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Abstract

— Most applications of snake model are
domain-specific, while specifying fixed snake coefficients to
an image in problem. In this paper, we propose
content-triggered adaptive snake model (CASM) to lead all
the parameters of snake model to be automatically adapted
for various images in the noisy environment. First, the
CASM applies a fast estimation method to find the possible
ranges of gradient magnitudes of object boundary. As soon
as the gradient magnitude of progressing snaxels falls in
those ranges, CASM will adapt the weights within the snake
forces of these snaxels according to encountered changes in
gray levels and influences of various forces in the resided
snake segments. And, it simultaneously renormalizes their
external and internal forces. After primary convergence,
CASM fires a compensation evolution to rectify the
unqualified snaxels far from the object boundary. The
unqualified snaxels, which are discovered by block-based
texture analysis, can be pushed inward or pulled outward to
the object border by so-called directional compensation
evolution in revived evolutions. The simulation results
demonstrate that CASM can improve the performance of
snake very much, and outperform Gradient Vector Flow

(GVF) in noisy images.
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1. INTRODUCTION

Energy-minimizing active contour model (Snakes) has
been first concretely proposed in 1987 [1] for localizing the
regions of interest. A snake is a deformable curve attracted
by the intemal and external forces wusing energy
mimimization to identify a closed object’s border via
progressive inflation or shrink evolution. The internal force
resident within the snake contour controls smoothness of
snake evolution, and the external force arisen from the
variations of image pixels guides the snake toward desired
image features. Snakes are widely applied to many image
processes, such as image object segmentation shape
modeling and, especially for medical applications [2]. For
traditional snake models, the common problems such as
initialization and concavity fitness have been lessened [2-5].
Rather, with those improved models, the weakness of snake
is still problematic for image segmentation in the noisy
image as follows.

1. The snake can not easily progress into deep boundary
concavities or the snake will difficultly evolve
especially with the interference of background edges.
Although the GVF approach [5] has extended the

influence of external forces to solve the deep concavity

in  problem, the undesired interference from the

edge-like background noise is still remained unsolved.

2. The snake location nitialization 1s problematic that the
edge-like background textures exist.

3. Generally speaking, except for application-specific
image segmentation, effectively controlling the
normalizations and the model factors used to various
snake forces 1s rather difficult for a high-performance
convergence.

Basically, the derivation of traditional snake functional
has been quite complete. Hence, to confirm the proper snake
model coefficients via labor intensive examinations can
mostly make the snake attain a quite accurate fitness to the
boundary of targeted object. Unfortunately, the images
have very plenty of characteristics to difficultly conclude the
assignments of model coefficients weighted to internal and
external forces. Naturally, the snake is unswitable for the
varying image or videos. Hence, the snake model is
substantially re-modeled [2, 5], or the extension of external
forces are addressed [2-5]. However, they might not
simultaneously solve the snake problems mentioned above
in noisy images.

In this paper, we propose a content-triggered adaptive
snake model to directly improve the snake prototype to
simultaneously solve the above-mentioned problems in
noisy backgrounds without complex pre-processing and the
creation of extra forces.

2. ESTIMATION OF LIKELY BOUNDARY
GRADIENT MAGNIUDES

The fast analysis method comes from the following
postulate. Given a straight scan line through the object, the
variations of gradient magnitudes across the first and the last
scanned object borders could be more distinguishable than
that across backgrounds, the object inside or even other
scanned borders under a proper observed scope. And, the
locations of first (or last) encountered object borders in two
successive scan lines shall not be too far. For the
convenience of algorithm illustration, we assume that the
target object 1s located nside the initial snake contour. With
above postulates, the proposed method 1s composed of two
parts. The first part to find the called object border intervals
15 implemented as follows.

Stepl: Select suitable horizontal and vertical scan lines
based on the range of initial snake contour to scan the
inside area of imitial snake contour. Divide each scan
line into intervals of even width.



