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Abstract 

Code generation belongs to the backend of parallelizing compiler, and is for generating efficient computation and 
communication code for the target parallel computing system. Traditional research resolve array redistribution mainly 
by generating communication code that each processor sends all data defined in its local memory to all processors, but 
this will bring large amount of communication redundancy, which increase with the growth of number of processors. 
Focusing on this problem, this paper presents an accurate code generation algorithm of array redistribution for 
distributed-memory architecture. The algorithm determines source processor and goals processor of each array 
element’s migration in array redistribution by the transformation of data decompositions, then generate accurate 
communication code. The experimental results show that algorithm proposed by this paper can effectively reduce 
communication redundancy with the processor scale growth, and improve the parallel performance of applications. 
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1. Introduction 

Every computing node has its own memory on 
distributed-memory parallelizing computers, and needs 
explicit message passing to exchange data between 
nodes. This means that automatic parallelization not 
only have to partition computation and data onto each 
computing node, but also have to generate 
communication code to keep data consistency. Since 
local memory access speed of computing node is much 
faster than remote memory access, the efficiency of 
communication code has a direct impact on 
performance of parallel programs. Code generation 
belongs to backend of parallelizing compiler, and its 
task is based on program’s parallelism analysis result of 
frontend to generate suitable parallel code for execution 
on target parallel system. 

For the communication code generation on 
automatic distributed-memory parallelization, people 
have done a lot of research. Ancourt and Irigoin use a 
series of projections of Fourier-Motzkin elimination 
(FME) to generate loop nests after loop transformation1. 
Amarasinghe and Lam represent data decompositions, 
computation decompositions and the data flow 
information all as systems of linear inequalities, and 
showed that the problems of communication code 
generation and communication optimization can all be 
solved by projecting polyhedra represented by sets of 
inequalities onto lower dimensional spaces [2]. Based on 
the theories of Ref.3, Ferner built an open source 
parallelizing compiler Paraguin to generate message-
passing code for distributed-memory computer 
systems3. In addition, to reduce the number of inter-
processor messages, he extended these algorithms to 
incorporate the mapping of virtual processors to 
physical processors4. In Refs. 5 and 6, Martin proposes 
a method on suppressing independent loops in 
packing/unpacking loop nest to reduce message size for 
message-passing code. In Ref 7, Griebl provides a 
discussion on distributed-memory automatic 
parallelization using the polyhedral framework. In Ref 8, 
Classen et al. construct communication polytopes for 
each flow-dependence to complete distributed memory 
code generation scheme of Ref 7, though with very 
limited implementation and experimental evaluation. 
Bondhugula reported an end-to-end automatic 

distributed-memory parallelization and code generation 
framework on Ref 9, and presents techniques for 
optimizing communication code, such as the 
communication set is not sent to processors that do not 
need any value from this communication set.  

When handling pipeline communication of intra-
loop, the above studies can generate accurate 
communication code by using the result of dependence 
testing. However, the dependence test mainly is data 
flow analysis within loop, so this method is not suitable 
to generate accurate communication for inter-loops data 
exchange. 

Works that translate OpenMP to MPI address a 
subset of problems of communication code auto-
generation. In Refs. 10, Kwon et al. introduce a hybrid 
compiler-runtime translation system, which analyses 
accurate array access section on runtime and generate 
communication code in communication point.  

As a matter of fact, a great many large-scale 
scientific computing applications contain irregular 
problems and it is necessary to discuss the data 
decomposition and code generation for irregular 
instances. For example, when dealing with the programs 
with sparse matrix, the index of the data array should be 
implemented through other array’s value and such 
indirect index leads to the data access mode greatly 
irregular. This subscript expression relies on variable or 
non-affine functions so we can only confirm the data 
accesses under data access mode are irregular array 
references or not. Basumallik and Eigenmann propose 
techniques that create inspectors to analyze actual data 
access patterns for irregular accesses at runtime, and 
enable computation-communication overlap by 
restructuring irregular parallel loops11. In Refs 12 and 
13, Ravishankar et al. propose a code generation 
approach for effective parallel execution of a class of 
irregular loop computations in a distributed-memory 
environment, using a combination of static and runtime 
analysis and generating inspector/executor (I/E) code. 
The inspector captures the data-dependent behavior of 
the computation in parallel and the executor performs 
the computation in parallel. In Ref 14, Kim et al. present 
automatic pipelined parallelization for distributed 
memory with speculation.  

Characteristics of above studies are generating 
communication code on runtime, although it is possible 
to make an accurate judgment on the flow of array 

Published by Atlantis Press 
Copyright: the authors 

12



Array redistribution code generation 

 

 

element, the cost of run-time analysis will eventually be 
passed on to the parallel performance of the program. 

