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Abstract

In this paper we discuss a theoretical model for both the free-surface and interfacial
profiles of progressive nonlinear waves which result from introducing an obstacle of
finite height, in the form of a ramp of gentle slope, attached to the bottom below the
flow of a stratified, ideal, two-layer fluid. The derived equations are solved by using a
nonlinear perturbation method. The effect of the height of the ramp, also some flow
parameters, such as the ratios of depths and densities of the two fluids, have been
studied and illustrated.

1 Introduction

Over the past decades there has been a great deal of interest in the study of finite-amplitude
effects in internal wave systems. Recently, Kevorkian and Yu [1], in 1989, studied the
behaviour of shallow water waves excited by a small amplitude bottom disturbance in
the presence of a uniform incoming flow. This paper describes a theoretical model to
investigate the behaviour of nonlinear free-surface and interfacial waves when passing over
an obstacle in the form of a ramp of gentle slope. Our primary motivation for the present
investigation is to calculate the share of both the free-surface and interfacial profiles, and
to discuss the influence of both geometrical and flow parameters of the profiles. In section
2 we extended the mathematical technique applied by Helal & Molines [2] in determining
the nonlinear free-surface and interfacial waves in a tank with the flat horizontal bottom
and generalized the problem applied by Boutros et al. [3] in determining the interfacial
waves with the rigid upper boundary over irregular topography. Nonlinear pertrubation
method is used, leading, in sections 3 and 4, to two expressions for both free-surface and
interfacial waves that are derived in the form of expansions in powers of ε2, where ε is a
small parameter that provides a measure of weakness of the dispersion.
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Finally, in section 5 we have illustrated and discussed the effect of the density ratio,
R, the thickness ratio, H, and the ramp height, L. A comparison has been made between
the second and fourth order approximations for the free-surface and interfacial profiles
showing that the error, difference between them, is of order 10−7 and 10−6, respectively.

2 Formulation of the problem

Two-dimensional irrotational motion is considered of a stably stratified two-layer inviscid,
incompressible, fluid with the bottom surface in the form of a ramp inclined by a small
angle a. We assume that the flow field due to the wave motion remains irrotational. A
geometrical configuration is shown in figure 1.

Figure 1. Geometrical configuration of gravity waves over a ramp in nondimensional
variables

The fluid flows into the channel in the region left of the bottom slope region with uni-
form velocity U∗ and a gravity wave is created on the interface of the two fluids. The
Y ∗ coordinate is measured vertically upwards and X∗ perpendicular to this direction to
the right. The heights of the undistrubed lower and upper surfaces are H∗

2 and H∗
2 +H∗

1 ,
respectively. The lower and upper surfaces disturbances from uniform conditions are given
by Y ∗ = h∗ (X∗, τ∗) and Y ∗ = f∗ (X∗, τ∗), respectively. The component of gravity, ver-
tically downwards, is g, and Y ∗ = W ∗ (X∗) is the bed of the channel. The equations of
motion are thus the Euler equations together with the continuty equation. All variables
are nondimensionalized by using the characteristic length H∗

2 and time (g/H
∗
2 )

−1/2, and
accordingly

U = U∗/ [gH∗
2 ]

1/2 and φ(i) = φ∗(i)
/ (H∗

2 [gH
∗
2 ]

1/2) (2.1)

where velocity potentials of upper and lower layers are denoted by φ∗(1)
, φ∗(2)

, respectively,
τ∗ is the time, ρ(1) and ρ(2) are densities of the upper and lower fluids, respectively.

Moreover, assuming that the fluids are in the undisturbed uniform state up/down
stream at infinity, we impose the following boundary conditions with respect to X∗

φ
∗(i)
X∗ = U∗ (i = 1, 2) as X∗ → ±∞. (2.2)
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An essential step which makes our problem easier in handling is to define an appropriate
stretching of the horizontal coordinate while leaving the vertical coordinate unchanged
due to the fact that the horizontal dimensions are much greater that the vertical ones,
thus we define

x = εX, y = Y, t = ετ, (2.3)

where ε is a small parameter. Thus the basic equations for this system can be written as

ε2φ(1)
xx + φ(1)

yy = 0, h < y < f, −∞ < x < ∞, (2.4.1)

