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Abstract
We consider a hierarchy of many-particle systems on the line with polynomial poten-
tials separable in parabolic coordinates. The first non-trivial member of this hierarchy
is a generalization of an integrable case of the Hénon-Heiles system. We give a Lax
representation in terms of 2 × 2 matrices for the whole hierarchy and construct the
associated linear r-matrix algebra with the r-matrix dependent on the dynamical vari-
ables. A Yang-Baxter equation of dynamical type is proposed. Classical integration
in a particular case is carried out and quantization of the system is discussed with the
help of separation variables.

1 Introduction

In the last decade, much work has been carried out in the study of completely integrable
systems admitting a classical r-matrix Poisson structure (c.f. [1, 2]) where the r-matrices
depend only on the spectral parameters. More recently, interest has developed in the
study of completely integrable systems where the r-matrices depend also on dynamical
variables [3–6]. It is remarkable that the celebrated Calogero–Moser system, whose com-
plete integrability was shown a number of years ago (see e.g. [7]), has been found only
recently to possess a classical r-matrix of this dynamical type [8]. In this paper we study
another example of a dynamical r-matrix structure. It is already well known that it is
possible to provide 2× 2 Lax operator satisfying the standard linear r-matrix algebra for
the Hamiltonian system of natural form where the potential U is of second degree by the
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coordinates (see e.g. [6, 9–12]). We consider a hierarchy of one-dimensional manyparticle
systems with polynomial potentials of higher degree whose complete integrability in the
framework of the Lax representation is known, but for which the associated r-matrix
Poisson structure has not been discussed. The systems represent a generalization of the
known hierarchy of two-particles systems with polynomial potentials separable in parabolic
coordinates, which have the form (see, e.g. [13, 14])

VN =
[N/2]∑
k=0

21−2k
(

N−k
k

)
q2k
1 qN−2k

2 , (1.1)

where the positive integer N enumerates the members of the hierarchy. We study an inte-
grable many particle generalizations of (1.1) in the framework of the Lax representation,
written in terms of 2× 2 matrices,

L̇(N)(z) = [MN (z), LN (z)],

LN (z) =

(
V (z) U(z)
WN (z) −V (z)

)
, M (N)(z) =

(
0 1

QN (z) 0

)
, (1.2)

where the functions U(z), V (z), WN (z), QN (z) depend rationally in the spectral parame-
ter z and some constraints are imposed on them. In the first nontrivial case (N = 3)
the system can be considered as a many-particle generalization of a known integrable case
of the Hénon-Heiles system [15]. We emphasize, that the ansatz (1.2) is a natural ge-
neralization of the Lax representation found in [16] to describe an integrable case of the
Hénon-Heiles system. See also [11, 12] for the link to the su(1, 1)–Gaudin magnet which
corresponds to a free n-dimensional particle separable in parabolic coordinates.

The polynomial second order spectral problem associated with the Lax representation
was studied in [17] in the framework of a (K ×K) Lax representation, and the recursion
relations between different members of a hierarchy of Lax matrices was also given, but
no explicit treatment of any associated dynamical system was discussed. The (2 × 2)
Lax representation we describe appears to us to be more useful to investigate the class
of integrable systems under consideration and to elucidate the classical r-matrix Poisson
structure of the system.

We consider the system within the method of variable separation [18, 10, 11] that
permits us to develop the classical theta-functional integration theory and to consider the
associated quantum problem. The last problem is reduced to a set of multiparameter
spectral problems which are a confluent form of ordinary differential equations of the
Fuchsian type.

The central result of the paper is the description of the Poisson structure of the system
by a dynamical linear r-matrix algebra defined in V 2 ⊗ V 2 [3, 5, 6],

{L(N)
1 (x) ⊗, L(N)

2 (y)} = [d(N)
12 (x, y), L(N)

1 (x)]− [d(N)
21 (x, y)L(N)

2 (y)], (1.3)

where ⊗, is the direct product ⊗ of two matrices, but with the product of two matrix
elements replaced by their Poisson bracket. The L matrices are defined in V 2 ⊗ V 2 by
L

(N)
1 (x) = L(N)(x) ⊗ I, L

(N)
2 (y) = I ⊗ L(N)(y), I is the 2 × 2 unit matrix, d(N)

12 and d
(N)
21

are matrices depending both on spectral parameters and on dynamical variables through
the factor (QN (x)−QN (y))/(x− y).
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In the space V 2 ⊗ V 2 ⊗ V 2, the matrices d(N)
ij satisfy the constraints (classical Yang–

Baxter equation of dynamical type)

[d(N)
12 (x, y), d(N)

13 (x, z)] + [d(N)
12 (x, y), d(N)

23 (y, z)] + [d(N)
32 (z, y), d(N)

13 (x, z)] +

{L(N)
2 (y) ⊗, d(N)

13 (x, z)}+ {L(N)
3 (z) ⊗, d(N)

12 (x, y)}+

[c(N)(x, y, z), L(N)
2 (y)− L

(N)
3 (z)] = 0 (1.4)

plus cyclic permutations. The matrices d(N)
ij and c in (1.4) involve the dynamical variables

through the factor QN . We follow the now standard but somewhat confusing notation that
L

(N)
i , d

(N)
ij refer to different matrices depend on whether the current space is V 2 ⊗ V 2 or

V 2⊗V 2⊗V 2. In V 2⊗V 2⊗V 2, L(N)
1 (x) = L(N)(x)⊗I⊗id, L(N)

2 = I⊗L(N)(y)⊗I, L(N)
3 (z) =

L(N)(z)⊗ I ⊗ I. The matrix d(N)
ij in V 2⊗ V 2⊗ V 2 acts like d(N)

ij in ith and jth space and
as I in the third space. Except for the final term, eqn. (1.4) is the same as that given
in [5].

A main theme of the paper is to present a new solution of the dynamical Yang-Baxter
equations (1.4) which is associated with a hierarchy of one-dimensional dynamical systems.
At the same time the r-matrix structure of parabolic coordinates is elucidated.