If array has different distribution strategies between 
loops, then array redistribution must be brought to 
ensure processors reference data in its local memory. 
Array redistribution is the most common inter-loops 
communication in parallel programs. The traditional 
researches solve it by generating redundancy 
distribution communication, which each processor 
conservative sends all data defined in its local memory 
to all processors. This native approach provides a very 
clean way to generate communication code and 
guarantees that each processor’s data access pattern will 
be satisfied in local. But this means a processor may 
receive more data than necessary, and processor that 
need not receive any data may receive some[9]. 
Redundancy distribution communication is shown in 
figure 1. We use cubes to represent array elements, and 
assign cubes with same color to same processor. Then 
the grey planes represent data decomposition to 
partition data space, which is the set of array elements.  

a2

a3

a1

0

2
3

processor

1

0 2 31 processor

Communication

 
Figure 1.  redundancy distribution communication 

Suppose the data size that array defined in loop is 
N， then the local data size that assign to processor is 
N/np, np is the total number of processors. In 
redundancy redistribution communication, each array 
element not only migrate from its producer (processor 
define it) to consumer (processor use it), but also be sent 
to processor without the producer-consumer relation, 
then increase (np-1) communication redundancy per 
data. So each processor generate (N/np)*(np-1) 
communication redundancy, and total amount is 
(N/np)*(np-1)*np= N*(np-1). This indicates that with 
the growth of number of processors, communication 

redundancy will continue to increase. For the expensive 
cost of remote data exchange on distributed-memory 
architecture, increasing communication redundancy will 
undoubtedly reduce the parallel benefit of program. 

To solve this problem, this paper proposes an 
accurate communication code generation algorithm for 
distributed-memory architecture. The algorithm 
confirms source processor and goals processor of each 
array element’s migration in array redistribution by the 
transformation of data decompositions, then generate 
accurate array redistribution communication code and 
can effectively reduce communication redundancy with 
the processor scale growth.  

The rest of the paper is organized as follows. 
Section 2 provides some necessary notion and formal 
description. Section 3 introduces our accurate 
communication code generation algorithm of array 
redistribution. Section 4 is the experiment and analysis. 
Finally, we conclude in Section 5 with a summary of the 
contributions of this paper. 

2. Background and Notation 

To describe code generation algorithm better, we 
provides some necessary notion and formal description 
in this section. 

2.1. Affine decomposition 

Affine decomposition, first proposed by Anderson and 
Lam in Ref 15, is an effective method to represent and 
find computation partition and data distribution, also is 
the basis of code generation algorithm proposed in this 
paper. It’s for the domain of dense matrix code where 
the loop bounds and array subscripts are affine functions 
of the loop indices and symbolic constants. Most of the 
practical applications satisfy this condition15. 

Affine decomposition first maps the computation 
and data onto a virtual processor space which scale is 
not limited. The computation decomposition of the loop 
nest onto n -dimensional processor space is an affine 
function : ,  ( )c I P c i Ci g® = +

  
, where C is an n l  

linear transformation matrix,   is a constant vector, i


 
is an index vector for a loop nest and I  is a l-
dimensional iteration space. The data decomposition of 
the array onto n -dimensional processor space is an 
affine function : ,  ( )d A P d a Da   

  
, where D is 

an n m  linear transformation matrix, 


 is a constant 
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vector, a


 is index vector for an array and A  is a m-
dimensional array space15. 

After virtual mapping stage, affine decomposition 
maps the processors of the virtual processor space onto 
the physical processors of the target machine by the 
physical mapping function ( )sM p


. To use Block 

mapping, ( )sM p


 can be expressed as equation (1) [4]:  
( ) / /s pM p pid p lb bk p bk         

     
              (1) 

where p


 is virtual processor, bk


 is block size and plb


 
is the lower bound of virtual processors. Because 
physical mapping always start from virtual processors 
0


, so plb


 always equal to 0


 in ( )sM p


. Physical 
processors space is non-negative integer space, so we 
can equivalent transform the equation of ( )sM p


 to 

inequality (2) 4: 

( 1) 1bk pid p pid bk     
    

               (2) 
where pid


 is physical processors. According to 

definition of data decomposition, mapping data space of 
array to physical processors can be expressed as 
inequalities group (3): 

( 1) 1bk pid Da pid bk

lb a ub

       


 

   

            (3) 

where lb


 is lower bound of array’s data space and ub


 
is upper bound. The processor in the conventional sense 
refers to the physical processor. So the “processor” is 
“physical processor” in the following if no special 
instructions. 

2.2. Symbol linear inequalities 

To generate computation and communication code in 
parallelizing compiler, we need to represent the iteration 
space of the loop nests and the data space of the arrays 
as different multi-dimensional integer spaces. Since 
many of the iteration and data spaces found in practice 
are multi-dimensional convex regions, these spaces can 
be represented as convex polyhedrons 17. 

We represent all possible values of a set of integer 
variables (v1,…,vk∈Zn) as an n-dimensional discrete 
cartesian space, where the k-th axis corresponds to 
variable vk. Coordinate [x1,…,xk]∈Zn corresponds to the 
value v1=x1,…,vn=xn. A parameterized convex 
polyhedron in the n-dimensional space of the variables 
v1,…,vn, parameterized by symbolic constants u1,…,uk, 
is represented by a system of linear inequalities with the 
variables and v1,…,vn and the symbolic constants 

u1,…,uk. All the solutions satisfying the inequalities 
correspond to the integer points within the polyhedron 

[17].  
A parameterized convex polyhedron 

)(: nkn ZPZS   of n dimensions and k parameters is 
represented by the system of inequalities (4): 

1 1 1 1 1
1 1 1 1

1

1 1 1 1

... ... 0

( ,..., )

... ... 0

k k n n
n

k

m m m m m
k k n n

a b u b u c v c v

S u u

a b u b u c v c v

       
   
        

  (4) 

where all a’s, b’s and c’s are integers, u1,…,uk are 
integer symbolic constants and v1,…,vn are integer 
variables[17]. 