ε2φ(2)
xx + φ(2)

yy = 0, W < y < h, −∞ < x < ∞ (2.4.2)

with conditions

φ
(1)
y = εft + ε2φ

(1)
x fx

εφ
(1)
t + 1

2 [ε
2 (φ(1)

x )2 + (φ(1)
y )2] + f −H − 1 = 0


 at y = f, (2.4.3)

φ
(i)
y = εht + ε2φ

(i)
x hx (i = 1, 2)

R{εφ(1)
t + 1

2 [ε
2 (φ(1)

x )2 + (φ(1)
y )2] + h− 1} =

{εφ(2)
t + 1

2 [ε
2 (φ(2)

x )2 + (φ(2)
y )2] + h− 1}




at y = h, (2.4.4)

φ(2)
y = ε2φ(2)

x Wx at y =W (x), (2.4.5)

εφ(i)
x = 1 (i = 1, 2) as x → ±∞, (2.4.6)

where the density ratio R = ρ(1)/ρ(2) (less that unity) and the thickness ratio H are two
characteristic parameters of the system, and W (x) has the form

W (x) = αx+ a, (2.5)

where

(a, α) =




(0, 0) x ≤ x0

(−αx0, α) x0 ≤ x ≤ xL

(L, 0) x > xL

(2.6)

and L is the ramp height.
Since we consider weakly nonlinear waves, we expand the dependent variables as power

series in the same parameter ε around the undisturbed uniform state, following Helal and
Molines [2], we get

φ(i) =
∞∑

n=0
ε2n+1G

(i)
2n+1(x, y, t) (i = 1, 2)

f =
∞∑

n=0
ε2nf2n(x, y, t)

h =
∞∑

n=0
ε2nh2n(x, y, t)




(2.7)
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with f0 = 1 +H, h0 = 1.
The scale parameter ε, which is assumed to be small, provides a measure of weakness

of the dispersion.
The boundary conditions on the free surface, equations (2.4.3), and on the interface,

equations (2.4.4), are expanded as a Taylor expansion of the type

[V ]y=y0+ε2A = [V ]y0 + ε2A [Vy ]y0 +
(ε2A)2

2!
[Vyy ]y0 + · · · (2.8)

When (2.3), (2.5), using the expansion (2.6), are inserted into equations (2.4) and powers of
ε are sorted out, a sequence of ”cell” problems emerges, from which the unknown profiles,
f and h, can be determined.

3 Orders of approximations

3.1 The first-order approximation:

Equations of the first-order approximation finally give, for i = 1, 2,

G
(i)
1 = B(i) (x, t), (3.1.1)

where B(i) (x, t) are unknown functions to be determined.

3.2 The second-order approximation:

From the equations obtained from the second-order approximation, we conclude that

B(i)
x = 0 (i = 1, 2) as x → ±∞, (3.2.1)

f2 (x, t) = −B(1)
t (3.2.2)

and

h2 (x, t) =
1

1−R
[RB(1)

t −B
(2)
t ]. (3.2.3)

3.3 The third- and fourth order approximations:

Equations of the third- and fourth order approximations, finally give, for i = 1, 2,

G
(i)
3 = −1

2
y2B(i)

xx + yC(i) (x, t) +D(i) (x, t) (3.3.1)

where C(i) (x, t) and D(i) (x, t) are arbitrary functions that satisfy the following boundary
conditions:

C(i)
x = 0 (i = 1, 2) as x → ±∞, (3.3.2)

C(2) (x, t) = (WB(2)
x )x at y =W (x), (3.3.3)

D(i)
x = 0 (i = 1, 2) as x → ±∞. (3.3.4)
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Substituting equation (3.3.1) in the boundary conditions obtained from the third- and
fourth-order approximations we obtain

(H + 1)B(1)
xx − C(1) −B

(1)
tt = 0, (3.3.5)

and for i = 1, 2

B(i)
xx − C(i) +

1
1−R

(RB(1)
tt −B

(2)
tt ) = 0. (3.3.6)

From equations (3.3.3), (3.3.5), and (3.3.6) we get

✷1 B
(1) = B

(2)
tt , (3.3.7)

✷2 B
(2) = RB

(1)
tt , (3.3.8)

where ✷1, ✷2 are the differential operators

✷1 ≡ −H (1−R)
∂2

∂x2
+

∂2

∂t2
, (3.3.9)

