors

2 4 8 16 32 64

S
pe

ed
U

p

0

5

10

15

20

25

30

35

0

5

10

15

20

25

30

35

Affine
Manual
SW-VEC

Figure 18. Expermental result of IS

The benchmark of IS tests a sorting operation that is
important in particle method codes. This type of
application is similar to particle-in-cell applications of
physics, wherein particles are assigned to cells and may
drift out. This benchmark tests both integer computation
speed and communication performance. This problem is
unique in that floating point arithmetic in not involved.
In the kernel function Rank (), the nest loops occupying
leading status contain array write reference that used
indirect array. We got a rather good speedup for the
Optimized program after partition and correspond code
generation and had effect close to the manual result on
class B.

The Manual parallel program offered by NASA not
only used algorithm level optimization but also has no
corresponding redundance. As a result, it has a better
speedup relative to the Optimized program applying
redundance replica technique for corresponding code
generation. But our algorithm in this article cannot deal
with irregular loops therefor we could not parallel the
kernel loops in CG and IS. Hence the speedup is always
1 pace up and down.

5. Summary and conclusions

The traditional code generation algorithm use
redundancy distribution communication to deal with
array distribution. However, the resulting problem is to
generate communication redundancy will continue to
increase with the growth of number of processors, and
significantly reduces the parallel benefits of parallel
programs. Focus on this problem, this paper proposes a
code generation algorithm of accurate communication.
The algorithm based on data decomposition results to
handle two classes communication of array
redistribution respectively. For data-reorganization
communication, we partition the local data space of
each processor by data decomposition to get

Published by Atlantis Press
Copyright: the authors

24

Array redistribution code generation

communication set; for nearest-neighbor
communication, we obtain communication set according
to the moving distance of local data space boundary
along the dimension has offset in data decomposition;
Finally, we generate packing code, unpacking code and
communication primitive by using communication sets.
The experiment shows that, communication data
amount of applications always held remains unchanged
with the growth of processors, and our algorithm
effectively inhibit communication redundancy and
achieve better speedups. Next, we will study the
overlapping technique of computation and
communication to improve the effective of
communication.

6. References

1. Ancourt C, Irigoin F. Scanning polyhedra with do
loops. Proceedings of the third ACM SIGPLAN
Symposium on Principles and Practice of Parallel
Programming (PPOPP ´91). NY, USA: ACM New
York, 1991. 39-50.

2. Amarasinghe SP and Lam MS. Communication
optimization and code generation for distributed
memory machines. Proceedings of The ACM
SIGPLAN 1993 Conference on Programming
Language Design and Implementation (PLDI ´93).
NY, USA: ACM New York, 1993. 126-138.

3. Ferner CS. The Paraguin Compiler-Message-Passing
Code Generation Using SUIF. Proceedings IEEE
SoutheastCon. Washington DC: IEEE Computer
Society, 2002:1-6.

4. Ferner CS. Revisiting Communication Code
Generation Algorithms for Message-passing
Systems. International Journal of Parallel, Emergent
and Distributed Systems, 2006, 21(5):323-344.

5. Martin PJ. and Ferner CS, “Suppressing independent
loops in packing/unpacking loop nests to reduce
message size for message-passing code,” in the
Proceedings of the PDPTA’07 – The 2007
International Conference on Parallel and Distributed
Processing Techniques and Applications (as part of
WORLDCOMP’07), Las Vegas, NV, June 15-18,
2007. p98-104.

6. Martin PJ. Suppressing Independent Loops in
packing/unpacking Loop Nests to Reduce Message
Size for Message-Passing Code. University of North
Carolina Wilmington, USA, Wilmington NC, 2010,
Master

7. M. Griebl, Automatic Parallelization of Loop
Programs for Distributed Memory Architectures.
FMI, University of Passau, 2004.

8. M. Classen and M. Griebl. Automatic code
generation for distributed memory architectures in
the polytope model. In IEEE IPDPS, Apr. 2006.

9. Bondhugula U. Automatic Distributed-Memory
Parallelization and Code Generation using the
Polyhedral Framework. Technical Report, Report

No.IISc-CSA-TR-2011-3, Bangalore: Indian
Institute of Science, 2011.

10. Kwon O, Jubair F, Eigenmann R and Midkiff S. A
Hybrid Approach of OpenMP for Clusters.
Proceedings of the 17th ACM SIGPLAN
Symposium on Principles and Practice of Parallel
Programming (PPOPP ´12). NY, USA: ACM New
York, 2012. 75-84.

11. Basumallik A and Eigenmann R. Optimizing
irregular shared-memory applications for
distributed-memory systems. Proceedings of the
11th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming (PPOPP ´06). NY,
USA: ACM New York, 2006. 119-128.

12. Ravishankar M, Eisenlohr J, Pouchet LN,
Ramanujam J, Rountev A, Sadayappan P. Code
generation for parallel execution of a class of
irregular loops on distributed memory systems. The
International Conference for High Performance
Computing, Networking, Storage, and Analysis
(SC12). CA, USA: IEEE Computer Society Press
Los Alamitos, 2012.

13. Ravishankar M, Eisenlohr J, Pouchet LN,
Ramanujam J, Rountev A, and Sadayappan P. Code
generation for parallel execution of a class of
irregular loops on distributed memory systems.
Technical Report, Report No.OSU-CISRC-5/12-
TR10. The Ohio State University, 2012.

14. Kim H, Johnson NP, Lee JW, Mahlke SA, August
DI. Automatic Speculative DOALL for Clusters.
Proceedings of the 10th International Symposium on
Code Generation and Optimization (CGO ´12). NY,
USA: ACM New York, 2012. 94-103.

15. Anderson JM and Lam MS. Global optimizations
for parallelism and locality on scalable parallel
machines. In: Cartwright R, ed. Proceedings of the
ACM SIGPLAN 1993 conference on Programming
language design and implementation. Albuquerque:
ACM New York, 1993.112–125.

16. Lee PZ, Kedem ZM. Automatic Data and
Computation Decomposition on Distributed
Memory Parallel Computers. ACM Transactions on
Programming Languages and Systems, 2002, 24(1):
1-50.

17. S. Amarasinghe. Parallelizing Compiler Techniques
Based on Linear Inequalities. PhD thesis, Stanford
University, 1997.

Published by Atlantis Press
Copyright: the authors

25