Take code in figure 2(a) as example, data space of 
array b is shown in figure 2(b). The shaded area in 
figure 2(b) is the data space accessed by loop nest, we 
can represent it by linear inequalities group in figure 
2(c), which is obtained based on inequalities system (4). 

(b) Data space of b[i][j] (c)Linear inequalities

1 0

1 0

1 0

1 0

i

n i

j

n j

 
   
  
   

double a[9][9], b[9][9];
for (i = 1; i < 8; i++){

for (j = i; j < 8; j++){
a[i][j]=b[i][j];

}
}

(a) Sample code

0
0 8

8
i

j

 
Figure 2.  Linear inequalities system 

Adding the inequalities relation (2) of Block 
mapping into inequalities system of figure 2(c), code 
generation can confirm the local data space of array 
distributed onto each processor. Assume data 
decomposition of array b is    1 0 0

i

j

 
  

 
, then 

( 1) 1bk pid i pid bk       can be obtained 
according to (2). Combining it with inequalities system 
of figure 2(c), we can get inequalities system in figure 
3(a). Loop nest in figure 3(a) can be generated by using 
FME to this system. Symbol bk and pid is unknown in 
compile time, therefor we call it symbol linear 
inequalities. 

1 0, 1 0,

0, 1 0,

0,
( 1) 1 0

i n i

j i n j

i bk pid
pid bk i

     
      

  

     

 
Figure 3.  Symbol linear inequalities system 
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2.3. Two stage mapping model 

The data distribution algorithm in this article will adopt 
two level mapping model, which is usually used by 
most of the data distribution research. The two level 
mapping model is shown in figure 4. The first stage of 
the model is virtual mapping and it maps the 
computation and data into a size unlimited virtual 
processor space. The second part of the model is 
physical mapping through which we can map the virtual 
processor space into physical processor according to the 
data distribution equation. Virtual processor space 
offers an intermediate-layered and hardware platform 
independent mapping templet for automatic 
computation partition and data distribution.  The 
templet focuses our attention on the design and 
optimization of the algorithm in first stage mapping. 

( )f i Fi k 
  

( )c i Ci  
   ( )d a Da  

  





















 

Figure 4.  Two level mapping model 

Virtual mapping 
Virtual mapping comes down to the mapping through 

three spaces, that is iteration space, data space and 
processor space. Through the first stage of virtual 
mapping, data decomposition affine function describes 
the mapping from data space to virtual processor space 
and computation decomposition affine function 
represents the mapping from iteration space to virtual 
processor space while array access affine function 
explains the mapping from iteration space to virtual data 
space. The relationship of the mapping through three 
spaces is shown in figure 5. 

Iteration space I

Array space A Processor  space P

Arr
ay

 a
cc

es
s f

un
ct

io
n

Com
putation decom

position

Data decomposition

d


c 
f


 

Figure 5.  The mapping relationship through three spaces 

The essence of the mapping process is space 
partition and alignment through different spaces. Space 
partition can be represented in matrix form, for example, 

one two dimension data space use vector 









2

1

a

a
a


 to 

represent the nodes in the data space where 1a and 2a  

represent the index of the array’s first and second 
dimension. 

Physical mapping 

The mapping mode between virtual processor set and 
physical processor set includes Block mapping, Cyclic 
mapping and Block_Cyclic loop mapping. Block 
mapping divides the virtual processor space object into 
several pieces equally with virtual processor in each 
piece consecutive and then map the pieces into physical 
processor one-to-one. Cyclic mapping circularly places 
the virtual processor space object on each physical 
processor according to index-increasing order. 
Block_Cyclic loop mapping divides the virtual processor 
space object into several pieces equally first and then 
circularly places the virtual processor space object on 
each physical processor according to index-increasing 
order. Figure 6 is the case of a one-dimensional sixteen 
virtual processors mapped into a one-dimensional four 
physical processors in the pattern of Block mapping, 
Cyclic mapping and Block_Cyclic loop mapping. 
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Figure 6.  Case of physical mapping pattern 

When dealing with the mapping from virtual 
processor to physical processor, we should confirm the 
mapping mode first. The choice of mapping mode refers 
to the loop index type of nest loops, the existence of 
parallelism in distributed loops and the existence of load 
balance in nest loops etc.  

After completing the virtual mapping, two stage 
mapping model maps virtual processor space into 
physical processor space according to fuction 

( )
s

M p


.Mapping fuction ( )
s

M p


 is represented by 

equality (5) with Block mapping mode. 

  / /s pM p pid p lb bk p bk         
      

  (5) 

Where p


is the vector of mapped virtual processor, 

bk


 is the vector of piece size which is determined by 
the ratio upper bound of virtual processor number and 

run-time physical processor number. That is bk


= 

/Np Npid  
 

= 

   1 / 1p p pid pidub lb ub lb     
   

=

   1 / 1p pidub ub   
 

, where Np


 is the virtual 

processor number, Npid


 is the physical processor 

number, pub


 and plb


 are the upper bound and lower 

bound vector mapped into the virtual processor by 

decomposition, pidub


 and pidlb


 are upper bound and 

lower bound vector of physical processor. When dealing 
with physical mapping we always begin the partition 

with virtual processor 0


, so the value of plb


 in 

mapping function ( )
s

M p


 
is always 0


. Due to the 

physical processor spaces are all non-negative and 

integeral, we can transform the equality of ( )
s

M p


 
into 

corresponding inequality (6) equaivalently. 

