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Abstract

We study representations of the generalized Poincaré group and its extensions in the
class of Lie vector fields acting in a space of n + m independent and one depen-
dent variables. We prove that an arbitrary representation of the group P(n,m) with
max {n,m} > 3 is equivalent to the standard one, while the conformal group C (n,m)
has non-trivial nonlinear representations. Besides that, we investigate in detail repre-

sentations of the Poincaré group P (2,2), extended Poincaré groups P (1,2), P (2,2),
and conformal groups C (1,2), C (2,2) and obtain their linear and nonlinear represen-
tations.

1 Introduction

The central problem to be solved within the framework of the classical Lie approach to
investigation of the partial differential equation (PDE)

F(x,u,tlt,g,...,zrt):o, (1)

where symbol U denotes a set of k-th order derivatives of the function u = w (z), is to

compute its maximal symmetry group. Sophus Lie developed the universal infinitesimal
algorithm which reduced the above problem to solving some linear over-determined sys-
tem of PDE (see, e.g. [1-3]). The said method enables us to solve the inverse problem
of symmetry analysis of differential equations — description of equations invariant under
given transformation group. This problem is of great importance of mathematical and the-
oretical physics. For example, in relativistic field theory motion equations have to obey
the Lorentz-Poincaré-Einstein relativity principle. It means that equations considered
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should be invariant under the Poincaré group P (1,3). That is why, there exists a deep con-
nection between the theory of relativistically-invariant wave equations and representations
of the Poincaré group [4-6].

There exists a vast literature on representations of the generalized Poincaré group
P (n,m) [6], n,m € N but only a few papers are devoted to a study of nonlinear represen-
tations. It should be noted that nonlinear representations of the Poincaré and conformal
groups often occur as realizations of symmetry groups of nonlinear PDE such as eikonal,
Born-Infeld and Monge-Amperé equations (see [3] and references therein). On sets of so-
lutions of some nonlinear heat equations nonlinear representations of the Galilei group are
realized [3]. So, nonlinear representations of the transformations groups are intimately
connected with nonlinear PDE, and systematic study of these is of great importance.

In the present paper we obtain the complete description of the Poincaré group P (n,m)
(called for bravity the Poincaré group) and of its extensions — the extended Poincaré group
P (n,m) and conformal group C (n,m) acting as Lie transformation groups in the space
R (n,m) x R', where R (n,m) is the pseudo-Euclidean space with the metric tensor

1, a = [f=1,n,
Jgop =1 —1, a = [B=n+1n+m,
0, a # 0.

The paper is organized as follows. In Section 2 we give all necessary notations and
definitions. In Section 3 we investigate representations of groups P (n,m), f’(n, m),
C (n,m) with max{n,m} > 3 and prove, in particular, that each representation of the
Poincaré group P (n,m) with max {n,m} > 3 is equivalent to the standard linear repre-
sentation. In Section 3 we study representations of the above groups with max {n, m} < 3
and show that groups P (1,2), C (1,2), P (2,2), P(2,2), C (2,2) have nontrivial nonlinear
representations. It should be noted that nonlinear representations of the groups P (1, 1),
P1,1), C(1,1) were constructed in [9] and of the group P (1,2) — in [10].

2 Notations and Definitions

Saying about a representation of the Poincaré group P (n,m) in the class of Lie transfor-
mation groups we mean the transformation group

l‘; = fu(wv U, a)a M:Ln—i_m?
(2)
u, = g(':[:’ u? a)?
where a = {ay, N = 1,2,...,n+m + C?Hm} are group parameters preserving the

quadratic form S (2) = gag o 3. Here and below summation over the repeated indices
is understood.

