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Abstract

We do a Lie symmetry classification for a system of two nonlinear coupled Schrodinger
equations. Our system under consideration is a generalization of the equations which
follow from the analysis of optical fibres. Reductions of some special equations are
given.

We investigate the Lie symmetry properties of the following nonlinear Schrédinger system:

_ Ou . Ou  10% . %
S = za—ﬁ—léa—i-iﬁ—]ﬂ(u,v,u,v,z)—O,

(1)
o, 1%
20712

Ov
Sy = za—z 5

— — Fy(u,v,u”,v*, 2) =0,
where * indicates complex conjugation.

Details on the Lie symmetry analysis can be found in one of the following books [1 —
4]. For particular functions F} and Fy (see cases 3-5) the system (1) plays an important
role in the analysis of optical fibres [5-11]. Before discussing important special cases, we
do a general Lie symmetry classification of (1). We do not restrict ourselves to particular
symmetries nor do we assume particular functional forms of (1) in our classification. This
results in two propositions which provide the conditions for the most general Lie symmeties
and the associated particular forms of (1).

The invariance of (1) with respect to the Lie symmetry transformation group generated
by the Lie symmetry generator
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0 0 15) 0
X = v * x\ Y * *\ Y
£o(z,7')—8T +§1(z,7')8z +m(z, 7 u,u”, 0,0 )8u + na(z, Ty u, ut v, v )Ou* +

n3(z, T, u, u*, v, v )%—1—7]4(2,7',u,u ,U,v )%

is considered. Here the infinitesimal functions & and 7; are arbitrary complex functions,
which are determined by invariance conditions

(2)

x®s =0, X®g;

51=0,51=0,55=0,53=0 81=0,57=0,55=0,53=0

xX®gs, =0, XxX®g;

S1=0,57=0,55=0,53=0 81=0,57=0,55=0,53=0

where X denotes the second prolongation of the generator X.
Let us begin the classification with the case where F; = F, = 0. We can state the
following

Theorem 1 The maximal finite Lie symmetry of the uncoupled system

Ou ou 10%u

T T e

za 1 =0,

9z or T2 =

is given by the following nine generators of

translations
0 0
G = — Gy = —
1= 92 27 or

d-deformed field rotations

Gs = exp(—2i67)ivg— - exp(2i67’)z'v*a—*,
u

ou
G _ (2.6 ). 87 _ (_2'6 )' *67
4 = exp(2i67 zuav exp(—2107)iu S

Gy = exp(72i67)va— + exp(2i57)v*8—,

ou ou*
Gy = ex (21’57‘)ua— + ex (—QiéT)u*a—
47 %P ov P ov*’

field-dilatations

o L0 » L0
G5:zu%—zu 90 GG—ZU%—ZU ETE
0 0 0 0
Y * Y *
Gs uau—i-u—au*, Gg vav—i-v 50"
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d-deformed zT-dilatations

o 0 . 9 . « 0
G7:Qz&—l—Ta—25(7—52)u8—u+z5(7—52)u 8u*+
, o . . 0
25(7'-}-(52’)11%—7,5(7'4-52)1) 5or”

d-deformed Galilean boost

o . a 0 . g ., 9
Gg = . +du(T — (5z)8—u — (T — 52)% +iv(T —1—57;)% — (T —1—52)(%*,

d-deformed projection

0 50
= 2er—— + 22
G ZTaT+ 2 8z+
du(iz + 72 — 2267 + 5222)% —dut(—iz + 7% — 2207 + 527:2)% +
0 0
s 2 9 2.2 k(s 2 9 2 9 .
iv(iz + 7% + T(Sz—l—éz)—av w*(—iz + 717+ 257'-1-5,2)(%*

The non-vanishing Lie brackets are:

G, Gﬂ =2G1 + (52(G5 + G@), [Gl, Gg] = [GQ, G7] =Gy — 5(G5 — G6),
G1,Go] = 2G7 — G — G, [Ga,Gs] = 20GYy, (G2, G4) = —26GY,

[

[

[G2,Gs] = G5 + Gg, [G2,Gy] = 2Gs, [GQ,G&] = —20G3,
[Go, G)] = 206Gy, [G3,G4] = G5 — Gg,  [G3,G5] = —Gj,
[Gs,Ge| = [G3,G5] = —[G3, Gg] = G,

(G3,GY] = —[G4, G = Gg — G5, [G3,Gg] = —Gs,
[G37Gg} = [GﬁaGg} - _[G57Gg] = G,

(G4, G5] =[G}, G'6] = —[GYy, G5] = (G4, Gg] = G,
[G4?G,5} = _[G47G/6] = _[G5’ Gil] = [G6a Gil] = —Gy,
[G7,Gs] = Gs, [Gr,Go] = 2Gy, [G3,GY] = G — G5,

The proof of Theorem 1, by use of the invariance conditions (3) and (4), is a standard
procedure and will not be given here. It is important to note the contribution of the real
constant 0 to a structure of the symmetry generator. This constant § plays an important
role in study of birefringent optical fibres [8, 11] so that in this article, we always consider
0 # 0. However, this is not a restriction and the case § = 0 is also included in our results.