✷2 ≡ −(1−R) (1−W )
∂2

∂x2
+

∂2

∂t2
+ (1−R)

∂W

∂x

∂

∂x
. (3.3.10)

From equations (3.3.7)–(3.3.10) we can get, after getting rid of B(1) and substituting for
W (x), the following differential equation for the unknown function B(2)

−H (1−R) (1− a− αx)B(2)
xxxx + (H + 1− a− αx)B(2)

xxtt −B
(2)
tttt−

αB
(2)
xtt + 3Hα (1−R)B(2)

xxx = 0 (3.3.11)

and for f4(x, t) and h4(x, t) we can get the following relations

f4 (x, t) =
(H + 1)2

2
B

(1)
xxt − (H + 1)C(1)

t −D
(1)
t − 1

2
(B(1)

x )2 (3.3.12)

and

h4 (x, t) =
1

1−R

{
R [−1

2
B

(1)
xxt + C

(1)
t +D

(1)
t +

1
2
(B(1)

x )2] +
1
2
B

(2)
xxt−

C
(2)
t −D

(2)
t − 1

2
(B(2)

x )2
}
. (3.3.13)

3.4 The fifth- and sixth order approximations:

Equations of the fifth- and sixth order approximations lead to, for i = 1, 2,

G
(i)
5 =

y4

24
B(i)

xxxx − y3

6
C(i)

xx (x, t)−
y2

2
D(i)

xx (x, t) + yE(i) (x, t) + F (i) (x, t), (3.4.1)

where E(i) (x, t) and F (i) (x, t) are arbitrary functions that satisfy the following conditions:

E(1)
x = 0 as x → ±∞, (3.4.2)
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E(2) (x, t) =
(
−W 3

3!
B(2)

xxx +
W 2

2!
C(2)

x (x, t) +WD(2)
x

)
x
, (3.4.3)

F (i)
x = 0 (i = 1, 2) as x → ±∞. (3.4.4)

Introducing equations (3.2.2.)–(3.4.1) in the boundary conditions, we have the following
relations:

(H + 1)3

3!
B(1)

xxxx − (H + 1)2

2!
C(1)

xx − (H + 1)Dxx(1) + E(1) +B
(1)
t B(1)

xx −

(H + 1)2

2!
B

(1)
xxtt + (H + 1)C(1)

tt +D
(1)
tt + 2B(1)

x B
(1)
xt = 0 (3.4.5)

and for i = 1, 2

1
3!
B(i)

xxxx − 1
2!
C(i)

xx −D(i)
xx + E(i) +

1
1−R

[
(B(2)

t −RB
(1)
t )B(i)

xx+

(B(2)
xt −RB

(1)
xt )B

(i)
x − 1

2
B

(2)
xxtt + C

(2)
tt +D

(2)
tt −

R
(
−1
2
B

(1)
xxtt + C

(1)
tt +D

(1)
tt

)
+B(2)

x B
(2)
xt −RB(1)

x B
(1)
xt

]
= 0. (3.4.6)

As it will be seen later on, there is no need to calculate f6 (x, t) and h6 (x, t) due to
the fact that the error, difference between the second- and fourth-order approximations is
of order 10−6 for the interfacial wave profile and 10−7 for the free-surface profile.

Thus, the problem is now reduced to solving equations (3.3.3), (3.4.5), and (3.4.6) for
B(1), B(2), C(1) and C(2) and next equations (3.4.3), (3.4.5) and (3.4.6) for D(1), D(2),
E(1) and E(2).

4 Case of a progressive wave

It must be remarked that our procedure is valid as long as a 
 ε2, otherwise a two-
parameter analysis has to be carried out. Moreover, we shall invoke the smallness of a and
write perturbation expansions for B(i), i = 1, 2, in the form

B(i) = B
(i)
0 + αB

(i)
1 + α2B

(i)
2 + · · · (4.1)

Substituting (4.1) in (3.3.11) and equating coefficients of a(j), j = 0, 1, 2, ... we get the
following system of differential equations

✷B
(2)
1 = ΛB(2)

j−1, B
(2)
−1 = 0 (4.2)

where ✷, Λ are two differential operators defined as

✷ ≡
(
ψ0

∂2

∂x
+ β1

∂2

∂t

)(
ψ0

∂2

∂x
+ β2

∂2

∂t

)
(4.3)
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and

ψ0 = 2H(a− 1)(1−R), (4.4)