It is common knowledge that a problem of description of inequivalent representations of
the Lie transformation group (2) can be reduced to a study of inequivalent representations
of its Lie algebra [1, 2, 12].
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Definition 1 Setofn+m+ C%+m differential operators P, Jog = —jga;
W, a, B =1,n~+m of the form

Q:&L (1‘7 U)au‘f‘??(fva u)au (3)
satisfying the commutational relations

[Poca Pﬁ] - 07 [Paa Pﬁ'y]:gaﬁpﬂy_gofypﬁy
(4)
[Jag, S| = v Jp + 9 Jov — Gap Jpv — 9pv Jap

is called a representation of the Poincaré algebra AP (n,m) in the class of Lie vector fields.
In the above formulae

0 0

Oy = 7~ [Q1>Q2]:Q1Q2_Q2Ql; 057/8771/L7V:17n+m'

8/14:87%7 U au7

Definition 2 Setofl+n+m+C2, differential operators P, Jog =
—JBa, D (i, o, 8 = 1,n+m) of the form (3) satisfying the commutational relations (4)
and

D, Jog) =0, [P, D]=P, (a,B=1,n+m) (5)

is called a representation of the extended Poincaré algebra AP (n,m) in the class of Lie
vector fields.

Using the Lie theorem [1, 2] one can construct the (1+n+m+ CZ2,, )-parameter Lie
transformation group corresponding to the Lie algebra {P,, Jo3, D}. This transformation
group is called a representation of the extended Poincaré group P (n,m).

Definition 3 Setofl+2(n+m)+ C2,,, differential operators P, Jog =
—Jgas D, K (1, o, 8 = 1,n+m) of the form (3) satisfying the commutational relations
(4), (5) and

[KOM Kﬁ] = 0, [Kaa J,B'y] = Gap K7 — Jary Kﬁa

(6)
[PCU Kﬁ] = 2 (gaﬂD - Jaﬁ)a [D, Ka] = K,,

is called a representation of the conformal algebra AC (n,m) in the class of Lie vector
fields.

(1+2(n+m)+ C2,,,)-parameter transformation group corresponding to the Lie al-
gebra {P,, Jos, D, K,} is called a representation of the conformal group C (n,m).

Definition 4 Representation of the Lie transformation group (2) is called linear
if functions f,, g satisfy conditions f, = f, (z,a) (u=1,n+m), g=g(x,a)u. If these
conditions are not satisfied, representation is called nonlinear.

Definition 5 Representation of the Lie algebra in the class of Lie vector fields
(3) is called linear if coefficients of its basis elements satisfy the conditions

§a = &a (JI), a=1ln+m, 77277(1’)“7 (7)

otherwise it is called nonlinear.
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Using the Lie equations [1, 2] it is easy to establish that if a Lie algebra has a nonlinear
representation, its Lie group also has a nonlinear representation and vice versa.
Since commutational relations (4)—(6) are not altered by the change of variables

2, = Fy (x, u), v =G (x, u), (8)

two representations {Pa, Jag, D, Ko} and {P;, Ji5, D', K} are called equivalent
provided they are connected by relations (8).

3 Representations of the Algebras AP (n,m), AP (n,m),
AC (n,m) with max{n,m} >3

Theorem 1 Arbitrary representation of the Poincaré algebra AP (n,m) with
max {n,m} > 3 in the class of Lie vector fields is equivalent to the standard repre-
sentation

P, = 0,, JaB = Jay Ty 03 — ggy Ty 00 (o, B=1,n+m). 9)

P r o of By force of the fact that operators P, commute, there exists the change
of variables (8) reducing these to the form P, = d,, o = I,n+m (a rather sim-
ple proof of this assertion can be found in [1, 3]). Substituting operators P, = 0,,
Jag = &apy (@, u) Oy + Nag (@, u) 0y into relations [Py, Jgy] = gas Py — gay Ps and equa-
ting coefficients at the linearly-independent operators d,, 3, we get a system of PDE
for unknown functions £+, 7as

fozﬁ'ygcM = Gua9v8 — JuB Gya;
naﬁxu = Oa Q, /87 v, U= 17n+m7
whence
§ay = Tagys —TBYGya+ Fapy (u),
(10)
Nap = Gap(u)-
Here Fo3, = —Fpgay, Gap = —Gpgo are arbitrary smooth functions, a, 3, v =
1,n+m.

