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Abstract

We present a novel method of finding first integrals and nondegenerate Poisson struc-
tures for a given system. We consider the given system as a system of differential
1-forms. After multiplying this system by a set of multiplicative functions, we de-
mand the existence of first integrals. More interesingly these multipliers play a crucial
role in constructing the required Poisson structures, if it exists. We illustrate this
procedure with a class of physically interesting systems.

1 Introduction

Integrable systems have been perceived as an important modern development in many
areas of mathematics and physics [1–11]. Recently, a number of methods were formu-
lated to study such systems exactly. Yet, it is not completely clear, what is the unifying
underlying phenomenon of integrability. The most important method that has been avail-
able is the inverse scattering which is applicable to both finite and infinite dimensional
systems [3–5, 10]. It has been recognised that the systems belonging to this class can
have more than one Hamiltonian formalism with respect to different Poisson structures.
More significantly, Magri [12, 13] introduced the concept of a second Hamiltonian struc-
ture, popularly known as a Pair of Poisson structures, for integrable, popularly partial
differential equations (PDE´s). One should emphasize that existence of a second Poisson
structure is crucial for establishing integrability algebraically [6, 12–24]. It is well known
that the Poisson pairs has close connections with Lax pairs, recursion operators, master
symmetries , and R-matrices, etc. [25, 26]. The existence of n integrals on involution for
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a system with n degrees of freedom the integrability of the system in Liouville´s sense
[1]. There are few interesting methods available in the literature to find the first integrals
for a finite dimensional system. They are, for example, direct methods [27–34] and other
methods proceed by symmetry analysis [35–45]. Apart from finding first integrals, many
researchers have recently tried to find different Poisson structures for finite dimensional
systems [46–51]. Wojciechowski [52] constructed Poisson structures for finite dimensional
systems using Casimir functions. Mostly, these Poisson structures belong to the degenerate
class. Very recently, nondegenerate Poisson structures have been constructed by Caboz et
al [53, 54] for the Henon–Heiles system utilising separation of variables. However, it is well
known that the construction of separation of variables for a given system is a formidable
task.
The motivation for this paper is to construct the second Poisson structures without

using either the separation of variables or symmetries. We present a direct method of
finding other integrals apart from the Hamiltonian for the given potential. Here, we wish
to remark that there is no need to compute symmetries or to use Noeather´s theorem to
obtain other first integrals. We adopt a slightly different approach to integrate the set of
differential 1-forms obtained from equations of motion. We multiply each 1-forms by an
unknown function. Then, we require the existence of integrals such that the sum of the
1-forms multiplied by the unknown functions is exact. Under certain specific conditions on
the multipliers, this approach leads systematically to obtaining the other required integrals.
Secondly, we set as our goal the use of these multipliers to construct nondegenerate Poisson
structures very naturally. It is significant that these Poisson structures are given explicitly
in terms of Darboux variables (p, q) only.
The plan of the paper is a follows. In section 2, we present our method of finding

first integrals for a given system, and in section 3, we illustrate it with a number of well
known potentials. In section 4, we derive a systematic approach to the construction of
nondegenerate Poisson structures, and we demonstrate this approach explicitly in section
5, by deriving a second Poisson structure for various systems. In section 6, we give our
concluding remarks.

2 Theory and method

In this section, we present a method of finding first integrals for a given autonomous
Hamiltonian system with two degrees of freedom

H =
1
2
(p2

1 + p2
2) + V (q1, q2), (2.1)

and the corresponding equations of motion are given by

dqi

dt
= pi,

dpi

dt
= −Vqi , i = 1, 2 (2.2)

where V (q1, q2) is the given potential of the system. Equation (2.2) can be equivalently
written in terms of the following six differential 1-forms:

p2dq1 − p1dq2 = 0,
(2.3a)
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p1dp1 − Vq1dq1 = 0,
(2.3b)

p1dp2 − Vq2dq1 = 0,
(2.3c)

p2dp1 − Vq1dq2 = 0,
(2.3d)

p2dp2 − Vq2dq2 = 0,
(2.3e)

Vq1dp2 − Vq2dp1 = 0.
(2.3f)

We multiply equations (2.3a)–(2.3f) by various unknowns P,Q,R, S, T and U which are
functions of (q1, q2, p1, p2), called multipliers and sum up the resulting equations. If the
resulting equation is exact, say DI, then