The main results were announced in the paper [19].

2 The Hierarchy of Separable Systems

In this section we describe a hierarchy of completely integrable one-dimensional many-
particle systems with polynomial potentials. The different members of the hierarchy are
connected by recurrent relations. We give the Lax representation in terms of (2 × 2)
matrices for all the hierarchy, describe the associated algebraic curves and present explicit
formulae for the integrals of motion.

2.1 Hierarchy of Hamiltonian Systems with Polynomial Potentials

Let us consider the hierarchy of the Hamiltonian systems of n+ 1 particles defined by the
Hamiltonians

HN (p1, . . . , pn+1; q1 . . . , qn+1) =
1
2

n+1∑
i=1

p2
i + UN (q1, . . . , qn+1), (2.1)

where the potentials UN for each member of the hierarchy are given by the recurrence
relation

UN = (qn+1 −B)UN−1 +
1
4

n∑
i=1

N∑
j=2

(−1)jq2i UN−jA
j−2
i (2.2)

with the first trivial potentials given as

U0 = 0,
U1 = −2qn+1 − 2B,

U2 = −2q2n+1 −
1
2

∑
i=1

q2i . (2.3)
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At Ai = 0, i = 1, . . . , n, B = 0 the recurrent relations (2.2) can be solved as

VN (q1, . . . , qn+1) = −
[N/2]∑
k=0

21−2k
(

N−k
k

)( n∑
i=1

q2i

)k

qN−2k
n+1 (2.4)

yielding the principal term of UN (q1, . . . , qn+1) which is a many-particle generalization of
(1.1). The lower degree terms are introduced so as to make the many-particle generaliza-
tion non-degenerate. The expression for the potentials UN at N > 2 can be written in the
form of (N − 2)× (N − 2) determinant

UN = (−1)N−1 det



fN g−1 g0 g1 . . . gN−5

fN−1 −1 g−1 g0 . . . gN−6

fN−2 0 −1 g−1 . . . gN−7
...

. . . . . . . . .
...

f4 0 . . . 0 −1 g−1

f3 0 . . . . . . 0 −1


, (2.5)

where

g−1 = qn+1 −B, gm =
(−1)m

4

n∑
i=1

Am
i q

2
i , m = 0, . . . ,

fk =
2∑

l=0

Ulgk−l−2, k = 3, . . . , N, (2.6)

and the U0, U1, U2 are given by (2.3). The first nontrivial potentials are

U3 = −2q3n+1 − qn+1

n∑
i=1

q2i +
1
2

n∑
i=1

Aiq
2
i + 2Bq2n+1, (2.7)

U4 = −1
8

(
n∑

i=1

q2i

)2

− 3
2
q2n+1

n∑
i=1

q2i − 2q4n+1 +
n∑

i=1

Aiq
2
i

(
qn+1 −

1
2
Ai

)
+

B

4q3n+1 − 2Bq2n+1 + qn+1

n∑
j=1

q2j

 . (2.8)

The potential (2.7) is exactly the many-particle generalization of a known integrable
case of the Hénon-Heiles system for which n = 1 (c.f. [20, 16]). Analogously the potential
(2.8) is a many-particle generalization of a “(1 : 12 : 16)” system known to be separable
in parabolic coordinates (see e.g. [13, 14]).

The system with the potential (2.7) possesses the following interesting reductions:
a) at qn+1 = const, it reduces to the Neuman system, which describes the motion of a
particle on a sphere in the field of a second order potential, and b) at qn+1 =

∑n
i=1 q

2
i it

reduces to an anisotropic oscillator in a fourth order potential (see, for instance [14]),

q̈i − 2
n∑

k=1

q2kqi +Aiqi = 0, i = 1, . . . , n. (2.9)

The same reduction can be carried out for other members of the hierarchy.
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2.2 The Lax Representation

We look at a Lax representation of the form (1.2) with

U(z) = 4z − 4qn+1 + 4B −
n∑

i=1

q2i
z +Ai

, (2.10)

V (z) = −1
2
U̇(z),

= 2pn+1 +
n∑

i=1

piqi
z +Ai

, (2.11)

WN (z) = −1
2
Ü(z) + U(z)QN (z), (2.12)

whereQN (z) is a polynomial of degreeN−2. The ansatz for the functions U(z), V (z),W (z)
is a generalization of the corresponding ansatz constructed by Newell et al. [16] to give the
Lax representation for the integrable Hénon-Heiles system. Here we introduce additional
degrees of freedom n > 1, and consider higher degrees of the polynomial QN . See also
[11, 12] for the link of such ansatz to the su(1, 1)–Gaudin magnet which corresponds to a
free n-dimensional particle separable in parabolic coordinates.

Proposition 1 The Lax representation (1.2) is valid for all the hierarchy of Hamiltonian
systems (2.1), (2.5) with the polynomial QN (z) and the function WN (z) given by the
formulae

QN (z) = zQN−1(z)−
1
2
∂UN−1(q1, . . . , qn+1)

∂qn+1
, (2.13)

WN (z) = W+
N (z) +W−(z), (2.14)

W+
N (z) = zW+

N−1 − 2UN−1, N = 2, . . . , (2.15)

W−(z) =
n∑

i=1

p2
i

z +Ai
, (2.16)

where UN−1 is the potential fixing the N − 1-th member of the hierarchy.