Consider the third commutational relation from (4) under 1 < «, 8, p, v <n, =
. Equating coefficients at the operator 0,, we get the system of nonlinear ordinary
differential equations for G, (u)

Gav = Gag Gﬁ,, - Gp, Gag (11a)

(no summation over (3), where a dot means differentiation with respect to w.
Since (11a) holds under arbitrary «, 3, v = 1,n, we can redenote subscripts in order
to obtain the following equations

GBI/ = Gﬂa Goa/ - Gau Gﬁaa (11b)
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Gag =G Gyﬁ — Gl,ﬁ Gal, (11c)

(no summation over a and v).
Multiplying (11a) by Gav, (11b) by Gg,, (11c) by Gap and summing we get

G2, +G3,+Gly=0,

whence Gop = Ggy = Gog = 0.

Since «, B3, v are arbitrary indices satisfying the restriction 1 < «, 3, v < n, we
conclude that G, =0 for all o, 3 =1,2,...,n.

Furthermore, from commutational relations for operators Jog, «, = 1,n we get the
homogeneous system of linear algebraic equations for functions Fyg, (u), which general
solution reads

Fa,@’y:Fa(u)gﬁ’y_Fﬂ(u> ga’w «, 677:17”‘7

where Fy, (u) are arbitrary smooth functions.
Consequently, the most general form of operators P,, J,s with 1 < o, 8 < n
satisfying (4) is equivalent to the following:

By =0y, Jop = (Ta + Fo (v)) 05 — (25 + Fp (u)) Oa.

Making in the above operators the change of variables

;1:; = o, +F,(u), p=1n,

¥y = wa, A=n+In+m, v =0

and omitting primes we arrive at the formulae (9) with 1 < «, 8 < n.
Consider the commutator of operators Jug, Joa under 1 <a, B<n, n+1< AL
n+m

[Ja,@a JaA] = [xa aﬂ — 3 Oas Gay Ty 0a — gA~ Ty O + FaA’y (U) 6’y+
(12a)
Gaa (u)0y] = 2403 —x504.
On the other hand, by force of commutational relations (4) an equality
[Jap, Jaal = Jpa (12b)

holds. Comparing right-hand sides of (12a) and (12b) we come to conclusion that Fya, =
0, Gaa = 0. Consequently, operators Jo4 = —Jaq With a =1,n, A=n+1,n+ m have
the form (9).

Analogously, computing the commutator of operators J,4, Jap under 1 < a < n,
n+1< A, B < n+m and taking into account commutational relations (4) we get
Fapy =0, A, B=n+1,n+m, ~=1,n. Consequently, operators J4p are of the form

Jap =230A — 240 +Gap(u)0y, A, B=n+1n+m.
At last, substituting the results obtained into commutational relations

[JaA, Ja ] = _JAB
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(no summation over «), where « = 1,n, A,B=n+1,n+ m, we get
Gap=0, A B=n+1n+m.

Thus, we have proved that there exists the change of variables (8) reducing an arbitrary
representation of the Poincaré algebra AP (n,m) with max{n,m} > 3 to the standard
representation (9). Theorem is proved.

N ot e 1 Poincaré algebra AP (n,m) contains as a subalgebra the Euclid algebra
AFE (n) with basis elements P,, Ju3, «, 3=1,n. When proving the above theorem we
have established that arbitrary representations of the algebra AF (n) with n > 3 in the
class of Lie vector fields are equivalent to the standard representation

PH = 6,“ Jag = Tq 85 —Xp 8a, My, O ﬂ = l,n.

Theorem 2 Arbitrary representation of the extended Poincaré algebra AP (n,m) with
max {n, m} > 3 in the class of Lie vector fields is equivalent to the following representation:

Py, = 0a, Joaﬂ:ga'yl"yaﬁ_gﬂ'yl"yaaa
(13)
D = 2,04+ cudy,
wheree =0,1; «, B, y=1,n+m.