DI = p(p2dq1 − p1dq2) +Q(p1dp1 + Vq1dq1)+

R((p1dp2 + Vq2dq1) + S(p2dp1 + Vq1dq2)+

T ((p2dp2 + Vq2dq2) + U(Vq1dp2 − Vq2dp1),

(2.4)

where I = I(q1, q2, p1, p2) and D is the total differential operator holds.
Expanding left hand side of (2.4) and equating the coefficients of dq1, dq2, dp1, dp2 in

(2.4) on both sides, we get

Iq1 = Pp2 +QVq1 +RVq2 , (2.5a)

Iq2 = −Pp1 + SVq1 + TVq2 , (2.5b)

Ip1 = Qp1 + Sp2 − UVq2 , (2.5c)

Ip2 = Rp1 + Tp2 + UVq1 . (2.5d)

The compatibility conditions

Iqiqj = IqjqiIpipj = IpjpiIqipj = Ipjqi , i, j = 1, 2,

lead to six coupled linear PDE´s :

p2Pq2 + p1Pq1 + (Qq2 − Sq1)Vq1 + (Rq2 − Tq1)Vq2+
(Q− T )Vq1q2 +RVq2q2 − SVq1q1 = 0,

(2.6a)

p2(Pp1 − Sq1)− p1Qq1 +Qp1Vq1 + (Rp1 + Uq1)Vq2 + UVq1q2 = 0, (2.6b)

P + p2(Pp2 − Tq1)− p1Rq1 + (Qp2 − Uq1)Vq1 +Rp2Vq2 − UVq1q1 = 0, (2.6c)

−P − p2(Pp1 +Qq2)− p2Sq2 + Sp1Vq1 + (Tp1 + Uq2)Vq2 + UVq2q2 = 0, (2.6d)

p1(Pp2 +Rq2) + (Sp2 − Uq2)Vq1 + Tp2Vq2 − p2Tq − UVq1q2 = 0, (2.6e)

p1(Qp2 −Rp1) + p2(Sp2 − Tp1) + S −R− Up1Vq1 − Up2Vq2 = 0. (2.6f)
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In order to solve the above equations, in general, we need to make some suitable assump-
tions on P,Q,R, S, T and U . In this direction as a first case, we take

Q = Q(q1, q2, p1), T = T (q1, q2, p2), R = S(q1, q2),

P = P (q+1, q2, p1, p2), Pp1 = Sq1 , Pp2 = Rq2 , U = 0.
(2.7)

Substituting (2.7) into (2.6b) and (2.6e) and integrating, we get

Q = α1

[
p2
1

2
+ f1(q1, q2)

]
+ f2(q2) + α2, (2.8a)

T = α3

[
p2
2

2
+ f3(q1, q2)

]
+ f4(q1) + α4, (2.8b)

where f1 =
∫
Vq1dq1 and f3 =

∫
Vq2dq2 and α1, α2, α3 and α4 are constants and f1, f2, f3

and f4 functions of the arguments. Adding equations (2.6c) and (2.6d) and further using
(2.7), we obtain

2p2Pp2 − 2p1Pp1 − p1Qq2 − p2Tq1 = 0.

Solving the linear PDE together with (2.8a) and (2.8b), we find

P =
p2

2
(α3f3q1 + f4q1)−

p1

2
(α1f1q2 + f2q2). (2.9)

Using equations (2.7 )–(2.9) in (2.6), we arrive at

p1

{
1
2
(α1f1q2 + f2q2) + Sq1

}
+ p2

{
1
2
(α3f3q1 + f4q1) + Sq2

}
= 0. (2.10)

Since the functions f1, f2, f3, f4 and S in (2.10) are independent of p1, p2, we equate the
coefficients of p1 and p2 to zero. Then we have

Sq1 = −1
2
(α1f1q2 + f2q2), (2.11a)

Sq2 = −1
2
(α3f3q1 + f4q1). (2.11b)

By the compatibility condition Sq2q1 = Sq1q2 , we derive

α1f1q2q2 + f2q2q2 − α3f3q1q1 − f4q1q1 = 0. (2.12)

By utilizing the equations (2.8), (2.9) and (2.12) in (2.6) after some simple calculation, we
get

3(α1f1q2 + f2q2)Vq1 − 3(α3f3q1 + f4q1)Vq2 + 2(α2f1−

α3f3 + f2 − f4 + α2 − α4)Vq1q2 + 2S(Vq2q2 − Vq1q1) = 0.
(2.13)