P r o o f The Lax representation (1.2) with the functions (2.10)–(2.12) is equivalent to
the two equations

WN (z) = V̇ (z) +QN (z)U(z), (2.17)
ẆN (z) = 2QN (z)V (z). (2.18)

Substituting (2.10), (2.11) and (2.13) into (2.17) we obtain after some simplification

WN (z) =
n∑

i=1

p2
i

z +Ai
+ z

(
U(z)QN−1(z)− 2

∂UN−1

∂qn+1
−

n∑
i=1

q2i
z +Ai

∂UN−1

∂qi

)
+

z
n∑

i=1

q2i
z +Ai

∂UN−1

∂qi
−

n∑
i=1

qi
z +Ai

∂UN

∂qi
− 2

∂UN

∂qn+1
+

2(qn+1 −B)
∂UN−1

∂qn+1
+

1
2
∂UN−1

∂qn+1

n∑
i=1

q2i
z +Ai

. (2.19)
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Imposing the conditions (2.14)–(2.16) we arrive at the following recurrence relations for
the potentials UN (q1, . . . , qn+1)

∂UN

∂qi
=

1
2
∂UN−1

∂qn+1
qi −Ai

∂UN−1

∂qi
, i = 1, . . . , n, (2.20)

∂UN

∂qn+1
= UN−1 +

1
2

n∑
i=1

qi
∂UN−1

∂qi
+ (qn+1 −B)

∂UN−1

∂qn+1
, (2.21)

where we use (2.3) to start the recurrence relations.
To prove that the equation (2.18) is also satisfied, we proceed by induction. First

assume that it is valid for N − 1. Then we have

ẆN (z) = 2zQN−1(z)V (z)− ∂UN−1

∂qn+1

(
2pn+1 +

n∑
i=1

qipi

z +Ai

)
. (2.22)

The left hand side of (2.22) can be rewritten in the form

d

dt

(
zW+

N−1(z)− 2UN−1 +
∑ p2

i

z +Ai

)
=

zẆN−1 + 2z
n∑

i=1

pi

z +Ai

∂UN−1

∂qi
− 2pn+1

∂UN−1

∂qn+1
−

2
n∑

i=1

pi
∂UN−1

∂qi
− 2

n∑
i=1

pi

z +Ai

∂UN

∂qi
.

Using induction and the equality (2.20) completes the proof.
We can obtain explicit formulae for the functions WN (z) and QN (z)

QN (z) = zN−2 − 1
2

N−3∑
k=0

∂UN−k−1

∂qn+1
zk, (2.23)

WN (z) = 4zN−1 − 2
N−2∑
k=0

UN−k−1z
k +

n∑
i=1

p2
i

z +Ai
. (2.24)

It easy to see that

QN (x) =
1
4
∂WN (x)
∂qn+1

. (2.25)

For example, for the first nontrivial cases we have

Q3(z) = z + 2qn+1, (2.26)

W3(z) = 4z2 + 4zqn+1 + 4Bz + 4q2n+1 +
n∑

k=1

q2k +
n∑

i=1

p2
i

z +Ai
(2.27)

for the many-particle Hénon-Heiles system and

Q4(z) = z2 + 2zqn+1 + 3q2n+1 +
1
2

n∑
i=1

q2i − 2Bqn+1, (2.28)
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W4(z) = 4z3 + 4Bz2 + 4z2qn+1 + 4zq2n+1 + z
n∑

i=1

q2i +

4q3n+1 + 2qn+1

n∑
i=1

q2i −
n∑

i=1

Aiq
2
i − 4Bq2n+1 +

n∑
i=1

p2
i

z +Ai
(2.29)

for the system with N = 4.

2.3 Integrability

The Lax representation yields the hyperelliptic curve C(N) = (w, z),

Det (L(N)(z)− wI) = 0 (2.30)

generating the integrals of motion HN , F
(i)
N , i = 1, . . . , n. We have

w2 =
1
2
Tr(L(N)(z))2 = V 2(z) + U(z)W (z). (2.31)

From (2.31) and (2.10)–(2.12) we obtain

w2 = 16zN−2(z +B)2 + 8HN +
n∑

i=1

F
(i)
N

z +Ai
, N = 3, . . . , (2.32)

where

F
(i)
N = 2q2i

N−1∑
j=1

(−1)j−1Aj
iUN−j + 4pn+1piqi − p2

i (Ai + 4qn+1 − 4B) +

k,m=n∑
k,m=1, k 6=m

l2mk

Am −Ak
, i = 1, . . . , n (2.33)

with lkm = qkpm − qmpk. The coefficients of the curve are the integrals of motion, so
noting that the coefficient of zN−1 is 32B and the coefficient of zN−2 is 16B2 we obtain
the expressions for the first potentials (2.3). Equating all the other coefficients of powers
of z to zero, i.e. the coefficients of zj , j = N − 3, . . . , 1 we reproduce all the hierarchy of
integrable potentials in the form (2.2).

Proposition 2 The integrals HN , F (i)
N , i = 1, . . . , n are independent and Poisson com-

mute with respect to the standard Poisson bracket,

{HN , F
(i)
N } = 0, {F (j)

N , F
(k)
N } = 0, i, j, k = 1, . . . , n. (2.34)

The independence of the integrals is evident. But we postpone the proof of (2.34) until
§4 where the classical r-matrix structure will be elucidated, making the proof trivial.
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3 r-Matrix Representation

In this section we describe the Poisson structure associated with the Lax representation
for the hierarchy under consideration. It is found to be a linear r-matrix algebra with
the r-matrices dependent on dynamical variables and satisfying some compatibility con-
ditions which are classical Yang–Baxter equations of dynamical type. We also discuss in
this section a way to describe the system within the standard linear r-matrix algebra by
embedding into a larger dynamical system.

Through all the section we use the standard notation for the Pauli matrices

σ0 = I =
(

1 0
0 1

)
, σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (3.1)

Denote σ± = σ1± iσ2. Denote as P the permutation matrix P = 1
2

∑3
k=0 σk⊗σk acting in

the product of two spaces V 2⊗V 2. We denote P12 = P ⊗ I, P13 = 1
2

∑3
k=0 σk⊗ I⊗σk and

P23 = I⊗P the permutation matrices acting in the product of three spaces V 2⊗V 2⊗V 2.
The notation mik will be used to denote an (8×8) matrix acting as a unit matrix in j-th
space (i 6= j 6= k). For example, let S = σ− ⊗ σ−, then S12 = S ⊗ I, S23 = I ⊗ S, S13 =
σ− ⊗ I ⊗ σ−. In addition we introduce the notation ri,j(xi − xj) = 2Pi,j/(xi − xj),
s
(N)
i,j (xi, xj) = 2α(xi, xj)Si,j , where α(xi, xj) is a scalar function depending on dynamical

variables.