 1 1bk pid p pid bk     
    

 (6) 

According to the definition of data decomposition, 
we can get the inequalities (7) that array’s data space 
mapped into physical processor in Block mapping mode. 

 1 1bk pid Da pid bk

lb a ub

       


 

     

  


 (7) 

Where lb


 is the lower limit of the divided array’s 

index while ub


 is the upper limit. 

3. Array redistribution code generation 

Communication will occur when the data is non-local to 
the processor that references that data. If array has 
different distribution modes in loops of define point and 
use points, then needs communication to redistribute, so 
it can make sure the data accessed by the processor is in 
local. According to the data decomposition, 
communication of array redistribution can be classified 
into two classes: 

(a) data-reorganization communication. In case of 
that the data decomposition matrix D changes, it makes 
array distribution mode reorganized inter-dimensions, 
and requires general movement of the entire data 
structure.  

(b) nearest-neighbor communication. In case of that 
the data decomposition matrix D is steady, but the offset 



changes, it makes array distribution mode shift in 
intra-dimension, only boundary data is needed to 
transfer between nearest-neighbor processor. 

Next is the approach of accurate communication 
code generating for the data-reorganization 
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communication and the nearest-neighbor 
communication. 

3.1. Data-reorganization communication 

Data-reorganization communication will occur when the 
data decomposition of array has inter-dimension 
changes, the data elements would be mapped on 
processors through the new data distribution strategy. 
The code segment in figure 7 is derived from the kernel 
of the program BT, an application in NAS Parallel 
Benchmark (NPB). We based on this code segment to 
explain the data-reorganization communication and the 
accurate communication code generation. 

Supposing that the target parallel computing system 
has 6 processors numbered from 0 to 5, the block size 
bk is 1,and the data decomposition of the three-
dimensional array rhs in loop 1 is[1 0 0]+[0], in loop 2 
is [0 0 1]+[0]. At here a data-reorganization 
communication for rhs is necessary between loop 1 and 
loop 2. The figure 8(a) is the data distributed status of 
rhs in loop 1 when the partition happens in the first 
dimension, while the figure 8(b) is the result of data 
reorganization for rhs in loop 2 when partition the third 
dimension. The gray plane in figure means the partition 
of data decomposition to data space, the array element 
with the same color in each data space are distributed to 
the same processor; when the data’s color changes in 
figure 8(a) and (b), it means the data must migrate to 
corresponding color processor. 

#define n 7
double rhs[n][n][n]; int A, B;
for (i = 1; i < n; i++) //Loop 1

for (j = 1; j < n; j++) 
for (k = 1; k < n; k++){

rhs[i][j][k]= rhs[i][j][k]-A* rhs[i][j-1][k];
}
for (i = 1; i < n; i++) //Loop 2

for (j = 1; j < n; j++) 
for (k = 1; k < n; k++){

rhs[i][j][k]= rhs[i][j][k]-B* rhs[i][j][k-1];
}

1
2
3
4
5
6
7

8
9

10
11
12  

Figure 7.  Code to illustrate data-reorganization 
communication 

After data redistribution of array rhs, all of the 
processors exchange data with each other, and 
according to the transformation of data decomposition, 
the data transfer in a regular way. Using the data 
decomposition of before and after data-reorganization 
communication, we can analysis the “producer - 

customer” relation of the data’s migration between 
processors and generate the accurate communication 
code. 

 

Figure 8.  Data-reorganization communication 

Communication code consists of three main parts: 
packing code, unpacking code and the communication 
primitive. The packing code set up the number of the 
data which the local processer send to the others and the 
offset of the data in the send-buffer, then copy the data 
sent into the send-buffer. The unpacking code set up the 
number of the data which the local processer receive 
from the others and the offset of the data in the receive-
buffer, then copy the data received back to array from 
the receive-buffer. The communication primitive is used 
for inter-processors data exchange with the setup of the 
buffer. The accurate packing and unpacking code is the 
core part of the communication code generation. 

3.1.1.  Packing code generation. 

The primary function of the packing code is filling the 
data sent into the send-buffer, and the crucial point is 
for each one of processor to judge which array element 
will mapping on the local and which will needs to be 
sent to other processors. First of all, the current 
processor needs to send data only from local data space 
of array mapped to this processor, and it is easy to 
acquire the local data space according to global data 
space and former data decomposition of array in the 
define point loop. Secondly, after array redistribution, 
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the local data space mapped into processor by former 
data decomposition will be partitioned by the new data 
decomposition and be distributed into different 
processor. The array element remapped into other 
processor from the current processor is the data that 
needs to be sent to the processor. 