For a given V, f1 and f3 are immediately available and the remaining unknowns f2 and
f4, can be determined from equation (2.12). Once we obtain f1, f2, f3 and f4, the values
of P,Q,R, S and T follow from relations (2.8), (2.9) and (2.11).
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As a second case, we shall assume that

R = S(q1, q2, p1, p2), Q = Q(q2)T, T = T (q1),

P = P (q1, q2, p1, p2), U = 0.
(2.14)

Solving equation (2.6) together with (2.14), we have

R = α1[p1p2 + g1(q1, q2)], (2.15)

where g1 is a function of the argument and α1 is a constant. Again, using (2.12) and (2.15)
in equations (2.6b) and (2.6c), we obtain

Pp1 = Rq1 − α1Vq2 , (2.16a)

Pp2 = −Rq2 − α1Vq1 . (2.16b)

From equations (2.15) and (2.16), we find that

P = α1{p2(Vq1 − g1q2) + p1(g1q1 − Vq2)}. (2.17)

Adding equations (2.6c) and (2.6d) together with (2.14), (2.15) and (2.16), we derive the
equation

p1(−2α1g1q1 + 2α1Vq2 −Qq2) + p2(−2α1g1q2 + 2α1Vq1 − Tq1) = 0. (2.18)

Since functions q1, Q and T in (2.18) are free of the variables p1, p2, we equate the coeffi-
cients of p1 and p2 to zero. Then, we get

Qq2 = 2α1(Vq2 − g1q1), (2.19a)

Tq1 = 2α1(Vq1 − g1q2). (2.19b)

Differentiating equations (2.19a) and (2.19b) with respect to q1 and q2 respectively and
using (2.14), we arrive at

g1q2q2 = Vq1q2 , g1q1q1 = Vq2q1 . (2.20)

By the compatibility condition of V , from (2.20), we determine

g1 = f1(q1 + q2) + f2(q1 − q2), (2.21)

where f1 and f2 are arbitrary functions of their arguments. From (2.20), we calculate the
potential:

V = f1(q1 + q2)− f2(q1 − q2) + f3(q1) + f4(q2), (2.22)

where f3 and f4 are functions of q1 and q2 respectively. Substituiting equations (2.21) and
(2.22) in equations (2.19), we find

Q = 2α1f4(q2) + α2, (2.23a)

T = 2α2f3(q1) + α3, (2.23b)



314 A.ANNAMALAI and K.M.TAMIZHMANI

where α2 and α3 are arbitrary constants. By introducing equations (2.14), (2.17) and
(2.23) together with equations (2.21) and (2.22) into equation (2.6a), we obtain

−3f ′
1(f

′
3 − f ′

4)− 3f ′
2(f

′
3 + f ′

4) + 2(f4 − f3)(f ′′
1 + f ′′

2 )+

(f1 + f2)(f ′′
4 − f ′′

3 ) = 0,
(2.24)

where f ′
i and f ′′

i , i = 1, ..., 4 denote first and second order derivatives of the functions with
respect to their arguments. Equation (2.24) is an integrability condition for the potential
(2.22). Trivially, if f3 = f4 = 0 in (2.24), then the equation is satisfied. Therefore, the
system with the potential

V = f1(q1 + q2)− f2(q1 − q2), (2.25)

is integrable. Then, by using the values of P,R, S, T and U in equations (2.5a)–(2.5d), we
determine the integral I:

I = {p1p2 + f1(q1 + q2) + f2(q1 − q2)}2. (2.26)

We next consider the following choices:

i) Q = Q(q1), T = T (q2), R = S(p1, p2, q1, q2), U = 0,

i i) Q = Q(q1), T = T (q1), R = S(p1, p2, q1, q2), U = 0,

i i i) Q = Q(q2), T = T (q2), R = S(p1, p2, q1, q2), U = 0.

We have repeated the procedure as earlier for cases (i)–(iii) and obtained the same potential
(2.25) and the integral (2.26). We verified that the above analysis for all other possible
combinations in the arguments of P,Q,R, S, T and U in terms of (q1, q2, p1, p2) yield only
trivial solution for multipliers namely all of them are constants, so that they do not yield
any second integral. In the next section, we shall illustrate our method with a number of
physically importanat systems and derive their first integrals.