3.1 The Classical Poisson Structure

The following proposition holds:

Proposition 3 The classical Poisson structure for the hierarchy (2.10)–(2.12) is written
in the form

{L(N)
1 (x), L(N)

2 (y)} = [r(x− y), L(N)
1 (x) + L

(N)
2 (y)] + [s(x, y), L(N)

1 (x)− L
(N)
2 (y)], (3.2)

where L(N)
1 (x) = I ⊗L(N)(x), L(N)

2 = L(N)(x)⊗ I, the matrices r(x− y) and sN (x, y) are
given by the formulae

r(x− y) =
2

x− y
P, P =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 , (3.3)

sN (x, y) = 2αN (x, y)S, S = σ− ⊗ σ− (3.4)

with

αN (x, y) =
QN (x)−QN (y)

x− y
=
xN−1 − yN−1

x− y
−

1
2

N−3∑
k=o

xN−k−1 − yN−k−1

x− y

∂UN−k−1

∂qn+1
. (3.5)
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P r o o f Let us rewrite the relation (3.2) in extended form

{U(x), U(y)} = {V (x), V (y)} = 0, (3.6)
{WN (x),WN (y)} = 4αN (x, y)(V (x)− V (y)), (3.7)

{V (x), U(y)} =
2

y − x
(U(x)− U(y)), (3.8)

{WN (x), U(y)} =
4

x− y
(V (x)− V (y)), (3.9)

{V (x),WN (y)} =
2

x− y
(WN (x)−WN (y))− 2αN (x, y)U(x) (3.10)

with respect to the standard Poisson bracket. The equalities (3.6), (3.8), (3.9) can be
proved directly from the definitions (2.10)–(2.12). Let us prove (3.7) by induction i.e. let
(3.7) be valid for the number N . Then for N + 1 we have

{WN+1(x),WN+1(y)} = {W+
N+1(x),W

−(y)} − {W+
N+1(y),W

−(x)} =
{xW+

N (x)− 2UN ,W
−(y)} − {yW+

N (y)− 2UN ,W
−(x)} =

x({W+
N (x),W−(y)} − {W+

N (y),W−(x)})−
y({W+

N (y),W−(x)} − {W+
N (x),W−(y)}) =

x{W+
N (y),W−(x)} − y{W+

N (x),W−(y)} − 2{UN ,W
−(y)} (3.11)

the inductive hypothesis gives

{WN+1(x),WN+1(y)} − 4αN+1(x, y)(V (x)− V (y)) = ∆ (3.12)

with

∆ = 2
n∑

i=1

1
(x+Ai)(y +Ai)

(2piqi(xQN (y)− yQN (x)) + 2(x− y)
∂UN

∂qi
−

pi

(
x(y +Ai)

∂W+
N (y)
∂qi

− y(x+Ai)
∂W+

N (x)
∂qi

))
=

n∑
i=1

∆i. (3.13)

To prove that ∆ = 0 we substitute the expressions (2.23), (2.24) into ∆i. We have

∆i = 4qi

(
xyN−2 − yxN−2 − 1

2

N−3∑
k=0

(xyk − yxk)
∂UN−k−1

∂qn+1

)
+

4
N−2∑
k=0

(
x(y +Ai)yk − y(x+Ai)xk

) ∂UN−k−1

∂qi
+ 4(x− y)

∂UN

∂qi
. (3.14)

From (2.20) it follows that all ∆i = 0 and the derivation of (3.7) is complete.
Eq. (3.10) we also prove by induction. Assume that it is valid at N . Then

{V (x),WN+1(y)} = y{V (x),WN (y)}+ (1− y){V (x),W−(y)} − 2{V (x),UN} =
2y
x− y

(W+
N (x)−W+

N (y)) +
2y
x− y

(W−(x)−W−(y))−

2yU(x)αN (x, y) + (1− y){V (x),W−(y)} − 2{V (x),UN}.
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Using the inductive proposition and the formulae (2.14)–(2.16) we find

{V (x),WN+1(y)} − 2
y − x

(WN (x)−WN (y)) + 2αN+1(x, y)U(x) = ∆̃

with

∆̃ =
2(y − 1)
x− y

(W−(x)−W−(y)) + (1− y){V (x),W−(y)} −

2W+ + 2U(x)QN (x)− 2{V (x),UN}. (3.15)

The first two terms in (3.15) cancel due to the definitions (2.11), (2.16). To cancel the
rest we compute the Poisson bracket directly and use (2.12). Therefore (3.10) is proven.

The equality (3.2) contains all the information concerning the hierarchy of dynamical
system under consideration.

Let us write the relation (3.2) in the form

{L(N)
1 (x) ⊗, L(N)

2 (y)} = [d(N)
12 (x, y), L(N)

1 (x)]− [d(N)
21 (x, y)L(N)

2 (y)], (3.16)

with d(N)
ij = rij + sij , d

(N)
ji = sij − rij at i < j.

Then [3]

{(L(N)
1 (x))k ⊗, (L(N)

2 (y))l} = [d(N,k,l)
12 (x, y), L(N)

1 (x)]− [d(N,k,l)
21 (x, y)L(N)

2 (y)], (3.17)

with

d
(N,k,l)
12 (x, y) =

k−1∑
p=0

l−1∑
q=0

(L(N)
1 (x))k−p−1(L(N)

2 (y))k−q−1d
(N)
12 (x, y)(L(N)

1 (x))p(L(N)
2 (y))q,

(3.18)

d
(N,k,l)
21 (x, y) =

k−1∑
p=0

l−1∑
q=0

(L(N)
1 (x))k−p−1(L(N)

2 (y))k−q−1d
(N)
21 (x, y)(L(N)

1 (x))p(L(N)
2 (y))q.