β1 = (H + 1− a) + [(H + 1− a)2 + 2ψ0]1/2, (4.5)

β2 = (H + 1− a)− [(H + 1− a)2 + 2ψ0]1/2, (4.6)

Λ ≡ −xH(1−R)
∂4

∂x4
+ x

∂4

∂x2∂t2
− 3H(1−R)

∂3

∂x3
+

∂3

∂x∂t2
. (4.7)

Equation (4.2), for j = 0, has the following general solution

B
(2)
0 =

4∑
i=1

Ti(ξ) (4.8)

with

ξ1 = x− y1t; ξ2 = x+ y1t; ξ3 = x− y2t; ξ4 = x+ y2t, (4.9)

and

y2
i = −ψ0

βi
; i = 1, 2 (4.10)

and Ti (i = 1, 2, 3 and 4) are arbitrary functions of the variable ξ.
Let us choose a pure progressive wave, i.e., B(i) = B(i)(ξ) with ξ = x − yt, where y

may take the two possible values y1 and y2 as defined in (4.10). Thus,

B(i)(x, t) = B(i)(x− yt) = B(i)(ξ) (i = 1, 2). (4.11)

From equations (2.5), (3.3.5), and (4.1) we get

C(1) = µB
(1)
0,xx + αµB

(1)
1,xx + · · · (4.12)

with

µ = H + 1− y2. (4.13)

Substituting (2.5) and (4.1) in (3.3.3), we get

C(2) = aB
(2)
0,xx + α[aB(2)

1,xx + (xB
(2)
0,x)x] + α2[aB(2)

2,xx + (xB
(2)
1,x)x] + · · · (4.14)

Again substituting equations (4.1), (4.12) in equation (3.3.6), we get after equating coef-
ficients of α0, α1, α2, ....

B
(2)
0,x = λB

(1)
0,x, (4.15)

B
(2)
1,x =

x

1− a
B

(2)
0,x + λB

(1)
1,x, (4.16)

where

λ =
γ2 −H

1− a
. (4.17)
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The elimination of E(1) in equations (3.4.5) and (3.4.6) gives, for a, the following system
of differential equations

(
H − γ2

1−R

)
D

(1)
ξξ +

( γ2

1−R

)
D

(2)
ξξ = P1B

(1)
0,ξξξξ +Q1B

(1)
0,ξB

(1)
0,ξξ, (4.18)

( γ2R

1−R

)
D

(1)
ξξ +

(
1− a− γ2

1−R

)
D

(2)
ξξ = P2B

(1)
0,ξξξξ +Q2B

(1)
0,ξB

(1)
0,ξξ, (4.19)

where

P1 = H(H2 + 3H + 3)
6 − µH

2 (H + 2) + γ2

2 (H + 1)(2µ−H − 1)+

γ2(λ− 2a) +R(2µ− 1)
2(1−R) ,

(4.20)

Q1 =
γ

1R
(λ2 + 2λ− 3), (4.21)

P2 =
λ

6
(1− 3a+ 2a3) +

γ2

2(1−R)
[(2a− 1)λ−R(2µ− 1)], (4.22)

Q2 =
γ

1−R
[R(2λ+ 1)− 3λ2]. (4.23)

For the nontrivial solution of D(1)
ξξ and D

(2)
ξξ , the following differential equation for B

(1)
0

should be satisfied:

M1B
(1)
0,ξξξξ +M2B

(1)
0,ξB

(1)
0,ξξ = 0, (4.24)

where

M1 =
(
1− a− γ2

1−R

)
P1 −

( γ2

1−R

)
P2, (4.25)

M2 =
(
1− a− γ2

1−R

)
Q1 −

( γ2

1−R

)
Q2. (4.26)

Define

Γ = B
(1)
0,ξ . (4.27)

Thus equation (4.26), by virtue of equation (4.29), will be transformed to the Boussi-
nesq equation

M1Γξξξ +M2ΓΓξ = 0. (4.28)

Helal & Molines [2] mentioned that the general solution of equation (4.28) was found
by Byrd and Friedmann [4] to be, in terms of the Jacobi elliptic function sn (u, k), as

B
(1)
0,ξ = Y1

[
1− 3k2

k2 + 1
sn 2

(1
2

(
− 3AY1

k2 + 1

)1/2
ξ, k2

)]
, (4.29)
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where Y1 is the greatest of the roots of the polynomial resulting from integrating equation
(4.27) twice and k is the modulus of the Jacobian elliptic function.