 

Figure 9.  Data-reorganization communication 

Supposing n-dimensional array a needs a data-
reorganization communication. For the data space of a 
in define point loop, the lower and upper bound is ( lb


, 

ub


), and data decomposition is ( )d a Da  
 

; For the 
data space of a in use point loop, the lower and upper 
bound is ( 'lb


, 'ub


), and data decomposition is 
'( ) ' 'd a D a  

 
. Assuming target parallel computer 

system consists of nprocs processors numbered from 0 
to nprocs-1. According to the block mapping function 

( )sM p


, data decomposition ( )d a


 and the array bounds 
( lb


, ub


), we based on the inequality (3) can acquire the 
local data space Lk mapped into the current processor 
k(0≤k≤nprocs-1) before array redistribution, and the 
boundary of Lk is ( kplb


, kpub


). In the same way, 
according to ( )sM p


, '( )d a


 and ( 'lb


, 'ub


)  we can 
acquire the local data space 'pidL  mapped into any 
processor pid (0≤ pid ≤nprocs-1) after array 
redistribution, and the boundary of 'pidL  is 
( ' pidplb


, ' pidpub


). 

 

Figure 10.  Code of data-reorganization communication  

For current processor k, the data remapped from Lk 
into 'pidL  is the communication set needs to be sent 
from k to pid. If restrain Lk by the boundary 
( ' pidplb


, ' pidpub


) of 'pidL , then as pid change from 0 to 
nprocs-1, it means partition the data space Lk of 
processor k by '( )d a


, and the local data distributed to 

pid is need to be remapped from k into pid. In the data-
reorganization communication, the sending 
communication set of processor k can be represented as: 

 
[ , ]_ ( , ) {( , )

( , ) ( , ) ( ' , ' ) ( )}

k pid

k k pid pid

comm set l u l u

l u plb pub plb pub k pid

  

   

   

     


(8

) 
Expression (8) indicates that ( , )l u

 
 is the data set sent to 

the other processor from the current processor k. With 
expression (8), we can calculate the sending 
communication set of k to any processor, and generate 
the packing code of k to fill the sending data into send-
buffer. For example, figure 9(a) present the local data 
space mapped into processor 5 before array 
redistribution and the sending communication set 
generated by the partition of new data decomposition 

'( ) [010] [0]d a    


. 
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After determined sending communication set of 
each processor through expression 5, we can express it 
as inequalities, and use the FME to generate the 
accurate packing code, including the setting and filling 
the send-buffer. Figure 9 is the data-reorganization 
communication code of the program in Figure 7, from 
first to 13 lines is the packing code, where mpid is the 
current processor number, comm_size is the total 
number of processors in the communication, array 
sendcounts records the size of the sending data to each 
processor, array sdipls records the offsets of the sending 
data to each processor in the buffer. Setting and filling 
code of the send-buffer is ahead of the communication 
primitive, buffer filling code is to place the array 
element into continuous buffer and the processor sends 
data according the buffer setup. 

3.1.2  Unpacking code generation. 

The primary function of the unpacking code is copy the 
data in the receive-buffer back into array after the 
communication, the crucial point is for each one of 
processor to judge which data element will remapping 
on the local and which processor is the data’s producer. 
First of all, the data needing to be received by the 
current processor is the data non-local and used for 
computing in the loop. In another word, it is array’s 
local data space remapped into processor by the new 
data decomposition after the redistribution, and it is 
easy to acquire this space according to the global data 
space and new data decomposition of array in used 
point loop. Secondly, if partitioning local data space 
with the former decomposition, then the data distributed 
apart from local memory is need to be received from 
processors that the data remapped to. 

According to the block mapping function ( )sM p


, 
data decomposition ( )d a


 and the array bounds ( lb


, 

ub


), we can acquire the local data space Lpid mapped 
into the any processor pid (0≤pid≤nprocs-1) before 
array redistribution, and the boundary of Lpid is ( pidplb


, 

pidpub


). In the same way, according to ( )sM p


, '( )d a


 
and ( 'lb


, 'ub


) we can acquire the local data space 'kL  
mapped into any processor k (0≤k≤nprocs-1) after array 
redistribution, and the boundary of 'kL  is 
( 'kplb


, 'kpub


). For the current processor k, the data 
remapped from Lpid into 'kL  is the communication set 
needs to be received from pid to k.  

If restrain 'kL  by the boundary ( pidplb


, pidpub


) of 
Lpid, then as pid changes from 0 to nprocs-1, it means 
partition the data space 'kL  of processor k by ( )d a


, 

and the local data distributed to pid is need to be 
remapped from pid into k. In the data-reorganization 
communication, the receiving communication set of 
processor k can be represented as: 

 
[ , ]_ ( , ) {( , )

( , ) ( , ) ( ' , ' ) ( )}

pid k

pid pid k k

comm set l u l u

l u plb pub plb pub k pid

  

   

   

     
  

(9) 

Expression (9) indicates that ( , )l u
 

 is the data set 
received from the other processor by the current 
processor k. With expression (9), we can calculate the 
receiving communication set of processor k from any 
processor, and generate the unpacking code of processor 
k to copy the receiving data back into array from the 
receive-buffer. For example, figure 9(b) present the 
local data space mapped into processor 5 after array 
redistribution and the receiving communication set 
generated by the partition of former data decomposition 

( ) [10 0] [0]d a    


. 
After determined receiving communication set of 

every processor through expression 8, we can express it 
as inequalities, and use the FME to generate the 
accurate unpacking code, including the setting and 
copying data from receive-buffer. In figure 10, the code 
from 14 to 20 lines and from 23 to 28 lines is the 
unpacking code, where array recvcounts records the size 
of the receiving data from each processor, array rdipls 
records the offsets of the receiving data from each 
processor in the buffer. Setting code of the receive-
buffer is ahead of the communication primitive, by 
which the processor receives data according the buffer 
setup. While the filling code of the receive-buffer is 
behind the communication primitive, and copy the data 
from buffer back to array. 