3 Applications

In this section, we apply the procedure presented in section 2 to Sextic anharmonic oscil-
lator [38]:

V (q1, q2) = Aq2
1 +Bq2

2 + Cq6
1 +Dq6

2 + Eq4
1q

2
2 + Fq2

1q
4
2. (3.1)

Since f1
∫
Vq1dq1 and

∫
Vq2dq2, from (3.1), we can easily find the values of f1 and f3 as:

f1 = Aq2
1 + Cq6

1 + Eq4
1q

2
2 + Fq2

1q
4
2, (3.2a)

f3 = Bq2
2 +Dq6

2 + Eq4
1q

2
2 + Fq2

1q
4
2. (3.2b)

By making use of equations (3.2a) and (3.2b) into equation (2.12), we obtain
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α1 = α2 = 0,

f2 =
α5

2
q2
2 + α6q2,

(3.3a)

f4 =
α5

2
q2
1 + α7q2, (3.3b)

where α5, α6 and α7 are constants. Hence, the equations (2.8a) and (2.8b) become

Q =
α5

2
q2
2 + α6q2 + α2, (3.4a)

T =
α5

2
q2
1 + α7q1 + α4. (3.4b)

Solving equations (2.11), we get

R = S = −α5

2
q1q2,−α6

2
q1 − α7

2
q2 + α8, (3.5)

where α8 is a constant. Also, from equation (2.9), we obtain

P =
p2

2
{α5q1 + α7} − p1

2
{α5q2 + α6}. (3.6)

Now, by introducing equations (3.4)–(3.6) together with (3.1) into equation (2.13), we
recover the well known integrable cases:

a) α7 �= 0, A = 4B, C = 64D, E = 80D, F = 24D,

α1 = α3α5 = α6α8 = 0, α2 = α4;

b) α8 �= 0, A = B, C = D, E = F = 15D,

α1 = α3α5 = α6α8 = 0, α2 = α4;

c) α5 �= 0, A = B, C = D, E = F = 3D,

α1 = α3α5 = α6 = α7 = α8 = 0, α2 = α4.

(3.7)

In case (a) of (3.7), from equations (3.4)–(3.6), the values of the multipliers are given by

P =
p2

2
, Q = U = 0, R = S = −q2

2
, T = q1. (3.8)

Introducing these multipliers (3.8) into (2.5a)–(2.5d), we obtain the integral I:

I = p2(q2p1 − q1p2) + 2q1q
2
2{B + 3Dq4

2 + 16Dq2
1(q

2
1 + q2

2)}. (3.9)

Similarly for case (b) of (3.7), we have

P = Q = T = U = 0, R = S = 1

and

I = p1p2 + q1q2{A+ 4Dq2
1q

2
2 + 3D(q

2
1 + q2

2)
2}. (3.10)
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Again for case (c) we get

P =
1
2
(q1p2 − g2p1), Q =

q2
2

2
, T =

q2
1

2
, R = S = −q1q2

2
, U = 0

and

I = (q2p1 − q1p2)2. (3.11)

In a similar fashion, we apply our procedure to the following potentials and present the
results in table I.
2) Perturbed Kepler System [56]:

V = −G(q2
1 + q2

2)
− 1

2 +AqM
1 +BqN

2 , (3.12)

3) Quartic anharminic oscillator [57]:

V = Aq2
1 +Bq2

2 + Cq4
1 +Dq4

2 + Eq2
1q

2
2, (3.13)

4) Inverse square potential [58]:

V = Aq2
1 +Bq2

2 + (q
2
1 + q2

2)
2 + Cq−2

1 +Dq−2
2 , (3.14)

5) Fifth order nonhomogeneous potential [31]:

V = Aq5
1 +Bq3

1q
2
2 + Cq1g

4
2 +Dq4

1 + Eq2
1q

2
2 + Fq4

2+

Gq3
1 +Hq1q

2
2 + Iq2

1 + Jq2
2 +Kq1,

(3.15)

6) Henon–Heiles system [55]:

V =
1
2
(Aq2

1 +Bq2
2) +Dq2

1q2 − C

3
q3
2, (3.16)

where a, b, g, A,B,C,D,E, F,G,H, I, J and K are all parameters. In system (3), for A =
B = 0, we obtain the integrable potential of fourth order homogeneous type . Similarly
for D = E = F = I = J = 0 in system (5), we get the known integrable potential of the
fifth order homogeneous type.
In the next section, we make use of the multiplier functions P,Q,R, S and T to con-

struct a nongenerate second Poisson structure for a given system.