For small values of k, the above elliptic function could be calculated in terms of circular
functions, see Milne-Thomson [5], thus we have

B
(1)
0,ξ = Y1

[
1− 3k2

k2 + 1

[(
1
2 +

k2

8 +
k4

16
)]
+

(
k4 − 64
128

)
cos 2δξ−

(
8k2 + k4

64
)
cos 4δξ − k4

128 cos 6δξ − δξ
{(

k2

2 +
k4

8
)
sin 2δξ+

k4

16 sin 4δξ
}
+ δ2ξ2

{
k4

8 +
k4

8 cos 2δξ
}]
,

(4.30)

where

δ =
1
2

(
− 3AY1

k2 + 1

)1/2
. (4.31)

Substituting in equation (4.3) for B(2)
0,x and B

(2)
0,t , we get the following fourth-order

linear partial differential equation

LB
(2)
1 =

3∑
n=1
(Anx sin 2nδξ +An+6 cos 2nδξ)+

δξ
2∑

n=1
(An+3x cos 2nδξ +An+10 sin 2nδξ)+

δ2ξ2(A6x sin 2δξ +A13 cos 2δξ) +A10,

(4.32)

where the coefficients A1, A2, ..., A13 are given at the end of the paper, as Appendix 1.
Solving equation (4.34) for the unknown B(2)

1 , following Miller [6], and calculating B(2)
1,t

we get

B
(2)
1,t = B

(2)
0,t + r1t

3 + (r2 + r3x
2 + r4xt+ r5t

2) sin 2δξ + (r6 + r7x
2+

r8xt+ r9t
2) sin 4δξ + r10 sin 6δξ + (r11x+ r12t+ r13x

3+

r14x
2t+ r15xt

2 + r16t
3) cos 2δξ + (r17x+ r18t) cos 4δξ+

(r19x+ r20t) cos 6δξ.

(4.33)

where the coefficients r1, r2, ..., r20 are also given at the end of the paper, as Appendix 2.
Taking into consideration the value of B(1)

0,x from equation (4.31), we can get B(2)
0,x and

thus, using (4.34) for B(2)
1,t , we can get B

(1)
1,t

B
(1)
1,t =

1
λ

(
B

(2)
1,t − x

1− a
B

(2)
0,t

)
. (4.34)

In order to account for the nonlinear effects, the O(ε4) equations have to be considered
as well. Thus bearing in mind the linear system of equations (4.21), the principial and
secondary determinants of this system, we come to the result that

D
(i)
t = 0 (i = 1, 2). (4.35)
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Hence, f4(x, t) and h4(x, t) may be rewritten in the simplified form

f4(x, t) =
{1
2
(H + 1)(H + 1− 2µ)

} {
B

(1)
0,xxt + αB

(1)
1,xxt

}
− 1
2

(
B

(1)
0,x + αB

(1)
1,x

)2
(4.36)

and

h4(x, t) = 1
1−R

(
1
2(λ−R) + µR− λ(αx+ a) + αxλ(1− 2a)

2(1− a)

)
B

(1)
0,xxt+

1
1−R

(
R(µ− 1

2) + λ(12 − a)
)
B

(1)
1,xxt+

1
2(1−R)

(
R− λ2 − αxλ2(αx+ 2)

1− a

)
(B(1)

0,x)
2 + α2(R− α)

2(1−R) (B
(1)
1,x)

2+

αλa
(1−R)(a− 1)B

(1)
0,xt +

α
1−R

(
R− λ2 − αxλ2

1− a

)
B

(1)
0,xB

(1)
1,x.

(4.37)

Hence, h and f will take the form

h(x, t) = 1 + ε2
{(R− λ)(a− 1) + λαx

(1−R)(a− 1) B
(1)
0,t +

α(R− λ)
1−R

B
(1)
1,t

}
+

ε4h4(x, t) +O(ε6) (4.38)

and

f(x, t) = 1 +H − ε2(B(1)
0,t + αB

(1)
1,t ) + ε4f4(x, t) +O(ε6), (4.39)

where f4(x, t) and h4(x, t) are given by (4.36) and (4.37), respectively, and B
(1)
0,t and B

(1)
1,t

are given by (4.30) and (4.34), respectively.