After generating the packing and unpacking code, 
the code generation algorithm inserts the alltoall 
communication primitive of MPI message passing 
library between the receive-buffer setting and data 
writing back, to complete accurate communication code 
generation for data-reorganization communication. In 
Figure 10, the code of line 21 to 22 is the 
communication primitive generated by the algorithm. 
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3.2. Nearest-neighbor communication generation 

Nearest-neighbor communication will occur when the 
data decomposition of array has intra-dimension shift, a 
little of boundary data should be transferred. It is just 
slight inter-processor data exchange compared with the 
data reorganization communication, and has better data 
locality. The next, we take Jacobi method as example to 
introduce the nearest-neighbor communication and its 
accurate communication code generation. Jacobi is a 
common iterative method, the new value of one point is 
the average value of the old value of this point and its 
neighbors’, its parallelization brings typical nearest-
neighbor communication. Figure 12(a) represents the 
core code of the Jacobi iterative method, figure 12(b) 
show the nearest-neighbor communication for the data 
decomposition shifting in one dimension of array a. 

Assuming the target parallel computer system 
consists of 3 processors numbered from 0 to 2, the block 
size bk is 2, the data decomposition of the array 
reference a[i][j] in loop 1 is [1 0] + [0], and the data 
decomposition of the array reference a[i+1][j] in loop 2 

is 1

0
[10]

 
 
 

  . The figure 10(b) represents the data 

distributed status of a[i][j] and a[i+1][j],the gray plane 
in figure means the partition of data decomposition to 
data space, the array element with the same color in 
each data space are distributed to the same processor. 
When the data distributed to different processor after 
remapping, it should migrate among processors 
according as the decomposition displacement in 
dimension, the dotted line represents the nearest-
neighbor communication. Figure 12 show that, each 
processor only exchange data with its adjacent 
processors in nearest-neighbor communication, if which 
handled as the data-reorganization communication will 
cause a large amount of redundant communication. 
Therefore, the code generation needs to judge the data 
exchanged from one processor with its neighbor 
according to the displacement of data decomposition in 
dimension.   

 

Figure 11.  Jacobi interative  

Supposing that we only partition one dimension of 
array, or partition multi dimensions but just one 
dimension there has decomposition displacement. Data 
decomposition of n-dimensional array a is 

( )d a Da  
 

 in define point loop, and is 
'( ) 'd a Da  

 
 in use point in the loop. These two 

data decompositions have displacement just in i (0≤i≤n) 
dimension. According to the definition of data 
decomposition, the array elements a


 shall be mapped 

on the virtual processor ( )p d a
 

 in define point loop 
and be mapped on the virtual processor ' '( )p d a

 
 in 

use point loop. If 'p p p  
  

, that is 
'( ) ( ) ( )p d a d a D D a     

   
 ( ' )    

  
So we 

need to move a


 through p   


 virtual processors 
along the i dimension to complete the redistribution 
from ( )d a


 to '( )d a


. 

Assuming that the processor number increases in 
left-to-right order and starting from 0 to P. The local 
space of array a mapped on processor k (0≤k≤P) is Lk 
before the redistribution and changes to 'kL  after the 
redistribution. The lower and upper bound in i 
dimension of Lk is (lbk, ubk), and the boundary of 'kL in 
i dimension is ( 'klb , 'kub ). For every array element 
needs to move through p   


 virtual processors 

while remapping, and a virtual processor only 
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corresponds to an array elements, we can draw the 
following conclusions: i. when 0 

 
, the data set 

( | | 1kub   


, )kub of Lk will be remapped to the 
right-neighbor processor of k (has lager number than k),  
the data set ( ', ' | | 1)k klb lb    


 of 'kL  is remapped 

from the left-neighbor processor of k (has smaller 
number than k), as shown in figure 12(a); ii. when 

0 
 

, the data set ( , | | 1)k klb lb    


of Lk will be 
remapped to the left-neighbor processor of k, the data 
set ( ' | | 1, ')k kub ub   


 of 'kL  is remapped from the 

right-neighbor processor of k, as shown in figure 12(b). 