As an immediate consequence of (3.17) and (3.18) we obtain the proof that the con-
served quantities HN , F (i)

N are in involution. We have that

{Tr(L(N)
1 (x))2,Tr(L(N)

2 (y))2} = Tr{(L(N)
1 (x))2 ⊗, (L(N)

2 (y))2}. (3.19)

Applying to the last equation the equality (3.17) at k = l = 2 and taking the trace we
obtain the desired involutivity.

The Lax representation (1.2) also can be recovered from (3.2). We have

L̇(N)(x) =
1
8

lim
y→∞

Tr2{L(N)
1 (x) ⊗, (L(N)

2 (y))2}, (3.20)

where the trace is taken over the second space. Applying the identity (3.17) at k = 1, l = 2
to (3.20) we obtain the Lax representation L̇(N)(x) = [M (N)(x), L(N)(x)] with the matrix
M (N)(x) given as

M (N)(x) = 2limy→∞Tr2L
(N)
1 (y)(r(x− y)− s(N)(x, y)). (3.21)
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After the calculation in which we take into the account the asymptotic assumptions

limy→∞
U(y)
y

= 4, limy→∞
V (y)
y

= 0,

limy→∞ (WN (y)− U(y)QN (y)) = 0

we obtain the Lax representation in the form (1.2). Analogously the Lax representation
for the higher flows can be obtained.

3.2 Jacobi Identity

To prove that the algebra (1.3) is associative we write the Jacobi identity in the V 2⊗V 2⊗
V 2 as

{L(N)
1 (x) ⊗, {L(N)

2 (x) ⊗, L(N)
3 (y)}}+ {L(N)

3 (z) ⊗, {L(N)
1 (x) ⊗, L(N)

2 (y)}}+

{L(N)
2 (y) ⊗, {L(N)

3 (z) ⊗, L(N)
1 (x)}} = 0 (3.22)

with L
(N)
1 (x) = L(N)(x)⊗ I ⊗ I, L(N)

2 (y) = I ⊗ L(N)(x)⊗ id, L(N)
3 (z) = I ⊗ I ⊗ L(N)(z).

Let us rewrite (3.22) in the form [5],

[L(N)
1 (x), [d(N)

12 (x, y), d(N)
13 (x, z)] + [d(N)

12 (x, y), d(N)
23 (y, z)] + [d(N)

32 (z, y), d(N)
13 (x, z)]] +

[L(N)
1 (x), {L(N)

2 (y) ⊗, d(N)
13 (x, z)} − {L(N)

3 (z) ⊗, d(N)
12 (x, y)}] +

cyclic permutations = 0. (3.23)

We shall show below, that in the cases considered the solutions (3.23) satisfy the three
equations

[d(N)
12 (x, y), d(N)

13 (x, z)] + [d(N)
12 (x, y), d(N)

23 (y, z)] + [d(N)
32 (z, y), d(N)

13 (x, z)] +

{L(N)
2 (y) ⊗, d(N)

13 (x, z)} − {L(N)
3 (z) ⊗, d(N)

12 (x, y)}+

[c(N)(x, y, z), L(N)
2 (y)− L

(N)
3 (z)] = 0 (3.24)

where c(N)(x, y, z) is some matrix dependent on dynamical variables. The other two
equations are obtained from (3.24) by cyclic permutations. We remark, that validity of
the equations (3.24) with an arbitrary matrix c(N)(x, y, z) is sufficient for the validity of
(3.22) and therefore (3.24) can be interpreted as some dynamical classical Yang–Baxter
equations. These equations have an extra term [c, L(N)

i − L
(N)
j ] in comparison with the

extended Yang–Baxter equations in [5].

Proposition 4 The following equality is valid for all the members of the hierarchy of
dynamical systems

{L(N)
2 (y) ⊗, s13(x, z)} − {L(N)

3 (z) ⊗, s12(x, y)} = 2βN (x, y, z)[P23, S13 + S12]−
∂βN (x, y, z)

∂qn+1
[s, L(N)

2 (y)− L
(N)
3 (z)] (3.25)

with cyclic permutations. In (3.25) the matrix s = σ− ⊗ σ− ⊗ σ− and

βN (x, y, z) =
QN (x)(y − z) +QN (y)(z − x) +QN (z)(x− y)

(x− y)(y − z)(z − x)
. (3.26)
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P r o o f Let us write the equality (3.25) in the extended form

{Q(x), Q(y)} = {U(x), Q(y)} = 0, (3.27)

{V (x), Q(y)} = 4αN (x, y)− 1
2
∂αN (x, y)
∂qn+1

U(x), (3.28)

{Q(x),W (y)} + {W (x), Q(y)} =
∂αN (x, y)
∂qn+1

(V (x)− V (y)), (3.29)

{V (z), αN (x, y)} =
4

x− y
(αN (z, x)− αN (z, y))−

1
2
U(z)
x− y

(
∂αN (z, y)
∂qn+1

− ∂αN (z, x)
∂qn+1

)
, (3.30)

(3.27) is trivial and (3.28) and (3.29) follows immediately from (3.10), (3.7) and (2.25).
To prove (3.30) we write it using the properties of WN (x) and V (x) in the form

n∑
i=1

pi

(y +Ai)(x+Ai)

(
(x+Ai)

∂αN (z, x)
∂qi

− (y +Ai)
∂αN (z, y)

∂qi

)
=

1
2

n∑
i=1

piqi
(x+Ai)(y +Ai)

(
∂αN (z, x)
∂qn+1

− ∂αN (z, y)
∂qn+1

)
. (3.31)