5 Presentation of results and discussion

A number of terms which have been obtained seems to be a good measure for the purpose
of illustrating the effect of the parameters R,H, and L. The error, difference between
the fourth and second order approximations, in both the interfacial profile and the free
surface for the two approximations is of order 10−6 for the interfacial wave, while that in
calculating the free surface profile is of order 10−7. Thus, we limit our calculations up to
the second-order approximation.

In figure 2, we illustrate the effect of the density ratio, R, on the wave profiles at the
interfacial and free surfaces. As it is clear, for both waves the less the density ratio, the
higher will be the wave. An important remark needed to be mentioned is that for both
waves, especially in the downstream region, the period of oscillation is much longer for
the case when the two fluids are of very nearly equal density than that of significantly
different densities. This is due to the fact that the presence of the upper fluid has the
effect of decreasing the velocity of propagation of the wave, which consequently causes
the decrease of the potential energy of a given deformation of the interface as well as the
increase of inertia. This result comes in good agreement with Lamb [7].

Figure 3 shows different wave profiles h(x, t) and f(x, t) for different values of the
thickness ratio, H. For the interfacial wave profile, and for the free surface as H increases,
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Figure 2. Effect of the density ratio, R, on the interfacial and free surfaces for
L = 0.25,H = 0.6, α = 0.015625 rad, t = 50, x0 = 10 and xL = 31

Figure 3. Effect of the thickness ratio, H, on the interfacial and free surfaces for
L = 0.25, R = 0.8, α = 0.015625 rad, t = 50.0 and x0 = 10 and xL = 31

Figure 4. Effect of the ramp height, L, on the interfacial and free surfaces for
H = 0.6, R = 0.8, α = 0.015625 rad, t = 50, x0 = 10 and xL = 31
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there will be a significant drop in the wave profile, and an increase in the amplitude of the
wave along the ramp interval will take place.

In figure 4, we study the effect of changing the ramp height, L. For the interfacial
wave, as L increases, a kind of violent disturbance in the wave profile appears, starting
by a sudden increase in the profile and ending by a steep decrease at the beginning of the
downstream interval. This phenomenon is also true for the free wave.

Appendix 1

A1 =W1(−4 + 6k2 + 0.0625k4),
A3 =W1(−1.685k4),
A5 = 4W1k

4,
A7 =W2(2− 2k2 − 0.563k4),
A9 = 0.563W2k

4,
A11 =W2(2k2 − 0.5k4),
A13 = −0.25W2k

4,

A2 =W1(2k4 − 8k2),
A4 =W1(4k2 − 2k4),
A6 =W11k4,
A8 =W2(2k2 − 0.25k4),
A10 = 0.25W2k

4,
A12 =W2k

4,
A14 = H(1−R)(a− 1),

where
W1 = (y2 −H(1−R))(−3Y1k

2δ3)(k2 + 1)−1 and
W2 = (y2 −H(1−R))(−3Y1k

2δ2)(k2 + 1)−1,

A15 = H + 1− a,
A17 = (2y)−1δA12,
A19 = (16yδ)−1(4A2 −A5),
A21 = (6yδ)−1A3,
A23 = −(6y)−1(A4 +A6),
A25 = −(16yδ)−1(4A8 +A12),
A27 = −(6yδ)−1A9,
A29 = −2y−1A14A28,
A31 = A15A28,
A33 = yA15A28,
A35 = 3yA28,
A37 = (8yH(a− 1)(1−R)−1A28,
A39 = (2y)−1(6A14 + y2A15)A28,
A41 = (4yδ)−1(2A1 −A4 −A6 + 2δ[A11 −A13),
A43 = 0.5yδA6,
A45 = (16yδ)−1(4A2 −A5 + 4δA12),
A47 = −(2y)−1(A4 +A6 + δA13),
A49 = −0.25yδA13,
A51 = 3(A38)2A35,
A53 = 6A38(A30A39 +A32A40),
A55 = 6A38(A30A40 +A32A35),
A57 = −3A38((A2