Let us now study the Lie symmetry properties of (1). Using the invariance conditions
(3) and (4) we obtain following restrictions on the infinitesimal functions:

f = SAGT+ o) (6)

& = fi(z), (7)
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o= (3@ (186 - 05 T fut
a1 (z)vexp(—2id1) + by (z, 1), (8)
m o= {1+ (S + AE) T+ ) b +
az(z)v* exp(2i97) + ba(z,7), (9)
mo= {3+ (i) + 36) ) T m) o+
a3(z)uexp(2i67) + bs(z, 7), (10)
m o= {0+ (-ifie) - 1)) T+ o +
as(z)u” exp(2i7) + by(z, 7). (11)
Here f; = fi(2) (j = 0,1) are arbitrary differentiable real valued functions, whereas

ar = ax(z), by = bi(z), and gr = gr(z) (k =1,...,4) are arbitrary differentiable complex-
valued functions. The prime indicates ordinary differentiation with respect to z. These
real and complex functions, as well as F} and Fj, are conditioned by the five systems of
partial differential equations (A-1)—(A-5), given in Appendix A. On solving the latter one
has to distinguish between two essentially different cases, namely f7(z) # 0 and f{'(z) = 0.

We take b; =0; j=1,...,4.

Case 1 Let f{'(z) # 0. Before finding solutions of the system (A-1)-(A-5) we intend to

prove
Lemma 1 If

1(z) £0,
both fo(z) and fi(z) have the following general form:
04122 + aoz + a3,
and

i) for A = (a3 — 4aq03)/(402) =0

fo(z) = A (z + 042> {ln(a1z2 + gz + ag) — 2} + apz + B,
2041

ii) for A >0

fo(2) = Ad (Z + aQ) {ln(a122 + sz +ag) — 2} -

z2 = VD + a/(201)
AVAln 2+ VA + as/(201)

2041

+ apz + o,

(14)



362 M. EULER, N. EULER, W.W. ZACHARY, M.F. MAHMOOD and T.L. GILL

iii) for A <0

a2

fo(z) = Aé <Z + > {111(04122 + oz + ag) — 2} +

z+ az/(2aq)
| A

20&1

20d04/| A |arctan + apz + Po. (15)

Here ay, By, N€R; k=0,1,2,3.
P r oo f From conditions (A-1)—(A-5) (Appendix A) it follows that

fi(2) fi"(z) —idof7 (2) = 0, (16)

d
REA'E) (16) - 316)) = KEBEHE +MREHE =0, (1)
where A\g € C and A € R. Let Ao # 0. Now (16) can be integrated twice that leads to

2@)\0 f{ (Z) + i)\o

In[fi(2) + 2idofi(z) + 0] — (o + AZy12 et e

= In(v1f1)-

Here 9 and ~; are integration constants. In order to obtain an explicit form for f; we
need to consider \g = 0, which results in the solution fi(z) = a122 + anz + as, and

6’(2) -\ 20412 + a9

o122 + a9z + a3’

By integrating the above equation we obtain the three different functional forms of fy
stated in the lemma. O
In order to relate the functional form of F} and F5 from (1) to the Lie symmetry generators
of the system (1) we make the following

Proposition 1 FEgs. (1) possess the Lie symmetry generator (2) with infinitesimals
(6)-(11) and f1, fo given by (12) and (13)-(15), if and only if F and F take on the form

Fi=u {\Ifl(Ql, o, 2) — ifl)(\Z) ln(uvl)} , (18)
F=v {\112(91, Oy, 2) — Zf1/(\z) ln(u*lv_l)} . (19)

Here Q1 = (vv*) ™1, Qo = (wu*)™1, X is an arbitrary real constant, and the complex-valued
functions Wy, Wo must satisfy conditions (A-1), (A-2), and (A-6), given in Appendiz A.

For solving the system (A-1), (A-2), and (A-6) we have to distinguish between different
values of gj; j =1,...,4. As an example we restrict ourselves to the case

91(2) + g2(2) #0 and g3(2) + g4(2) # 0,

where g1(2) = ¢5(2) and g3(z) = ¢j(z). With the above assumption we consider two cases:
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Case 1.1 Leta; =0; j=1,...,4. Now (A-1) and (A-2) are satisfied at once. Then we
could obtain the general solution of (A-6). It together with Lemma 1 and Proposition 1
gives the following functional form of £} and Fo:

= o (.6 i Mz—i n(uv— ig1(2)—
A= g {0 () < [ EEEEE ) i

a 2
(fo(=) = fo) +i%h+ ‘Zmz)} ,

= = Uy (1,0 [ 922 T s(2) —iAIn(u*" v ig3(z
R = f1<z){x1/2(91,92)—m/ ER Aln(u* ') +igs(2)+

Nest 52
6(fo(2) — Bo) + e 2f1(2)} ,

where

o (vv*) "L exp </ Wdz) ,

Qe = (uu*)texp (/ gl(z};(:?(z)dz) .