4 Nondegenerate Poisson structures

In this section, we present a simple method of constructing a nondegenerate Poisson
structures for a given system. We first review certain well known results on Poisson
manifolds [8].

Definition: A Poisson bracket on a smooth manifold M is an operation that assigns a
smooth real-valued function [F,H] onM to each pair F,H of smooth, real valued functions,
with the following properties:
(a) Bilinearity:
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{αF + βP, H} = α{F,H}+ β{P,H},

{F, αH + βP} = α{F,H}+ β{F, P}, α, β ∈ R,
(4.1)

(b) Skew-symmetry:

{F,H} = −{H,F}, (4.2 )

(c) Jacobi identity:

{{F,H}, P}+ {{P, F}, H}+ {H,P}, F} = 0, (4.3 )

(d) Leibniz rule:

{F,H P} = {F,H}P +H {F, P}, (4.4 )

where F,H and P are arbitrary smooth real–valued functions on M .
The equation of motion can be written as

dx

dt
= {x,H} = J(x) · �H(x), (4.5)

where J(x) = (J ij(x)) is the structure matrix of orderm, and the coefficient J ij(x){xi, xj},
i, j = 1, ...,m, being the structure functions of the coordinates xi and xj , enable us to
define a Poisson bracket of any pair (F,H) of functions on the smooth manifold M of
dimension m with local coordinates {x1, ..., xm} in the following form

{F,H} =
m∑

i=1

m∑
j=1

J ij(x)
∂F

∂xi

∂H

∂xj
. (4.6)

By a proposition from Olver´ s book [8], we say J(x) is the structure matrix for a Poisson
bracket defined over M if and only if it has the following properties:
(a) Skew symmetry:

J ij(x) = −J ji(x), (4.7a)

(b) Jacobi identity :
m∑

i=1
{J ij∂lJ

jk + Jkl∂lJ
ij + J jl∂lJ

ki} = 0, i, j, k = 1, ...,m, (4.7b)

for all x ∈ M , where ∂l =
∂

∂xl
.

The equation (4.7b), being a system of nonlinear PDE´s becomes linear whenever J(x)
has an inverse say K(x) = [J(x)]−1. Then equations (4.7a) and (4.7b) can be rewritten as
(a) Skew symmetry:

Kij(x) = Kji(x). i, j = i, ...,m, (4.8a)

(b) Jacobi identity:

∂iK
jk + ∂jK

ki + ∂kK
ij = 0, i, j, k = 1, ...,m. (4.8b)
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Hence, whenewer J(x) has an inverse, we can very well use equation (4.8) instead of
equation (4.7).

Definition: We say that a Hamiltonian system possess a pair of Poisson structures if
there exists a function f(q1, q2, p1, p2) �= 0 such that

ẋ = J1 �H = f(ρJ2)� I, (4.9 )

where x = (q1, q2, p1, p2)T , ρ = f−1 and I is the first integral, independent of H, and J1,
ρJ2 and α1J1 + α2ρJ2 satisfy equations (4.7a) and (4.7b).
In some sense our structure (4.9) is a weak bi–Hamiltonian structure, when compared

with the Magri´s definition. Now, from equations (2.5a)–(2.5d) and U = 0, we get

fJ−1
2 =




0 P −Q −R

−P 0 −S −T

Q S 0 0

R T 0 0



. (4.10)

In order to find ’f’ we use the linear Jacobi identity condition equation (4.8b) for fJ−1
2

instead of equation (4.7b), since the later one is practically not useful for this purpose.
Consequently, we obtain

f(Qp2 −Rp1) +Qfp2 −Rp1 = 0, (4.11a)

f(Tp1 − Sp2) + Tfp1 − Sp2 = 0, (4.11b)

f(Pp1 − Sq1 +Qq2) + Pfp1 − Sq1 −Qfq2 = 0, (4.11c)

f(Pp2 +Rq2 − Tq1) + Pfp2 +Rq2 − Tfq2 = 0. (4.11d)

Solving equations (4.11a)–(4.11d), we obtain the value of f . Hence,

ρJ2 =
f−1

(QT −RS)




0 0 T −S

0 0 −R Q

−T R 0 P

S −Q −P 0



, (4.12)

where QT−RS �= 0. We perform this analysis in the following section for all the potentials
discussed in section 3.
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5 Applications