Using the decomposition (3.32), the equality

x
zk − xk

z − x
− y

zk − yk

z − y
=
zk+1 − xk+1

z − x
− zk+1 − yk+1

z − y

and the recurrence relation (2.20) we find that the equality (3.31) is valid.
Note that (3.28) can we rewritten in the form

{WN (y), αN (z, x)} − {WN (x), αN (z, y)} =
V (x)− V (y)

x− y

(
∂αN (z, y)
∂qn+1

− ∂αN (z, x)
∂qn+1

)
. (3.32)

All the preceding material can be formulated in the following theorem

Theorem 1 Let

{L(N)
1 (x) ⊗, L(N)

2 (y)} = [d(N)
12 (x, y), L(N)

1 (x)]− [d(N)
21 (x, y), L(N)

2 (y)] (3.33)

be the r-matrix algebra constrained by the three conditions on the matrices d(N)
ij the first

of which is written as

[d(N)
12 (x, y), d(N)

13 (x, z)] + [d(N)
12 (x, y), d(N)

23 (y, z)] + [d(N)
32 (z, y), d(N)

13 (x, z)] +

{L(N)
2 (y), d(N)

13 (x, z)} − {L(N)
3 (z) ⊗, d(N)

12 (x, y)}+

[c(N)(x, y, z) ⊗, L(N)
2 (y)− L

(N)
3 (z)] = 0 (3.34)

and the two other are obtained from (3.34) by cyclic permutations. Then there exists a
solution of the equations (3.34) describing the dynamics of the hierarchy of completely
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integrable systems in the 2(n+1) dimensional phase space (p1, q1, . . . , pn+1, qn+1) given by
the formulae

d
(N)
ij (x, y) =

Pij

x− y
+
QN (x)−QN (y)

x− y
Sij , (3.35)

d
(N)
ji (x, y) = − Pij

x− y
+
QN (x)−QN (y)

x− y
Sij , i < j, i, j = 1, 2, 3,

c(N)(x, y, z) =
∂

∂qn+1

QN (x)(y − z) +QN (y)(z − x) +QN (z)(x− y)
(x− y)(y − z)(z − x)

s

with

QN (z) = zN−2 − 1
2

N−3∑
k=0

∂UN−k−1

∂qn+1
zk (3.36)

and the potentials UN defined as (2.5). The associated Lax representation has the form
(1.2) with the matrix elements given by (2.10)–(2.12).

3.3 Embedding into a Larger System

In conclusion we point out another direction in the algebraic interpretation of the hierarchy
of dynamical systems considered. The hierarchy can be embedded into a system with more
degrees of freedom, which admits the standard linear r-matrix algebra (s = 0),

{L(N)
1 (x) ⊗, L(N)

2 (y)} = [r(x− y), L(N)
1 (x) + L

(N)
2 (y)]. (3.37)

To describe this embedding we introduce the following ansatz for the functions U(z),
V (z), W (z)

U(z) =
N−2∑
i=0

Uiz
i −

n∑
i=1

q2i
z +Ai

, (3.38)

V (z) =
N−2∑
i=0

Viz
i +

n∑
i=1

qipi

z +Ai
, (3.39)

WN (z) = 4zN−1 +
N−2∑
i=0

W
(N)
i zi +

n∑
i=1

p2
i

z +Ai
, (3.40)

where the coefficients Ui, Vi,W
(N)
i depend on the variables qn+1, pn+1 and in addition

N − 2 new canonically conjugated variables Qj ,Pj , j = 1, . . . N − 2. The substitution of
the ansatz (3.38)–(3.40) into (3.37) leads to the Lie algebra

{Ui, Uj} = {Vi, Vj} = {W (N)
i ,W

(N)
j } = 0, i, j = 0, . . . , N − 2,

{Ul, Vk} = −2Ul+k+1θ(k + l −N − 1),

{Vl,W
(N)
k } = 2Wl+k+1θ(k + l −N − 1),

{W (N)
l , Uk} = 4Ul+k+1θ(k + l −N − 1), k, l = 0, . . . , N − 2,

{Vi,W
(N)
N−i−2} = 8, i = 0, . . . , N − 2, (3.41)
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where θ(n) = 1 if n > 0 and θ(n) = 0 if n ≤ 0. The representations of this algebra give
the algebraic description of the hierarchy of integrable systems considered.

Let us discuss, as an example, the case N = 3 – many-particle Hénon-Heiles system.
We have only the coefficients U0, U1, V0, V1,W

(3)
0 ,W

(3)
1 in the ansatz (3.38)–(3.40) and the

Lie algebra for them is

{U0, U1} = {V0, V1} = {W (3)
0 ,W

(3)
1 } = 0,

{U1, V1} = {U1,W
(3)
1 } = {V1,W

(3)
1 } = 0,

{V0, U0} = −2U1,

{W (3)
0 , U0} = 4V1,

{V0,W
(3)
0 } = 2W1,

{V1,W
(3)
0 } = {V0,W

(3)
1 } = 8. (3.42)

The following representation for the algebra (3.42) can be found

U0 = 4B − 4qn+1, U1 = 4,
V0 = 2BP1 + 2pn+1 − 2P1qn+1, V1 = 2P1,

W
(3)
0 = 4q2n+1 +Q1 − 2P1pn+1 + P2

1qn+1,

W
(3)
1 = 4B + 4qn+1 − P2

1 . (3.43)

The corresponding enlarged dynamical system admits the integrals of motion I3, H3,
F i

3, i = 1, . . . , n given by the formulae

I3 = 16Q1 − 4
n∑

m=1

q2m + 4BP2
1 , (3.44)

H3 = H3 +
1
8

[
I3(B − qn+1) + P1(4

n∑
i=1

Piqi + P1

n∑
i=1

q2i )

]
, (3.45)

F (i)
3 = F

(i)
3 − 1

4
I3

n∑
i=1

qi + P2
1 (B

n∑
i=1

q2i −
1
8

n∑
i=1

Aiq
2
i −

1
8
qn+1

n∑
i=1

q2i ) +

1
2
P1

(
(B − qn+1)

n∑
i=1

piqi −
n∑

i=1

Aipiqi +
1
4
pn+1

∑
i=1

q2i

)
(3.46)

where in (3.45), (3.46) H3 and F
(i)
3 are the integrals of motions of the many-particle

Hénon-Heiles system calculated by the formula (2.33). We can see, that at P1 = 0, I3 = 0
the system is reduced to the many-particle Henon–Heiles system.