Here ¥, and Wy are arbitrary complex-valued functions. Note that fy and fi are given in
Lemma 1.

fo(z) # £f1(2)6/2
filz) #0 —  fo() =0 .
fo(z) = £f1(2)6/2

/ 0(2) #0

(2 =0 fi=0l Y 1(2) £ 0

1(5) — fo(2) #0
(2)=0
N /
0(2) = 0\
0(2) #0 fo(2) =0

0(2)=0 < / Jo(z) #0
5(2)=0
AN

Figure 1: Subcases for f{(z) =0
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Case 1.2 Let aj #0; j =1...,4. By solving the system (A-1), (A-2), and (A-6) we find
that

A =0,
)

a1(2) 93(2) + ga(2) 91(2) + ga(2)
ai(2) eXp( fi(z) )‘”‘p < fi(2)

The functions F} and F> take the following form:

)202, co €R.

where

Q = vv*exp < /g3 dz) —c S luu® exp ( g1+2§)12(2)dz> .

Here W, and s are arbitrary complex-valued functions of Q.

Case 2 Let f{(z) = 0. A diagram of the subcases is given in Figure 1. We shall prove
the following

Lemma 2 If

{/(Z) =0,

f1 and fo have the following general form:

fi(2) = aoz + a3 (20)
and
i) for fi(z) #0 and fo(z) # £6f{(2)/2,
fo = aoz+ Do, (21)
ii) for fi{(z) #0 and
a) fo(z) = 6fi(2)/2,
fo=0dazz/2+ B, (22)

b) fo(z) = —0f1(2)/2,

fO = _50522/2—’_507’ (23)
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iii) for fi(z) =0 and f{/(z) #0,

A
fo= i%s exp <—ia;2) + Bo, (24)
w) for fi(z) =0, fi(z) =0, and fy(z) # 0,

fo= a0z +Bo, (a0 #0), (25)
v) for f1(z) =0 (or f1(z) =0), f5(z) =0, fo(z) =0,
Jo = Do, (26)
vi) for f1(z) =0 and f§l(z) #0
foz) =h(z),  1'(2) #0, (27)
vii) for f1(z) =0, fg(2) =0, and fo(z) #0,
fo= a0z + Bo. (28)

Here as, a3, 00, A1 € R, and h is an arbitrary real function.

P roof Weprove only the assertion (i). From (A-1)—(A-5) it follows that

i(asz + om,)fé(z)6'_(25)0[2/2 . (29)
iMﬂ+aﬁ——ﬁEL—*:%, (30)

fo(2) + 0 /2
where \; and \; are arbitrary constants. Now, if Ay = 0 the general form of fj is

Jo(z) = agz + fo,

so that A\; = 0. However, if \; # 0 the differential equations (29) and (30) are not
compatible. We thus conclude that (21) is the general form of fy for (i) in Lemma 2. O

The functional form of F} and F3 in (1) can now be related to the Lie symmetry generators
of (1) by

Proposition 2 The system (1) possesses the Lie symmetry generators (2) with infinites-
imals (6)-(11) and

i) f1, fo is given by (20) and (21) if and only if Fy and Fy take on the form
Py =uV(Q1,09,03,2), Fy=0vWs(, 2,0, 2),
with

Q= (wu*)™l, =wt, Q= ()7
(50[2 — 20[0

T s -
dag + 20 ’
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and satisfy (A-1), (A-2), and (A-7), or

it) f1, fo is given by (20) and
a) (22) if and only if F1 and Fy take on the form

Fy =9 (u,u*,Qs,2), Fo=0v¥s(u,u",Qs,2),
with
Q3 = (v0*) 71,

and satisfy (A-1), (A-2), and (A-8), or
b) (23) if and only if F1 and Fy take on the form

F :qul(QbU’U*az)v FZZ\IIQ(Ql,U,U*vz)
with
Q= (uu*)™,

and satisfy (A-1), (A-2), and (A-9), or

iit) f1, fo is given by (20) (with ag = 0) and (24) if and only if F1 and Fy take on the
form

A A
Fio=u®y(Q1, Q0,0 2) + “ulnu,  Fp = vWs(Q1, o, 0, 2) + ~vlno,
as as

with
O = (wu*)™, Q=w !, Q3= ()7,

and satisfy (A-1), (A-2), and (A-10), or

) f1, fo is given by (20) (with g = 0) and (25) if and only if F1 and Fy take on the
form

F1 = u\Ifl(Ql,QQ,Q3), FQ = ’U\IIQ(Ql,QQ,Qg),
with
O = (wu*)™h, Q=wl, Q3= (w*)7

and satisfy (A-1), (A-2), and (A-11), or

v) f1, fo is given by (20) (with ce =0 and az # 0 or ae =0 and az = 0) and (26) if and
only if F1 and Fy take on the form