A Poisson structures for A given potential

In this section, we demonstrate the procedure presented in section 4, with certain phys-
ically important systems. As a first example, we consider Sextic anharmonic os cillator
(3.1). Using our technigue, we have recovered known three integrable cases. For each inte-
grable case, we have determined the corresponding multipliers P,Q,R, S and T explicitly.
For the case (a), by making use of the multipliers (3.8) in (4.11a)–(4.11d), we find

fq1 = 0, fq2 = −2f
q2

, fp1 = 0, fp2 = 0. (5.1)

Hence, by (5.1), we get

f = − 4
q2
2

and ρ = −q2
2

4
. (5.2)

Therefore, from (4.12) together with (5.2), the Poisson structure ρJ2 has the form

ρJ2 =




0 0 q1
q2
2

0 0 q2
2 0

−q1 −q2
2 0 p2

2

−q2
2 0 −p2

2 0



.

We have verified that this ρJ2 satisfies the Jacobi identity (4.7b). Also, we have checkend
that αJ1 + α2(ρJ2) satisfies equations (4.7a) and (4.7b), where

J1 =




0 0 1 0

0 0 0 1

−1 0 0 0

0 −1 0 0



,

is the usual Poisson structure satisfying equations (4.7a) and (4.7b) and equation (4.9) is
satisfied identically for the above I, J1 and ρJ2.
Similaraly, for case (b), we determine from (4.11)

f = −1 and ρ = −1.
Hence, the second Poisson structure ρJ2 has the form

ρJ2 =




0 0 0 −1

0 0 −1 1

0 1 0 0

1 0 0 0



.
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Since, for case (c), QT − RS = 0, the value of f does not exist. Hence, we are unable to
construct a second Poisson structure for this case. Similarly, we find the values of f and
the nondegenerate second Poisson structures for the potentials considered in the Table I
and present the results in Table II.

B Poisson structures for A given integral

In section A, we have constructed the nondegenerate Poisson structures for a given poten-
tial using multipliers P,Q,R, S and T . Now, we construct the same structures for a given
integral. First, we find the corresponding multipliers for the integral. Then by the same
procedure as given in the section A, we derive the second Poisson structures. To illustrate
this concept, we first consider an integral of motion,

1) I = (q1p2 − q2p1)2 + Up2
1 +

2
A2 −B2

[B2g(A)−A2h(B)], (5.3)

where

2A2 = r2 + c+
[
(r2 + C)2 − 4C2

1

] 1
2 ,

2B = r2 + C +
[
(r2 + C)2 − 4C2

1

] 1
2 ,

r2 = q2
1 + q2

2.

The potential corresponding to this integral is given by

V =
g(A)− h(B)

A2 −B2
, A �= B. (5.4)

In this case the multipliers become

P = 2(q1p2 − q2p1), Q = 2(q2
2 + C),

T = 2q2
1, R = S = −2q1q2

(5.5)

and introducing equation (5.5) in equations (4.11), we get

f =
1
4Cq2

1

.

Hence, the second Poisson structures ρJ2 for the potential correspoinding to the integral
(5.3) is given by

ρJ2 =




0 0 2q2
1 2q1q2

0 0 2q1q2 2(q2
2 + c)

−2q1 −2q1q2 0 2(q1p2 − q2p1)

−2q1q2 −2(q2
2 + c) −2(q1p2 − q2p1) 0



.
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We establish this converse procedure explicitly by considering numerous first integrals for
a class of physically interesting systems. We present our results in table III.

2) I = (q1p2 − q2p1)2 + Up1(p1 ± up2) +
2

A2 −B2

[
B2g(A)−A2h(B)

]
, (5.6)

where
2A2 = r2 + [r4 − 2C(q1 ± iq2)2]

1
2 ,

2B2 = r2 + [r4 − 2C(q1 ± iq2)2]
1
2 ,

with the potential V (q1, q2), (5.4) but different A and B.

3) I = p1(q2p1 − q1p2) +
1
r
[(r + q2)h(r − q2)− (r − q2)g(r + q2)], (5.7)

with the potential

V =
1
r
[g(r + q2) + h(r − q2)].

4) I = (q2p1 − q1p2)(p1 + p2) +
i

8
(p1 − up2)2+

i

(
1− z√

w

)
g(z +

√
w) + i

(
1− z√

w

)
h(z −√

w),
(5.8)

where z = q1 + q2, w = z̄ with

V = w− 1
2 [g(z +

√
w) + h(z −√

w)].