The question of the explicit description of the other members of the hierarchy within
this approach will be given elsewhere.

4 Separation of Variables

The separation of variables (c.f. [10, 11]) is understood in the context of the given hierar-
chy of Hamiltonian system as the construction of n + 1 pairs of canonical variables
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πi, µi, i = 1, . . . , n+ 1,

{µi, µk} = {πi, πk} = 0, {πi, µk} = δik (4.1)

and n+ 1 functions Φj such that

Φj

(
µj , πj ,HN , F

(1)
N , . . . , F

(n)
N

)
= 0, j = 1, 2, . . . , n+ 1, (4.2)

where HN , F
(i)
N are the integrals of motion in involution. The equations (4.2) are the

separation equations. The considered integrable system admits a Lax representation in
the form of (2× 2) matrices (1.2) and we will introduce the separation variables πi, µi as

πi = V (µi), U(µi) = 0, i = 1, . . . , n+ 1. (4.3)

Below we write these formulae explicitly for our system.

4.1 Parabolic Coordinates

The set of zeros µj , j = 1, . . . , n+ 1 of the function U(z) in the Lax representation (1.2)
defines the parabolic coordinates given by the formulae [18, 11]

qn+1 =
n∑

i=1

Ai +B +
n+1∑
i=1

µi,

q2m = −4
∏n+1

j=1 (µj +Am)∏
k 6=m(Am −Ak)

, m = 1, . . . , n, if n > 1 (4.4)

and
q21 = −4(µ1 +A)(µ2 +A), A1 = A, if n = 1. (4.5)

Let us denote by πm,

πm = V (µi) = µ̇m

∏
i6=m

i=1,...,n+1

µm − µi

µm +Ai
, m = 1, . . . , n+ 1. (4.6)

Proposition 5 The coordinates µi, πi given by (4.4),(4.6) are canonically conjugated.

P r o o f Let us list the commutation relations betveen U(z) and V (z),

{U(x), U(y)} = {V (x), V (y)} = 0, (4.7)

{V (x), U(y)} =
2

y − x
(U(x)− U(y)). (4.8)

The equalities {µi, µj} = 0, i, j = 1, . . . , n + 1 follows from (4.7). To derive the equality
{µi, πj} = δij , i, j = 1, . . . , n+ 1 we substitute x = µj in (4.8), obtaining thus

{πj , U(y)} = − 2
y − µj

U(y)), (4.9)
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which together with the equation

0 = {πj , U(µi)} = {πj , U(y)} |y=µi +U ′(µi){πj , µi},

gives

{πj , µi} = − 1
U ′(µi)

{πj , U(y)} |y=µi= δij .

Equalities {πi, πj} = 0, i, j = 1, . . . , n+ 1 can be verified by the similar way:

−{πi, πj} = {V (µi), V (µj)}{V (µj), V (y)} |y=µi +V ′(µi){µi, V (µj)} ×
V ′(µj){V (µj), µj} |y=µi +V ′(µi){µi, V (µj)} = 0.

The separation of variable equations have the form

π2
i = w2(µi), i = 1, . . . , n+ 1, (4.10)

where the function w2(z) is given by (2.32). Our use below of the separation equations is
two-fold – to integrate the equations of motion in terms of theta functions and to quantize
the system.

4.2 Theta Functional Integration of the Many Particle Hénon–Heiles
System

The curve (2.32) has genus g = n+
[

N−1
2

]
. So only in the cases N = 3, 4 does the number

of degrees of freedom coincide with the genus. We consider here only the case N = 3 (the
Many-Particle Hénon-Heiles System) for which the curve (2.32) has a branching point at
infinity. With this in mind we reduce (4.10) to the Jacobi inversion problem

n+1∑
i=1

∫ µi

µ0

µkdµ

y(µ)
= Ck, k = 0, . . . , n− 1,

n+1∑
i=1

∫ µi

µ0

µndµ

y(µ)
= it+ Cn, (4.11)

where Cn+1 = (y, z) is a nonsingular hyperelliptic curve of genus n+1 given by the formula

y2 = w2
n+1∏
m=1

(z +Am) =
2n+3∏
k=1

(z − z(Qk)), Qi 6= Qj (4.12)

with the function w2 given in (2.32) and Q1, . . ., Q2n+3,Q2n+4, z(Q2n+4) = ∞ being the
branching points.

Let (a,b) = (a1, . . . , an+1; b1, . . . , bn+1) be a canonical base of the first homology group
H1(Cn+1,Z) with the intersection matrix,

In+1 =

(
0n+1 1n+1

−1n+1 0n+1

)
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and let v = (v1, . . . , vn+1),

vj =
n+1∑
k=1

cjkwg−k+1, wk =
zk−1dz

y
, j, k = 1, . . . , n+ 1 (4.13)

be the basis of holomorphic differentials normalized in such a way, that the period matrix
of vn+1, . . . , vn+1 with respect to (a,b) has the form ΠT = (1n+1; τ), where 1n+1 is the
(n+1)× (n+1) unit matrix, and the (n+1)× (n+1) matrix τ belongs to the Siegel upper
half–space of the degree n + 1, Sn+1 = {τ | τ = τT , Imτ > 0}. Let D = (A,B) be the
divisor, where A and B are positive divisors of degree g; let us denote the Jacobian variety
of the curve Cn+1 by J(Cn+1) = Cn+1/(1n+1, τ) and the mapping (Abel map) which
establishes the correspondence between the point e =