Fy =9y (u,u*,v,0%,2), Fyp=Vy(u,u*,v,0v% 2)

and satisfy (A-1), (A-2), and (A-5), or
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vi) f1, fo is given by (20) (with ag = 0 and ag = 0) and (27) if and only if F1 and F;
take on the form

i)
F = I )ulnu+u\1’1(Q1,Q2,Qa, z),
z
!
z
= z'?,((z))vlnv+U‘I’2(Ql,92,93vz)

with
O = ()™, Q=w Tl Q3= (w*)7

and satisfy (A-1), (A-2), and (A-12), or

vii) f1, fo is given by (20) (with ag = 0 and ag = 0) and (28) if and only if Fy and F
take on the form

Fl :qul(Ql,QQ,Qg,Z), FQZU\II2(917927937Z)7
with
O = ()™, Q=wl, Q3= (v*)7,

and satisfy (A-1), (A-2), (A-11) with ag = 0.
Here Uy and WUy are arbitrary complex-valued functions.

For solving systems (A-1), (A-2), and (A-7) — (A-12) we have to distinguish between
different values of g;; 7 =1,...,4. We now consider some examples:

Case 2.1 Let

g1(2) +g2(2) #0, g1(2) +Tg3(2) #0, g3(2) + ga(2) #0,

where ¢1(z) = ¢5(2) and g3(z) = gi(z). With the above assumptions we solve the system
(A-1), (A-2), and (A-7). This results in two subcases:

Subcase 2.1.1 (i) At first we consider a; = 0; j = 1,...,4. From (i) in Lemma 2 it
follows that

wo (e o o 5
Fi = ——— W (Q2,09,03) — - = )
1 P { 1(21,92,83) =6 (Oéo 2042> Z+191(Z)},
v ~ o~ o~ 1)
Frb = ———— Uy (0Q1,09,0 — )
9 P { 2(21, o, 3)+5(040+2042>Z+293(2)},

where Uy, ¥y are arbitrary complex functions, and

- r
Q1 = (uu” exp(/g1 )+ 92(2 z), Qo = uov” exp( /Mgg()d2>,

agz + a3 QoZ + a3

9 (/ 93(2) + ga(2 )
3 = (vv* exp .
0z + o3
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Subcase 2.1.2 (i) Here a; #0; j =1,...,4. From (i) in Lemma 2 we obtain

u . ) ,
o= W){\Ill(Q)—d(ao—20@)2—1—@91(2’)},
F = v{\if (Q)+5<a —|—5a>z+z’ (2) — 209z — i ll(z)(ozz—l—a)}

where U is an arbitrary complex function, and

Q = vt exp <— / 93(Z)+94(27)dz> — uu* exp (— / gh(z)-l-gz(z)dz> ,

a9z + Qa3 a2 + Qg

= =c €R,

exp( /91 )+ 92(2 dz)ep(/g3 t+9a(z d)_l.
a9z + a3 Q27 + a3

If ¢q is not a constant, then

U . ) )
o= . {01 -0 <a0 - 2612) Z+291(2)},

v )
F = _— C 6 — )
? a2z + ag {C2+ <a0+ 2062)'24_293('2)}7

where ¢; and ¢ are artbitrary complex constants, and

a1(z) = exp [22'50‘02 _ / 93("")_91(2)6[4 (a2 + a3)—2i5040063/a§ +i(C2 —¢1) /a2
(6D a2 + Q3

2idapas /a3
a2 5

ag(z) = exp [—2@'5W + / 93(2) — 91(2’) dZ] (OZQZ + ag)2i50&00&3/0&% — i(éQ — 51)/0&2 %
Q9 (oz + as

—2idagaz/a3
Qg

a1(z) = a3(z), az(z) = ay(z).
Case 2.2 Let
g1(2) #0, g2(2) #0, g3(2) +94(2) #0, g2(2) —a2 #0, g1(z) —az #0,

where ¢1(z) = ¢5(2) and g3(z) = gi(z). With the above assumptions we solve the system
(A-1), (A-2), and (A-8). Let us only consider the case (ii)(a) of Lemma 2. This results in
the following subcases:

Subcase 2.2.1 (ii) At first we consider a; =0; j =1,...,4. From (ii)(a) in Lemma 2 it
follows that

! (9,09, O 91(2) ) ) }
B = B (g, 00, O 9z
1 (12+C¥3{ 1( 1,962, 3)eXp( OéQZ—i—(Xg z +Zgl(z)u ,
R T )
= P {\112(91792793) +ig3(z) + 6 a22}7
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where ¥, and Uy are arbitrary complex-valued functions, and

Ql = uexp (— gl(z)dz) , Qg = u*exp <— g2(z)dz) ,
a9z + (O3 a9z + (3
Q3 = (vv*) Lexp </ 93(2)—"97‘1(2)@) _
a9z + o3

Subcase 2.2.2 (ii) Here we let a; # 0; j = 1,...,4. From (ii)(a) in Lemma 2 it then
follows that

F1 = Z'U7gl(Z)
9z + (3
_ v - 2
s = P {zgg(z) +6%agz + cl} )

where c¢; is an arbitrary complex constant and
az(z)ai(z) = ca, 2 €C,
ay(z) = a3(2), a3(2) = ay(2),

a1(z) = (aez + Oég)i(cl — d%ag)/as exp (/ 91(2) = 9(2) g3(z)dz + i522> .

a2z + a3

Let us choose two more examples which are of interest to us, namely the cases where the
Galilean transformation is included, i.e., (iv) and (viii) in Lemma 2.