5) I = (q2p1 − q1p2)(p1 ± up2)− i(q1 ± iq2)[g(q1 ± iq2)+

h′(q1 ± iq2) + h(q1 ± iq2)]
(5.9)

with

V =
1
r
g(q1 ± iq2) + h′(q1 ± iq2).

6) I = p1(p1 ± up2) + r2g′′(q1 ± iq2) + h(q1 ± iq2)+

2(q1 ± iq2) + g′(q1 ± iq2)− 2g(q1 ± iq2)
(5.10)

with
V = r2g′′(q1 ± iq2) + h(q1 ± iq2).

7) I = (q1p2 − q2p1)2 + 2g
[
q1

q2

]
(5.11)

with

V = h(r) + g

[
q1

q2

]
r−2.
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Table I

Potentials Integrable Multipliers Integrals of Motion

cases P Q R = S T I

Perturbed a) A,B: p2 0 −q2 2q1 p2(q2p1 − q1p2)

Kepler arbitrary +Gq1(q2
1 + q2

2)
− 1

2

problem M = 1, +
A

2
q2
2 − 2Bq1q

−2
2

N = −2

b) A,B: Bp1 −Ap2 −2Bq2 Bq1 +Aq2 −2Aq1 (−Bp1 +Ap2)(q2p1 − q1p2)

arbitrary +G(Aq1 +Bq2)(q2
1 + q2

2)
−1/2

M = N = 1

c) A = 4B −p2 0 q2 −2q1 p2(q2p1 − q1p2)

M = N = 2 +Gq1(q2
1 + q2

2)
−1/2 + 2Bq1q

2
2

d) A,B: 2(q1p2 − q2p1) 2q2
2 −2q1q2 2q2

1 (q2p1 − q1p2)2

arbitrary +2Bq1q
−2
2 + 2Aq2

2q
−2
1

M = N = −2 +
1
2
(Aq2 −Bq1)2

e) A = B: 1 0 0 0 q1p2 − q2p1

M = N = 2
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Quartic a) A,B:
1
2
(−q1p2 + q2p1)

1
2
(−q2

2 +
A−B

C )
q1q2

2
−q2

1

4
−p2

1q
2
2

4
+

p1p2q1q2

2

anharmonic arbitrary −p2
2q

2
1

4
+ A−B

2C (
p2
1

2
oscilator E = 2C, D = C +Aq2

1 + Cq4
1 + Cq2

1q
2
2)

b) A = 4B,
p2

2
0 −q2

2
q1

p2

2
(q1p2 − q2p1)

C = 16D, −q1q
2
2(B + 2Dq2

2 + 4Dq2
1)

E = 12D

c) A = B, 0 0 1 0 p1p2 + 2Aq1q2

E = 6C, +4Cq1q2(q2
1 + q2

2)

D = C

d) A = 4B, 6Dq1q
2
2p2 Dq4

2 −2Dq1q
3
2

p2
2

2
+

p4
2

4
+

p2
2

2
(Bq2

2 +Dq4
2

−2Dq3
2p1 +6Dq2

1q
2
2) + p1p2(−2Dq1q

3
2)

C = 8D Bq2
2 +

p2
1

2
Dq4

2 + 2BDq2
1q

4
2

E = 6D +Dq4
2 +2D2q4

1q
4
2 + 2D

2q2
1q

6
2

+6Dq2
1q

2
2 +

B2

2
q4
2 +BDq6

2 +
B2

2
q8
2
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Inverse A,B,C, 2(q1p2 − q2p1) 2(q2
2 +B −A) −2q1q2 2q2

1 (q2p1 − q1p2)2 + 2Cq2
2q

−2
1

square D : +2Dq2
1q

−2
2 + (B −A)(p2

1

potential arbitrary +2q4
1 + 2q

2
1q

2
2 + 2Aq2

1 + 2Cq−2
1 )

Fifth a) B = 10A 0 0 1 0 p1p2 + q2[A(5q4
1 + 10q

2
1q

2
2

order C = 5A +q4
2) + 4D(q

3
1 + q1q

2
2)

nongomo- E = 6F +G(3q2
1 + q2

2) + 21q1 +K]
geneous
potential

b) A = B −p2 0 q2 −2q1 p2(q1p2 − q2p1)