Step2: Take a horizontal (or vertical) scan line in the
top-to-down (or left-to-right) order, and compute the
sum of gradient magnitudes (SGMs) for each interval
of this scan line. Decide a lower bound as an initial
threshold, and then increase it progressively.

Step3: Add the threshold once an immersion step and
identify the edge-residing intervals according to two
conditions. The SGM of edge-residing interval 1s kept
larger than the threshold; while 1) both the SGMs of
its closest left and right intervals are less than the
threshold after incrementing the threshold once, or 2)
the SGMSs of at least two successive intervals at either
the closest right side or left side of edge-residing
interval are exceeded through incrementing the
threshold twice. Continuously enlarge the threshold
until either at least two edge-residing intervals appear
or only a single edge-residing interval can be obtained,
then go to Step 4.

Stepd: The first edge-residing interval and the last one,
of which perhaps only one can be found, are the border
intervals and divided into sub-intervals, among which
the sub-interval of largest SGM 1s identified as the
target border interval where the object boundaries are
considered likely encountered. If the scan line is the
final one, enter the second pass; otherwise, go back to
Step 2.

The largest gradient magnitude over some threshold is
extracted from every border sub-interval and denoted as the
prediction border gradient-magnitude (PBGM). Herein, the
standard deviations of gradient magnitudes in scanning lines
are directly concerned with the widths of immersion step and
PBGM =zone, by which the gradients of background
variations can be Dbypassed and the true border

gradient-magnitude (TBGM) be covered as much as possible.

So, the sizes of both immersion step and PBGM zone is
determined by minimizing the entropy of class uncertainty
proposed in [6].

3. MODEL COEFFICIENT ADAPTATION OF
ACTIVE CONTORU

A parametric active contour can be expressed by
assembling position vectors v(s,1) = (x(s,1), y(s,1)) at
position s of snake contour and time t. The internal energy
can be written
By=a, |[v(sOf +8,|v'(s6)f ,
(1)
where the
continuity and curvature, respectively, and V'(s,f) and

first and second terms control the snake’s

v"'(5,1) denote the first and second derivatives of v(s,1)
with respect to s; « and S are the weighting factors of
tensile force and flexural force, respectively. In practical, the
effect of external constrain force I (v(s,f)) could be
absorbed into ¢, and /. Thus, the total energy function
is represented by

E e = B (V(5,0)) + E,,(V(5,1)) ,

&

@)

where £_(v(s,1)) and E_ (v(s,#) are internal and external
energies, respectively. A snake to minimize E_, must
satisfy the Euler equation
a V' (s,D- Ay"" (5,0 -VE, _ (v(s,1)=0
(3)

For steering the moving of snake to attain (3), the
partial derivative of w(s,f) with respect to t can be
directly given as the left hand side in (3):
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When the snake asymptotically stabilizes to make FUEE)
ot

in (4) vanish, and then (3) 1s solved. In the numerical reality,
the snake is made up by linking the discrete snaxels treated

as the elements of snake contour. Hence, we modify v(s,7)

as notation v,(#) to stand for the position of #* snaxel at

time t, while a periodic boundary condition

£l

v, (t) = v, (¢) for N-snaxel snake. The motion behavior of

classical snake is governed by the results of first-order
differential equations for all snaxels :
ov. ()

K 7 +oav " () + By, =E,  (v,(1) .
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where v (f) 1s the velocity of " snaxel, 7 is the damping

I

coefficient and E
exti
th

" snaxel. The internal tensile forces

v"(£)=2v (1) v, (1) v, (1)

(6)

are discrete approximation to the second derivative of
coordinate functions with respect to . It acts to maintain a
uniform spacing between snaxels and contour smoothing.
The tensile forces can be made scale invariant by dividing
the right hand side of (6) by the distance between
neighboring snaxels. The internal flexural forces

VI "y (r) — 2vi" (t) - VI_IN (t) o VI+1" (t)
(7

are discrete approximation to the fourth derivative of the
coordinate function with respect to s. By observing (6) and

(7), we know that the weighting factors o, and £, are to

(v.(t)) 1s the external force used to the

control the resistance of the contour to respectively
stretching and bending deformations.