Case 2.3 Let
g1(2) = —id(aoz + fo) + 71, g3(2) = id6(aoz + fo) + 7o,

where g1(z) = g5(z) and g3(z) = g5(2), and 1,72 € C. With the above assumptions we
solve the system (A-1), (A-2), and (A-11) for the case (iv) in Lemma 2. We consider only
a; =0; j=1,...,4. It follows that

Fy = uly(Q,Q,Q3),  Fo = v0s(0, O, Q)
where U; and Uy are arbitrary complex-valued functions, and

Q1 = (uu*)Lexp (71 R ) . Qo= (vv*) texp (72 3 > ,
as

a3
@ e )
Qs .

«@
Q3 =uv lexp (—i5022 — 240
ag ag

Here ag # 0 and ag # 0.

Case 2.4 Let

g1(2) + 92(2) #0, g3(2) —g1(2) #0, g3(2) + ga(2) #0,
igy(z) — 0fo(2) #0, igs(z) —dfo(2) #0,
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where ¢7(2) = g2(z), and g3(z) = ga(z). With this assumption we solve the system (A-1),
(A-2) and (A-11) for the case (vii) of Lemma 2. We consider a; = 0; j =1...,4. The
functions F; and F in (1) then take the form

S ACI :
m {@1(91,Qg,z)+ln91},
dag —igs(2)

N

v {@2(@1, QQ, Z) +1In Ql} s

where U, and Uy are arbitrary complex-valued functions and

Q= (wu®) ™! {uv’l}_(gl To)/gs ) g (uu*) ™ {(v’u*)*l}_(g1 T 92)/(93 + 94) )

, Qo=
Let us now examine some special forms of (1) which are of importance in study of

birefringent optical fibres.
Case 3 Consider [5-10]

8u ou  10%u 9 5
8 55 292 —iyu + (]u\ + elv| )u—O,
(31)

.Ov ov  10% 9 9
’La— 5§+§ﬁ—l’yv+(6|u| +|'U| )’U—O,

where v,e € R. The Lie symmetry generators are given by
Case 3.1 For ¢ arbitrary:
< G1, Go, G5, Gg, Gg > .
Case 3.2 For e =1:
<Gy, Go, G3, G, Gy, Gy, G5, G%, Gg, Gi, Gg > .
Note that the definitions of G1, etc. are given in Theorem 1.

Case 4 Consider

au 6@ 182u

82 5. T 552 —iyu + <|u|2+5|v|2)u+02u*h1(z) =

ov ov  10% 2
25_16E+§ﬁ_17v+(8’u‘ + |v| )v—i—uv ha(z) =

where «v,e € R. The only functions h; and hy which admit a Galilean generator are
hi(z) = a1 exp {2(—1'(5]{022 — iﬁlz)} ,
ho(z) = ag exp {2(i5k022 + Zﬂlz)} ,
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where the real constants k;, oy, 55 (i = 1,2; j = 1,2, 3) are connected to the infinitesimal
functions &o,&1,7;; J = 1,...,4, of the Lie symmetries in the following way:

§0=k‘02+k1, &=1,

= (ikoT — 1kodz + if2) u
(—ikoT + ikodz — if2) u™,
(ZkoT + z'k:géz + 2,33) v,
(—ikoT — ikoéz — Zﬂg) v*

with the condition
B1+ P2 — B3 =0.

For ky = 0 we obtain the system proposed by Menyuk [7]. Note that for ky # 0 a Galilean
invariant system is obtained.

Case 5 Finally we consider a system of Schrodinger equations which appear in study of
single-mode optical fibres [11]:

2
i— i+ 55 + (!u\g + 6\1}]2) u+ %UQu* exp(—iRdz) =0,
T

(33)
ov  ov 10% 9 9 € 9 4 .
5~ 258 + 352 + (€\u| + || )v + FuY exp(iRéz) = 0.
The maximal Lie symmetry generators of (33) are
0
G2 - Ev
i+ BoGis + BsGis = O+ iBoul — ifhou wu*‘i (34)
1+ P2l + D3Ge = o= +ibauo s 2U 3V S
where
1
§R5+ﬂ2—ﬁ3=0.
The Lagrangian is given by
).
- 2\"a: 2
z5( 8u*_u*8u)+ 5( @_ 821 >+
2 \"“or or ar ' or
1 3u 2 4 8'[) 4
z(aT "“’)*z(‘af —l) -
elul?|v|* — Zu2(v*)2 exp(iRdz) — Z(u*)zv2 exp(—iRdz). (35)

By using the linear combination

G2 + k(G1 + 2G5 + 33Gs)
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the symmetry ansatz follows from the first integrals of the autonomous system

dz dr

oy, T
dé ’ dé ’

% = i13u, d;; = —ifu”,
dv . dv* .,
dif;: - Zﬁg’l), dE - 7’/830 )

ie.,

u(z7 T) = ¥1 (w(zv T)) eXp('iﬁQZ)a
v(z,7) = pa(w(z,7)) exp(ifsz), (36)

w=T1—kz.