( ', ' | | 1)k klb lb    


( | | 1, )k kub ub   


( ' | | 1, ')k kub ub   


( , | | 1)k klb lb    


0 


0 


 
Figure 12.  Nearest-neighbor communication 

Therefore, the sending communication set of 
processor k in the nearest-neighbor communication can 
be expressed as: 

 

 

0

( , ) =(send to +1) ( - | | +1, )

0 0

( , ) =(send to -1) ( , + | -1)

k k k k

k k k k

i i
L k k L

i i
L k k L

if k P

send_com l u k ub ub

elseif k

send_com l u k lb lb









  

   

  

   

 





 





  (10)

 

The expression (10) expresses that, if we restrain the 
data space Lk of processor k by the boundary ( , )i i

k kl u  in 
i dimension, the data set we got is the sending 
communication set of k. Moreover, the receiving 
communication set of processor k can be expressed as: 

 

 
'

'

0 0

( , ) =(recv from -1) ( ', '+ | | -1)

0

( , ) =(recv from +1) ( '-| |+1, ')

k k k k

k k k k

i i
L k k L

i i
L k k L

if k

recv_com l u k lb lb

elseif k P

recv_com l u k ub ub









  

 

  

  

 





 





  (11)

 

The expression (11) expresses that, if we restrain the 
data space 'kL  of k by the boundary ( , )i i

k kl u  in i 
dimension, the data set we got is the receiving 
communication set of k. 

When | | ibk 


, the data mapped on processor k 
only will be redistributed to the neighbor processors k-1 
or k+1,so k only needs to exchange data with these two 
processors, (10) and (11) expressed in this default 
condition. In some extreme conditions, would occur 
| | ibk 


, all data in Lk  will be redistributed to the 

other processor along i dimension, and all data in 'kL  is 
redistributed from the other processor. According to the 
symbol 


 and the value of | | mod ibk  


, we can get 

the data set which needed to be exchanged with the 
neighbor-processor by the boundary of each processor. 
In this paper, we consider | | ibk 


 is a default 

condition. Nearest-neighbor communication consists of 
three main parts: packing code, unpacking code and the 
communication primitive. Getting the sending 
communication set by expression (10) and adding the 
boundary of the offset dimension in communication set 
as constraint to the inequalities system of processors’ 
local data space, we can use the FME method to 
generate the packing code, including the setting and 
filling the send-buffer. Similarly, according the 
expression (11), we can generate the unpacking code, 
including the setting and copying data from receive-
buffer. Then, insert the alltoall communication 
primitive of MPI message passing library between the 
receive-buffer setting and data writing back, to complete 
accurate communication code generation for nearest-
neighbor communication. 

According to 3.1 and 3.2, the accurate code 
generation algorithm of array redistribution is shown in 
figure 14. 
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Figure 13.  Nearest-neighbor communication code 
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Figure 14.  Codegen algorithm of array redistribution 

4. Experimental evaluation 

We conducted experiments on an 8-node Sunway 
cluster and a 4-processor Supermicro server. Sunway 
cluster has 1 service node, 8 compute nodes with 2 
quad-Core Xeon processors per node, and 96GB of 
main memory. MPICH-1.2.7 was used for MPI 
communication on this cluster. Supermicro server has 4 
Intel Xeon X5670 processors with 6 cores per node and 
a clock speed of 2.93 GHz. On this sever, main memory 
is 36 GB and MPICH2-1.3a2 was used for MPI 
communication. 

To verify the correctness and effect of our 
algorithm, we evaluate performance on four selected 
commonly used applications: BT, SP, 2D-Heat and 
Jacobi. BT and SP come from Nas Parallel Benchmarks 
(NPB) and mimic the computation and data movement 
in computational fluid dynamics (CFD) applications; 
2D-Heat is a practical application of the alternating 
direction implicit (ADI) method, which is a finite 
difference method for solving parabolic, hyperbolic and 
elliptic partial differential equations; Jacobi is most 
commonly used method with a lot of parallelism for 
solving large sparse linear systems. 

Our communication code generation algorithm has 
been implemented on Open64 compiler. For 
comparison, the compiler generated two kinds of 
parallel programs. First one was generated based on 
traditional researches, and used the redundancy 
distribution communication to redistribute array. 
Therefore we marked this parallel program as RPEM 
(Redundancy Parallel Execution Model) in experimental 
result. Second parallel program that generated based on 
our algorithm used the accurate communication to 
redistribute array and was marked as Accurate in 
experimental result. Table 1 listed communication data 
amount of these two kind parallel programs for each 
application. 

TABLE I.  COMMUNICATION AMOUNT COMPARISON 

Program 
Communication amount 

RPEM Accurate Redundancy reduced 

BT 2*np*N3*5 (np+1)*N3*5 (np-1)*N3*5 

Jacobi np*N2 np*2 np*( N2-2) 

2D-Heat 2*np* N2 2*N2 2*(np-1)*N2 

SP 2*np*N3*5 (np+1)*N3*5 (np-1)*N3*5 
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Firstly, we did a speedup test for 2D-Heat and 
Jacobi and listed the result on figure 12. 2D-Heat solves 
a 2D heat equation: ut=b1uxx+ b2uyy using the alternating 
direction implicit (ADI) method, which reduces two-
dimensional problems to a succession of one-
dimensional problems16. Kernel code of 2D-Heat is 
divided into column sweep and row sweep. 2D array u 
and v has one data-reorganization communication 
between two sweeps respectively. Compared with the 
redundancy distribution method, our algorithm reduced 
2*(np-1)*N2 amount of communication redundancy, and 
the experiment achieved significant speedup upgrade on 
Supermicro server and Sunway cluster. The detailed 
code of 2D-Heat can refer to Ref 16. 
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Figure 15.  Expermental result of 2D-heat and Jacobi 

Jacobi has good locality, thus we focus its use on 
testing the effects of nearest-neighbor communication. 
Figure 10(a) represents the kernel code of Jacobi. After 
partitioning data into blocks, except adjacent elements 
between blocks needs to be communicated, each block 
can be completely independent parallel computed. The 
computation volume of Jacobi is relatively small, so is 
more sensitive to the communication. Due to parallel 
program RPEM using redundancy distribution 
communication to redistribute array, thus brought more 
communication redundancy, and speedup achieved 
during the experiment was bad or even less than 1. 
Program that generated by our algorithm reduced 
np*(N2-2) amount of communication redundancy, 
therefore significantly improved the parallel 
performance. 