40 + 2A39A35),

A16 = (4yδ)−1(2A1 −A4 −A6),
A18 = (2y)−1(A11 −A13),
A20 = (4δ)−1A12,
A22 = (4yδ)−1(A13 − 2A7 −A11),
A24 = −(2y)−1δA13,
A26 = −(4y)A5,
A28 = (A15 − 2y2)−1,
A30 = −2A28,
A32 = −y−1A15A28,
A34 = (2y)−1A14A28,
A36 = (2y)−1A15A28,
A38 = (y2A15 + 2A14)A28,
A40 = 2A15A28,
A42 = −δA6,
A44 = 0.5(A13 −A11),
A46 = −0.25A12,
A48 = 0.25(A4 +A6 + 2δA13),
A50 = 0.25A5,
A52 = (A38)2A40,
A54 = 6A38A30A35,
A56 = −3(A35)2A38,
A58 = 2A35A40A38,
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A59 = A29 + 2A31A38 − 2A39A40 + 3(A38)2A32 +A57,
A60 = A30 − (A35)2,
A61 = A31 + 2A32A38 − (A40)2 − 2A35A39 + 3A30(A38)2 +A58,
A62 = A32 + 2A32A38 − 2(A35)A40 +A56,
A63 = 2(A38A36 +A32A40 +A32A39)−A40 − 6A39A35A40 +A53,
A64 = A36 + 2(A31A35 +A32A40)− 3A35(A35A39A40)2 +A55,
A65 = 2(A30A40 +A32A35) +A54 − 3A40(A35)2,
A66 = A39 + 2A38A40 +A51, A67 = A40 + 2A38A35,

A68 = 2A38A39 +A52,
A69 = A25 + (16δ)−1(2A61A26 +A62A50),
A70 = A50 + 2A38A26,
A72 = (4δ)ω−1(A35A50 + 2A26A67),

A71 = 0.5A38(A50 + 2A26A38),
A73 = (4δ)−1(2A26A66 +A50A67),

A74 = A22 + (2δ2)−1(A49A60 +A47A61 + 2A48A62),
A75 = A48 + 2A38A47,
A77 = (2δ)−1(A35A48 + 2A67A47),

A76 = A49 + 0.5A38(A48 + 2A38A37),
A78 = δ1(A35A49 + 2A67A48 +A66A47),

A79 = (4δ)−1(A35A46 +A67A47),
A80 = A41 + (2δ2)−1(A43A60 + 3A17A61 +A62A42),
A81 = A42 + 3A38A17, A82 = A43 +A38A42 + 3A17(A38)2,

A83 = A44 +A38A41 + (2δ2)−1(A42A61 +A43A62),
A84 = 0.333(A38A43 +A42(A38)2) +A17(A38)3,
A85 = (4δ3)−1(3A17A63 +A42A64 +A43A65) + (2δ)−1(A35A44 +A41A67),
A86 = δ1(3A17A66 +A35A43 +A42A67),
A87 = (2δ)−1(A42A66 +A43A67 + 3A17A68), A88 = (2δ)−1(A35A42 + 3A17A67).

Appendix 2

r1 = −(24H(a− 1)(1−R))−1A10

r2 = (8δ3)−1A37(2yδ(A74 −A85)−A78 −A83)
r3 = (8δ3)−1A37(2yδ(A47 −A88)−A81)
r4 = (4δ3)−1A37(yδ(A75 −A86)−A82)
r5 = (8δ3)−1A37(2yδ(A76 −A87)− 3A84)
r6 = (64δ3)−1A37(4yδ(A69 −A79)−A73 −A46 −A38A45)
r7 = (16δ2y)−1A37A26 r8 = (16δ2)−1yA37A70

r9 = (16δ2)−1yA37A71

r10 = (216δ3)−1A37(y(6δA27 −A67)−A38A21)
r11 = (8δ3)−1A37(2yδA77 +A75 −A86) + (4δ2)−1A37A80

r12 = (4δ3)−1A37(yδ(A78 +A83) +A76 −A87)
r13 = (4δ2)−1yA37A88

r14 = (4δ2)−1yA37A81

r15 = (4δ2)−1yA37A82
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r16 = (4δ2)−1yA37A84

r17 = (64δ3)−1A37(A70 + 4yδ(A72 +A45))
r18 = (32δ3)−1A37(A71 + 2yδ(A73 +A46 +A38A45))
r19 = (36δ2)−1yA37A21

r20 = (36δ2)−1yA37A38A21
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