Here 1, @2 are the new complex-valued dependent variables, and w is the new indepen-
dent variable. With (36) system (33) reduces to the following coupled ordinary differential
equations (ODE’s):

1. ) ; €
5 P10 = k)pr = Boor + (f1]” + elioa*)or + 5501 = 0, (37)
1.. i+ Kby — 2 2 E 2 % __ 0 38
5 P2 = W0+ k)p2 = Fapz + ([l + elon] )2 + S919s = 0, (38)
whereas the Lagrangian (35) reduces to
L = ! (’@1!2 - !@1!4) + ! (!¢2!2 - !902!4) + Bawpt + B35 —
5 5 1 2

3

lerPleal? = 7 (#(63)” = (¢1)°63)

Here ¢1 = dy1/dw, etc. The maximal Lie symmetries of the system (37), (38) are

L Ry Y S
0w Pap, " agr T ow U+

For € = 2/3 equation (33) can be transformed by the change of variables

A(z,7) = (;) v {uexp (z?z) + v exp <—z}j;sz)] ,
1/2
B(z, 1) = (;) {uexp (sz) — fvexp (—zidzﬂ ,

thus it takes the form:

DA OB 10%°A RS ) )
(39)

.(‘3B+.6

OA 10°B RS
11— 10—
0z

L L A+ (B2 +2/41H)B = 0.
ar Y292 T4 +(IBI" + 2141
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The Lagrangian of the system (39) is

3(_RO [ . . 9A* 9B 9A . 9B,

_(0A*_ OB*  9A_. OB .
g
or

The maximal Lie symmetries of (39) (with d # 0) are the following:

%
or

2
—|A[* = |BJ* ~ 4\AI2\B!2} :

0 0 ég,:z'Aa——z'A*a —I—iBa——iB*a

Gi=3 G2=gp DA DA™ B oB*

From the combination
G1 + koG + k3G
the symmetry ansatz

A = ®(w) exp(iksz), B = U(w) exp(iksz),

w=1—koz

is obtained. The system (39) can then be reduced to

1. . . Ré
5<1>—z'1<;2ql>+z'5/-c1xp—1<:3<1>+Tx1/+(|qI>|2+2|x11|2)<1>:o, (40)
1.. . . Ré
§W—ikglﬂ+i5klfb—k3\11+7<1>+(|‘1f|2+2|<1>|2)\11 =0. (41)

Let us finally make some remarks about applications of the symmetry properties of
the system (1) which we will consider in a future paper:

1) Reduction to a system of ODE’s. As we have demonstrated in the case 5, the Lie
symmetry generators of (1) can be used to reduce (1) to systems of ODE’s. Exact solutions
of these ODE’s can be constructed which in turn lead to exact solutions of (1). It is well-
known that an exact solution of a PDE which is obtained from its symmetry generator
defines, in fact, an infinite number of solutions; all invariant under that symmetry, i.e.,
the group parameter is arbitrary.

2) Canonical variables can be constructed for the reduced ODE’s. The Lie generators of
the reduced systems of ODE’s can be used to define a set of new variables which then
reduces the order of the system of ODE’s.

3) Conservation laws. The Lie generators of (1) can be used to construct conservation
laws for the system (1). When the system (1) has a Lagrangian £ the conserved current
¢ is given by

(:=x—G_lo.
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This is obtained by calculating
LcO = dx,

i.e., the Lie derivative of the Cartan fundamental form © with respect to a symmetry
generator G. The Cartan fundamental form in a space of n-dependent and m-independent

variables is given by the m-form

o EE ) EEE

1 j=1li=1

where the volume m-form is indicated by Q =dz1 A - --

LeO = G_1dO + d(G_10).

The Euler—Lagrange equation is given by

js*(G_1dO) =

—d — |
ou Uyj i uj ( Ty

A dx,,. Note that

Note that, if ¢ is a conserved current then Lz is also a conserved current. The conserva-
tion law is obtained from d(js*¢) = 0. In the same way we can use the Lie generators of

the reduced systems of ODE’s to construct first integrals for these systems.

The problem of classification of the system (1) with respect to the Galilean group was

solved in [12].