C =
3
16

A +
q2
2

2
[4(q4

1 +
3
4
q2
1q

2
2 +

1
16

q4
2)

E =
3
4
D +D(q3

1 +
1
2
q1q

2
2)+

F = D
16 +G(q2

1 +
1
4
q2
2) + Iq1K]

H = G
2 ,

J = I
4
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Henon a) C = −6D −p2

2
q2 +

B − 4A
4D

−q1

2
0 −p1

2
(−q2p1 + q1p2)

Heiles A,B: +B−4A
4D (p2

1 +Aq2
1)−

System arbitrary −q2
1

8
(4Aq2 +Dq2

1 + 4Dq2
2)

b) 16A = B, −1
2
Dq2

1p1
1
2
p2
1 +
1
2
Aq2

1 −1
6
Dq3

1 0
1
8
p4
1 + (A+ 2Dq2)q2

1p
2
1

C = −16D +Dq2
1q2 −1

6
q3
1p1p2 +

1
8
A2q4

1

−1
6
D(A+Dq2)q4

1q2

−D2

36
q6
1

c) A = B, 0 0 1 0 p1p2 +Aq1q2

C = −D +D
3 q1(q2

1 + 3q
2
2)

Here U = 0.
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Table I I
Potentials f J12 J13 J14 = J23 J24 J34

as in Tab. I

2 a)
−1
q2
2

0 2q1 q2 0 p2

b)
−1

(Bq1 −Aq2)2
0 −2Aq1 −(Bq1 +Aq2) −2Bq2 Bp1 −Ap2

c)
−1
q2
2

0 −2q1 −q2 0 −p2

d) f does not exist since QT −RS = 0

e) - do -

3 a)
−4C

(A−B)q2
1

0 −q2
1

2
−q1q2

2
−q2

2

2
+

A−B

2C
1
2
(q2p1 − q1p2)

b)
−4
q2
2

0 q1
q2

2
0

p2

2
c) −1 0 0 −1 0 0

d) f is not found

4
1

4(B −A)q2
1

0 2q2
1 2q1q2 2(q2

2 +B −A) 2(q1p2 − q2p1)

5 a) −1 0 0 −1 0 0

b)
−1
q2
2

0 −2q1 −q2 0 −p2

6 a)
−4
q2
1

0 0
q1

2
q2 +

B − 4A
4D

−p1

2

b) −36

D2q6
1

0 0
D

6
q3
1

p2
1

2
+

q2
1

2
(A+ 2Dq2) −D

2
p1q

2
1

c) −1 0 0 −1 0 0

ρ = f−1, J2 = ρ(Jij). Here Jij = 0, Jij = −Jji, i, j = 1, ..., 4.
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Table I I I

Integrals
f J12 J13 J14 = J23 J24 J34

of motion

1
1
4Cq2

1

0 2q2
1 2q1q2 2(q2

2 + C) 2(q1p2 − q2p1)

2
1

4Cq2
1 ± C2 ± 4iCq1q2

0 2q2
1 2q1q2 ± Ci 2(q2

2 + C) 2(q1p2 − q2p1)

3 − 1
q2
1

0 0 q1 2q2 −p1

4
1

q1 − q2
1 + q2

2 − iq2(1 + 2q1)
0 −i(2q1 +

1
4
) (q1 − 14 − iq2) 2q2 +

i

4
−(p1 + ip2)

5
−1

±4iq1q2 + (−q1 ± iq2)2
0 ∓2iq1 q1 ∓ iq2 2q2 −(p1 ± ip2)

6 1 0 0 ∓i 2 0

ρ = f−1, J2 = ρ(Jij). Here Jii = 0, Jij = −Jji, i, j = 1, ..., 4.
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For case (7) of table III, QT −RS = 0, therefore the second Poisson structure-matrix does
not exist.

6 Conclussion

We have presented a simple and systematic method for finding first integrals for dynamical
systems, using multiplier functions. Here, we wish to emphasize that this method neither
requires generalized symmetries nor Noether´s theorem to obtain the sufficient integrals.
On utilising these multiplier functions we have proposed a method to constructing nonde-
generate Poisson structures with respect to which a given Hamiltonian system with two
degrees of freedom is rather a weak bi–Hamiltonian. We have applied this procedure to a
class of physically interesting systems and determined their integrals and second Poisson
structures.
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