As we known, the evolution movement of prototype
snake only depends on the local information such as gradient
strengths of neighboring pixels and contour’s local shapes
no matter if a more global image analysis has been
previously exploited. Therefore, the basic improvement to
the snake model is to adapt all the coefficients and the force

normalization in the snake model to fit the current status of
moving snaxels. Hence, ¢ ,f and 7 in (5) used to
CASM are time variant.

In reality, to control the



normalization between internal and external forces is also a
very significant issue to capture snaxels at desired positions,
1.e., the proximity to object boundaries of interest. Here, we
introduce a time-variant coefficient to dynamically
normalize the internal and external forces. After
approximating the temporal derivatives with forward fimte

differences in (5) by letting Af as a time unit of evolution
motion, the recursive update of position from time t to time

t+Af by CASM is shown by

vy (t+ A =v, (O - (-1)7 2L

a0l :
[K (8- (e, (v, " () + B,(8)v," " (£)) = E e (v, ()]
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where K1) 1s utilized to normalize the internal forces and
the external forces through the proposed alternative
alignment of their maximums in the snaxels of same
attribute (either PBGM or non-PBGM snaxels). In normal, g
1s set to 0 1n (8).

A, ADAPTING WEIGHTING FACTORS OF THE TENSILE
AND FLEXURAL FORCES

A snaxel on the snake contour becomes so-called a
PBGM snaxels, if its gradient magnitude falls in the region
of PBGM-zone group. Then, the contribution of tensile and
flexural forces relative to the local contour fitness degree
(LCFD) is evaluated. The LCFD is defined as the SGM of
three pixels centered at this PBGM snaxels such that there is
no extra computation for attaining LCFD because of already
existed computation of external forces. According to the
concept of adaptive filtening, the tendency of modifying a
snake parameter can be decided by observing the influence
on the current LCFD being either positive or negative, while
changing this parameter. Hence, when the LCFD becomes
higher, the increasing (or decreasing) force is supporting a
positive (or negative) contribution, and vice versa. Thus,
LCFD 1s incremented (or decremented) and the tensile {orce
of this snaxel is also increased (or decreased), then its
weighting factor is weighted up. This is because the tensile
force perhaps provides the corresponding /positive influence
on LCFD. Relatively, as the sign of change in the tensile
force is opposite to that in LCFD,  1s weighted down due
to the inverse influence offered by the tensile force in LCFD.
With the similar way to the adaptation of weighting
coefficient up/ down is depending on checking the signs of
changes in the flexural force and LCFD.

B. RE-NORMALIZATION BETWEEN THE INTERNAL AND
EXTERNAL FORCES

The effectiveness of total force 1s highly sensitive to the
normalization between the internal and extemmal forces.
When the snake’s nitial contour 1s distant from the target
object boundary in edged noisy images, it may fail to locate
itself to the object border supporting the energy
mimimization. Rather, enhancing the internal forces to solve
this problem might cause much more snaxels to overwhelm
the object borders. Hence, to control the trigger of
re-normalization in proper occasions on the critical snaxels

appears an efficient method to overcome above-mentioned
problems. Here, we propose a simple method to set the basic
normalization and the re-normalization used in (8). The
basic normalization is utilized on the snaxels, which does
not vet approach the object boundary. For maintaining the
attraction to the object boundary, the basic normalization 1is
mplemented by letting the maximal intemal force as a
constant multiple of the maximal external force in these
snaxels. The occasions of using basic normalization and
re-normalization 1s depicted as follows. If more than one
snaxel on the snake contour are the PBGM pixels, the snake
will start to retard the snake progress of these PBGM pixels
to lessen the overwhelming of boundary edges as much as
possible. Such re-normalizing of internal and external forces
of PBGM snaxels 1s an effective way to enhance the effect
of external force to catch the snaxels at the borders.