Appendix A

The determining equations and conditions on F; and F5 for the Lie symmetries of the

system (1) are given by the following systems:

(A-1.1)
(A-1.2)
(A-1.3)

(A-1.4)

(A-2.1)
(A-2.2)
(A-2.3)

(A-2.4)
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, O OR OR L OR } ”
1(2){F1 U +u 5~ V50 +v 5y +iauf]' (z) = (A-3.1)
" Y nl 8F’1_ 8F1*_ aF‘l aFl} -k o plll _
1(z){ Ff+u 5 " Y0 " ae +v e +iu*f]"(2) =0, (A-3.2)
, R, 0F | 0F, L 0F } .
1(2) {FQ Ll +u* D +v* 5o+ wfl(z) = (A-3.3)
" I nl *aFQ*_ aFQ* *6F2_ aFQ*} -k el . Nn.
1(2){ Fy 4o 50~ U +u e + v fi'(2) =0; (A-3.4)
F1 8F1
(0 2HO) {5 )
( ) {vaFl - 8F1} +iuf) = (A-4.1)
. aF1 OF;
(s~ ){Fl s
< ) {v - 8F1 } iw*f)(z) =0, (A-4.2)
aF 8F
(fo + f1 ){Fz—vg (%2}—
OF: LOF
( ) {uaj - 2} +ivfl(z) =0, (A-4.3)
(‘3F OF:
(e i ){F P
ov
8F2 aF2 * ol —n.
( ){u 5 Y g } w* fo(z) = 0; (A-4.4)
OF, OF; OF, LOF,
0(2) (Fi = u Gy ) — e Gt~ Gt oo
oF 1
fl(z)Tl lfl(z)‘f‘*ufl( ) +iug) (2)
u (13- 51(2)) =0, (A-5.1)
. *8F1* - OFf OFf JOFF
92(2) (F1 u 8u*> gr(2)u— = = ga(2)v—g = — ga(2)v" 5
oFF i .
) ) ~ ) )
u' (f3(2) - 341(2)) = . (A-52)

oF, L OFy L OF
(2) (F—a> (2~ gt S gz
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LG P2 ~ Fafiz) + Jofi () + ivgh(z) +

o (55621 + 312)) =0, (A-5.3)
o) (1 02 028 g O g%

RESE ~ B () — S () —in*gl(2) +

Sv* (fé(z) + gf{(z)) =0. (A-5.4)

The conditions on the complex-valued functions V1 and Ws in Proposition 1 are given
by the following system of equations:

ovy ovy

(g3 + 94)91231 + (g1 + 92) Q2o 9%, f17 + Z}\(!h 93)

R0+ igh(2) = 8 (£3(2) — 3A)) + i 1) =0, (A-6.1)

U vy v A

(93 + 94)ngQ + (91 + 92)928 - f1a - iﬁ(gz —g4) —

FLW = igh(z) 5 (o) - 2f{<z>) ORI (A-6.2)
(93 +94)91%+(91+92) L—fl — (93 + g2) —

1

Bl - (s + 2f{(2)> + i4f{’(z>} ~o. (A-63)

(95 + 90 G2 + (91 + )05t — 152 — (g1 +90) +
1) 1
Bl +io (f)+30)) -1y {'(z)} -0, (A6.4)
where Q = (uu*)™1, Qy = wv™!, and Q3 = (vv*)~!.  The conditions on the complex-

valued functions ¥; and Wy in Proposition 2(i) are given by the following system of
equations:

oy ov ov ov
Qg + gZ)OT — Qo(g1 +Tg3) o, L Qs(gs + 94)879; — (z + QS)T; —
asWq + zgl( ) 5(040 — 5&2/2) =0, (A—7.1)
oy oy ov* ov*
Q1(91 + g2) o0, Qa(g1 +Tg3) 9%, (93 + 94) 89; — (22 + a3) 821 -
a W —igs(2) — 6(an — daz/2) =0, (A-7.2)

ov 0V¥q

0¥y oVy
91(91 + QQ)aT — QQ(gl + Fgg)aT + 93(93 + 94)37§2§ — (OQZ + 043)E —
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Wy +igh(2) + 6 (ap + dan/2) = 0, (A-7.3)
ovs ovs; ovs ovs
Q -Q r Q 2 — 2 _
1(g1 + 92) 90, 2(91 +T'g3) o0, 3(93 + 94)893 (a2z + a3) =~
W% —ig)(2) + 6(ap + dan/2) = 0, (A-7.4)
where Q1 = (uu*)7!, Qo = wo', and Q3 = (vo*)~L The conditions on the complex-

valued functions ¥; and ¥y in Proposition 2 (ii) (a) are given by the following system of
equations:

oV, 0V, 0¥
—ugi—* — u*g 0O
UL Gy T g T ales T o) G
oV, .
(oz + ag)—az + (g1 — a0) ¥y +iug) =0, (A-8.1)
ov] ov] oy
— —u* 0 L _
ug1 BN U go D + Q3(g3 +g4)8§23
(voz + a3) 82’1 + (g2 — a2) ¥ —iu*gh =0 (A-8.2)
0¥, 0Vs oVy
g =2 0O vr2
ug 5. U go D + Q3(93 +g4)893
0V, o
(oz + ag)g — Wy +ig5 + 0% = 0, (A-8.3)
oW oW oW
_ ot Q _
ugi— = —ugag +Qs(g3 + 91) 90
8\1’3 * . 2
(az + a3) 5 agU5 —igy + 0“ae = 0, (A-8.4)