Secondly, we did a speedup test for BT and SP on 
class W, A and B. The experiment result was listed on 
figure 13. These two applications belong to NPB 
benchmarks, which is widely used in parallel computer 
performance evaluation. BT is block tri-diagonal solver. 
The kernel code of this application can be divided into 

three main parallel regions. Each parallel region 
contains a lot of loops, and dominant array Rhs has two 
inter-regions data-reorganization communication. After 
the optimization of our algorithm, the amount of 
communication redundancy reduced from 2*np*N3*5 to 
(np-1)*N3*5, thus the speedup of parallel program 
Accurate is higher than REPM. SP is scalar Penta-
diagonal solver. SP and BT are similar in many 
respects, but there is a fundamental difference with 
respect to the communication to computation ratio. SP 
has lesser computation than BT, thus its speedup in 
experiment was overall lower than BT. 
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Figure 16.  Expermental result of BT and SP 

For Supermicro server and Sunway cluster, there is 
a difference with respect to parallel performance. That 
is why the speedups of each application in two 
environments are not entirely consistent. But comparing 
two parallel programs for each application, programs 
generated by our algorithm always achieve better 
performance and faster upward trend in speedup. On the 
one hand, this shows that communication redundancy 
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has enormous impact on performance of parallel 
programs under the mismatching of communication and 
computing capacity. On the other hand, this also shows 
that the communication code generation algorithm 
proposed by this paper can effectively reduce 
communication redundancy of array redistribution and 
can improve performance of parallel programs. 

In allusion to the irregular problems, we did a test 
for CG and IS on class A and B. The testing platform is 
Sunway Blue light. Two kinds of parallel programs 
were generated in the test. First on the foundation of 
traditional data decomposition and code generation 
algorithm we produced parallel program for irregular 
problems that could not be managed before optimization 
and marked it with Affine in the testing result. Then we 
used redundance replica technique to generate parallel 
program for irregular loops and marked it with 
Optimized. In order to explain the parallel performance, 
we did a test for the parallel version of MPI offered by 
NASA and marked it with Manual in the testing result. 
The testing results for CG and IS are shown in figure17 
and figure 18. 
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Figure 17.  Expermental result of CG 

In the benchmark of CG, a conjugate method is used 
to compute an approximation to the smallest eigenvalue 
of a large, sparse, symmetric positive definite matrix. 
This kernel is typical of unstructured grid computations 
in that it tests irregular long-distance communication 
and employs sparse matrix-vector multiplication. The 
kernel loops are irregular loops and occupy 93% 
execution time of conjugate gradient methods. Parallel 
program Optimized is generated after using the 
algorithm raised in this article. It is able to divide the 
loop and generate correct correspond code to get 
promise speedup. 
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Figure 18.  Expermental result of IS 

The benchmark of IS tests a sorting operation that is 
important in particle method codes. This type of 
application is similar to particle-in-cell applications of 
physics, wherein particles are assigned to cells and may 
drift out. This benchmark tests both integer computation 
speed and communication performance. This problem is 
unique in that floating point arithmetic in not involved. 
In the kernel function Rank (), the nest loops occupying 
leading status contain array write reference that used 
indirect array. We got a rather good speedup for the 
Optimized program after partition and correspond code 
generation and had effect close to the manual result on 
class B. 

The Manual parallel program offered by NASA not 
only used algorithm level optimization but also has no 
corresponding redundance. As a result, it has a better 
speedup relative to the Optimized program applying 
redundance replica technique for corresponding code 
generation. But our algorithm in this article cannot deal 
with irregular loops therefor we could not parallel the 
kernel loops in CG and IS. Hence the speedup is always 
1 pace up and down. 

5. Summary and conclusions 

The traditional code generation algorithm use 
redundancy distribution communication to deal with 
array distribution. However, the resulting problem is to 
generate communication redundancy will continue to 
increase with the growth of number of processors, and 
significantly reduces the parallel benefits of parallel 
programs. Focus on this problem, this paper proposes a 
code generation algorithm of accurate communication. 
The algorithm based on data decomposition results to 
handle two classes communication of array 
redistribution respectively. For data-reorganization 
communication, we partition the local data space of 
each processor by data decomposition to get 
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communication set; for nearest-neighbor 
communication, we obtain communication set according 
to the moving distance of local data space boundary 
along the dimension has offset in data decomposition; 
Finally, we generate packing code, unpacking code and 
communication primitive by using communication sets. 
The experiment shows that, communication data 
amount of applications always held remains unchanged 
with the growth of processors, and our algorithm 
effectively inhibit communication redundancy and 
achieve better speedups. Next, we will study the 
overlapping technique of computation and 
communication to improve the effective of 
communication. 
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