C. MODIFYING DAMPING FACTORS

When a snaxel is close to the object boundary with
oscillation-like seesaw motion, it implies that the snake force
1 pulling and dragging this snaxel in turn. In the meanwhile,
the object boundary’s edge has been very possibly passed
over by this snaxel. Hence, for both reducing the snake
redundant movements and exploiting such an occasion to
seize the snaxel at right place, the damping factor is risen to
attenuate the entire snake force for rapidly decreasing the
snaxel activity. According to the concept mentioned above,
when a PBGM snaxel with snaxel index i moves backwards
and forwards, the damping factor in (8) is increased with a

easiest way: 7, = 2r,. A simple criterion to judge if this
PBGM snaxel enter or not an oscillation-like status at time ¢

18 given by checking the parameter K of changes in the
directions of successive three movements:

o L son((v, (t— kAf) —v,(t— (k + DAD) -
- ; (v, (t— (b + DAL — v, (t — (k + DAL
@

where function sgn() is to extract the sign of value in

>

parentheses. The motion of this snaxel is considered
saw-toothed at time t if X=2, while an oscillation-like status
can be confirmed.

For rectifying convergence errors, we find the
unqualified snake segments composed of successive
incorrectly converged snaxels (ICSs) after the primary
convergence. Then, a reference line is set to link two
endings of an unqualified segment. Around that segment’s
center, an ICS is selected as an evolution trigger using unity
force magnitude as an initial force to re-open a so-called
directional compensation evolution and induce other ICSs
near it to evolve to the untouched object borders. During the
directional compensation evolution, the directions of internal
forces on those ICSs are pointing either inside or outside to
the object borders. Such direction control relies on
automatically setting index ¢ in (8) as either O or 1 according
to the counterclockwise included angle of internal force
direction of ICS and the reference line. Thus, a reference
line acts as an evolution launch line. For an unqualified
curve, with such a simple way to control the force direction,



the ICSs protruding toward the desired boundary piece
progressively dilate this curve, and others toward their
launch line can smooth the dilating of curve in harmony.

4. EXPERIMENTAL RESULTS

For a manually-drawn object with a large concavity and
artifact line noises, as Fig. 1 shown, we can see better
concavity fitness resulted from CASM than the GVF model.
Due to the extension of gradient influence, the converged
contour has obviously failed segments, which is totally
blocked at background lines. On the contrary, the CASM
model does overcome edge-like noises in background. For
the practical medical applications, CASM can easily provide
the better fitness for object profiles than the traditional
model, as Fig.2 shown. Particularly, the GVF model can
even not obtain similar performance to the traditional model
under close computation costs used to obtain suitable fixed
model parameters, as Fig.3 shown. This is because the
evolution of GVF snake is also heavily influenced by edges
inside the object especially in natural images.

5. CONCLUSION

In this work, based on the snake prototype, a
characteristic-adapted adaptive snake model (CASM) is
addressed by effectively adapting its parameters to
automatically fit the characteristics along the paths of snake
evolution. For increasing the efficiency, the proposed
adaptation is merely performed to rectify the forces of
critical snaxels in the proximity of object boundary of
interest. Such a solution can basically cope with the snake
common problems in the noisy environment, and
particularly, it can be applied to a wider range of images
rather than a specified image without a priori image
knowledge. Observing the experimental results, CASM can
make the snake achieve better fitness to the object profile
over GVF approach in segmenting the noisy images.
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Figure 1. Comparisons of GVF and CASM models with
converged red-line contours for the segmentation of artificial
object with a deep concavity in a noisy background with
horizontal lines

Traditional snake CASM

Figure 2. Comparisons of traditional snake and CASM
model with converged red-line contours in segmenting the
medical pictures

Figure 3. Comparisons of GVF model result with red-line
contour and CASM model result with blue-line contour in
segmenting the brain medical image.
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