where Q3 = (vv*)7L. The conditions on the complex-valued functions ¥; and ¥s in

Proposition 2 (ii) (b) are given by the following system of equations:

ov ov, ov
—Ugs— - Ly 94 g +Q1(91+92)8791 -
ovq . 9
(voz + ag)g — ¥y +ig] + 0°ag =0, (A-9.1)
v . Ou oW
—vgz =~V (91 +92) 5
8\1!*{ * ./ 2
(o2 + as) 5 V7 —igy + 6“ag =0, (A-9.2)
8\11 8\112 8\112
_ugs =2 o
Vg3 =~V Ga g (91 +92)8Q
(oz + 043)72 + (g3 — ag)Ws +ivgh = 0, (A-9.3)

0z
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ovs ovs o}
— —* 9) 2 _
Vg3t TV A 2+ (g +92)891
\P*
(apz + a3) 822 + (g4 — o) W5 —iv*gy = 0, (A-9.4)

where 0 = (uu*)~L. The conditions on the complex-valued functions ¥; and ¥y in

Proposition 2 (iii) are given by the following system of equations:

oV, ov, ov, oV,
0 IEL o1 — g3) 2t + 0 ¥
1(g1 + g2) 9, 2(91 — 93) o0, 3(93 + 94) o0, o
A A
7191 +ig(z) — dexp (—z’lz> =0, (A-10.1)
o3 asg
vy ovs vy vy
Q —L1_0 Q —L_ L
1(g1 + 92)891 2(91 — 93) 5 9%, + Q3(g3 + 94)893 as— -+
A1 -y ( A1 )
2 — —§ —iZ=z) =0 A-10.2
0y %2 ig(z) — d exp Yo : ( )
oW, OV, oV, OV,
0 972 _q 0 a2
1(91 + g2) o0, 2(g1 — 93) 5 9, + Q3(93 + 94) 7 o0, % as
A A
“Lgs + igs(2) + d exp (—z’lz> =0, (A-10.3)
o3 asg
ovs o ovs v
QO 2 0 _ 2 0 o 2
1(g1 + g2) 90, 2(91 — 93) o0, 3(93 + 94) 89 3=+
A A
2 — igy(2) + dexp (—z’lz> =0, (A-10.4)
o3 asg
where O = (uu*)™1, Qy = wv™!, and Q3 = (vv*)~!.  The conditions on the complex-

valued functions ¥; and Wy in Proposition 2 (iv) and (vii) are given by the following
system of equations:

oYy oV, o, o,
O (91+92)3Q — Qa1 _93)8T22+Q3(93+g4)69 —ag—+
ig1(2) — dap = 0, (A-11.1)
oV ov] ovy ovy
y) L Qg — LiQ 1 1_
1(g1 + gz)an 2(g1 — 93) 9y + Q3(g3 + 94)893 a3 92
igy(2) — dag = 0, (A-11.2)
8@2 8‘11 8@2 8\112
Mg + 92)89 — Q2 (g QS)OT +Q3(93 + 94)893 - Oéag +
igh(2) + dag = 0, (A-11.3)
§) 2 Qy(gy — 2.0 2 _ 2 _
1(g1 + 92)891 2(g1 — 93) 9%, +Q3(g3 + g4)893 a3 -

igy(2z) + dag = 0, (A-11.4)
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where @ = (uu*)™!, Qy = wv™!, and Q3 = (vv*)~!.  The conditions on the complex-
valued functions ¥; and Wy in Proposition 2 (vi) are given by the following system:
ov, oV, A%
91 -Q —g3)— +Q
(g1 + 92)89 2(g1 — g3) o0, 3(gs + 94)8(2 +
gl (=) — o f1(z) — il G g — o (A-12.1)
: RET T |
ovy ovs vy
ol -0 1.0 -1
(g1 + 92)69 2(g1 — g3) o0, t 3(g3 + 94)8 \
igh(z) — 8f5(2) +1i 0(2) =0 (A-12.2)
92 0 f(/)(Z) gQ - .
OV, Oy AP
0 - Q —g3)=—+%Q —
(91 +92) 55" 90, 2(91 — 93) o0, 3(93 + 94) o0,
) //(Z)
igs(2) +dfo(2) — g3 =0, (A-12.3)
R2)
8\1]* * *
Q -Q Q e
191+ 92) 557 — Palgr — )89 + 23095+ 94) 5
iy : o (2)
igy(2) +dfy(2) +i%7—=94 =0, (A-12.4)
fo(2)

where Q1 = (uu*)™!, Qy = wv™!, and Q3 = (vo*) 7L
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