(∫ B
A v

)
∈ J(Cn+1) and divisors

D ∈ Cn+1 by D ⇒ J(Cn+1). We write e = 1
2(ε′, ε′′)

[
1n+1
τ

]
, (ε′, ε′′) ∈ Cn+1, where

[ε] =
[
ε′
ε′′

]
is the characteristic of the point. If ε′i, ε

′′
j is 0 or 1, the characteristics [ε] are the

characteristics of half-periods.
We identify the branching points Qj , j = 1, . . . , 2n+ 4 with the characteristic of half-

periods ej ∈ J(Cn+1) and fix for definiteness the basis of homologies (a,b) as follows

e1 =
[
0...0
0...0

]
, e2 =

[
0 0...0
1 0...0

]
, e3 =

[
1 1 0...0
1 0 0...0

]
, . . . ,

e2k+1 =
[
0 0...0 1 0...0
1 1...1 0 0...0

]
, e2k+2 =

[
0 0...01 0...0
1 1...11 0...0

]
, . . . ,

e2n+3 =
[
1 0...0
1 1...1

]
, e2n+4 =

[
1 0...0
0 0...0

]
. (4.14)

It is naturally to chose the a-cycles to be homological to the trajectories of µ variables
under the evolution of the system. The vector of Riemann constants K in the basis (4.14)
is K =

[
n+1 1...1
n+1 n...1

]
.

The Riemann theta function Θ[ε](z|τ) with the characteristic [ε] =
[
ε′

ε′′

]
is determined

on Cn+1 × Sn+1 as

Θ[ε](z|τ) =
∑

m∈Zn+1

expπ
√
−1{〈(m +

ε′

2
)τ, (m +

ε′

2
)〉+

2〈(m +
ε′

2
), z +

ε′′

2
〉}, (4.15)

where 〈·, ·〉means the Euclidean scalar product. Let us consider the curve with the ordering
of the branching points

Q2k = Ak, k = 1, . . . , n. (4.16)

Using known hyperelliptic theta formulae [21],

n+1∏
j=1

(µj +Ak) = hk

Θ(
∫Qk
Q0

v + (
∫ µ1

Q0
+ . . .+

∫ µn+1

Q0
)v + K; τ)

Θ(
∫Q2n+4

Q0
v + (

∫ µ1

Q0
+ . . .+

∫ µn+1

Q0
)v + K; τ)

, (4.17)

where k = 1, . . . , n and hk are the constants we obtain

q2k(t) = q2k(0)
Θ2[e2n+4 + K](ω0; τ)Θ2[e2k+2 + K](ωt+ ω0; τ)
Θ2[e2k+2 + K](ω0; τ)Θ2[e2n+4 + K](ωt+ ω0; τ)

,
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qn+1(t) = B +
n∑

j=1

Aj +
n+1∑
i=1

∮
ai

zvi(z)−

∂2

∂t2
lnΘ[e2n+4 + K](ωt+ ω0; τ), (4.18)

where the “winding vector” ω is expressed in terms of b-periods of the differential of the
second kind Ω with zero a-periods and a unique pole at infinity which is expanded as
Ω(z) = dζ/ζ2 + o(1)dζ, z = 1/ζ2 = ∞ as

ω =
1

16πi

(∮
b1

Ω, . . . ,
∮

bn+1

Ω

)

and ω0 ∈ Cg+1 is a constant.
The set of angles θi = ωit + ωi0, i = 1, . . . , n + 1 and the n + 1 a-periods of Abelian

differentials
Jk =

∮
ak

πkdµk =
∮

ak

wdz, k = 1, . . . , n+ 1, (4.19)

constitute the “action-angle” variables Jk, θk for the system. The standard equality

H3 =
n+1∑
i=1

ωiJi (4.20)

follows from the Riemann bilinear identity.
The theta functional formulae for the evolution of the system can also be given for

the case N = 4, where the curve (2.32) has no branching points at infinity, but its genus
coincides with the number of degrees of freedom (see, e.g. [22]). The algebro-geometric
integration of the systems corresponding to the higher members of hierarchy (N > 4)
requires special consideration.

4.3 Quantization

The separation of variables has a direct quantum counterpart [23, 12]. To pass to quantum
mechanics we change the variables πi, µi to operators and the Poisson brackets (4.1) to
the commutators

[µi, µk] = [πi, πk] = 0, [πi, µk] = −iδik. (4.21)

Suppose that the common spectrum of µi is simple and the momenta πi are realized as the
differentials πj = −i ∂

∂µj
. The separation equations (4.10) become the operator equations,

where the noncommuting operators are assumed to be ordered precisely in the order as
those listed in (4.2), that is πi, µi,HN , F

(1)
N , . . . , F (n)

N . Let Ψ(µ1, . . . , µn+1) be a common
eigenfunction of the quantum integrals of motion:

HNΨ = λn+1Ψ, F
(i)
N Ψ = λiΨ, i = 1, . . . , n. (4.22)

Then the operator separation equations lead to the set of differential equations

Φj(−i
∂

∂µi
, µi,HN , F

(1)
N , . . . , F

(n)
N )Ψ(µ1, . . . , µn+1) = 0, j = 1, . . . , n+ 1, (4.23)
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which allows the separation of variables

Ψ(µ1, . . . , µn+1) =
n+1∏
j=1

ψj(µj). (4.24)

The original multidimensional spectral problem is therefore reduced to the set of one-
dimensional multiparametric spectral problems which have the following form in the con-
text of the problem under consideration(

d2

d x2
+ 16xN−2(x+B)2 + 8λn+1 +

n∑
i=2

λi

x+Ai

)
ψj(x;λ1, . . . , λn+1) = 0 (4.25)

with the spectral parameters λ1, . . . , λn+1. The problem (4.25) must be solved on the
n+1 different intervals – “permitted zones”: x ∈ [Q1, Q2], . . . , [Q2n+1, Q2n+2] for the vari-
able x.
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