Proof From theorem 1 it follows that a representation of the Poincaré algebra
AP (n,m) = (P, Jos) can always be reduced to the form (9). To find the explicit form of
the dilatation operator D = &, (z, u) 0, +n (z, u) 0, we use the commutational relations
[P., D] = P,. Equating coefficients at linearly-independent operators 0, 0, we get

g;wca = 5#&7 Nzo = 0,

where 6, is a Kronecker symbol; u, a =1,n+m.
Integrating the above equations we have

§p=zu+ Fy(u), n=Gu),

where P, (u), G (u) are arbitrary smooth functions.
Using commutational relations [J,,, D] = 0 we arrive at the following equalities:

9y P00 — gy Fy 0, =0;  p, v=1,n+m,

whence I, =0, v=1,n+m.
Thus, the most general form of the operator D is the following:

D =z, 0,+ G (u) Oy.

Provided G (u) = 0, we get the formulae (13) under e = 0. If G (u) = 0, then after
making the change of variables

ty=ww p=Tatm, o = [ (Gw) " du
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we obtain the formulae (8) under ¢ = 1. Theorem is proved.

Theorem 3  Arbitrary representation of the conformal algebra AC (n,m) with
max {n,m} > 3 in the class of Lie vector fields is equivalent to one of the following
representations:

1) operators P, Jog, D are given by (13), and operators K, have the form
K, = 29048 $,8D - (gw/ o 'II/) Oa (14)
2) operators P,, Jag, D are given by (13) with € =1, and operators K, have the form

Ko =290 8D — (guv xp v £ u2) O, (15)

Proof From theorem 2 it follows that the basis of the algebra AP (n,m) up to the
change of variables (8) can be chosen in the form (13).

From the commutational relations for operators P, = 0, and Kg = &g, (z, u) 0, +
ng (z, u) 0, we get the following system of PDE:

gﬁuaﬁa = 2 JaB Ty — 2 Gav xy(sﬁu +2 9pv Ty 5;wu

NBre = 2E98a U.

Integrating these we have
o = 2950 Ty Ty — Jav Ta Ty Opu + Fpu (1),
g = 2exgutGglu),

where Fjg,, gg are arbitrary smooth functions, «, 3, u, v =1,n+m.
Next, we make use of commutational relations [D, K,] = K,. Direct computation
shows that the following equalities hold

D, K] = [2,0u+€ulu, 2 gap g (xy Op+ € u0y) — g Ty Ty Oat
Fog(u) 0+ Go (u) 0u] =2 gap 23 (2, O) + € udy)—
(G xp @) Oa + (€ u Fopy — Fop) 0 +€ (U Gay — Ga) Oy.

Comparison of the right-hand sides of the above equalities yields the system of PDE

2.3 = cuFugy,
(16)
Goe = e(uGay—Gy), a, B=1,n+m.

In the following, we will consider the cases € = 0 and € = 1 separately.

Case 1, € =0 Then it follows from (16) that F,3 =0, Go =0, a, f=1,n+m,
i.e. operators K, are given by (14) with € = 0. It is not difficult to verify that the rest of
commutational relations (6) also holds.
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Case 2, € =1 Integrating the equations (16) we get
Fop=Cogu®,  Goq=0Cy

where C,3, C, are arbitrary real constants.
Next, from the commutational relations for K, J,, it follows that

Caﬁ =C 5aﬁa Co =0,

where C' is an arbitrary constant, o, 8 =1,n + m.
Thus, operators K, have the form

K, =2 gu 2, D — (gap Ta x8) Oy + Cu? Oy (17)

Easy check shows that the operators (17) commute, whence it follows that all commu-
tational relations of the conformal algebra hold.

If in (17) C = 0, then we have the case (14) with e = 1. If C' # 0, then after rescaling
the dependent variable u/ = u|c|'/? we obtain the operators (15). Theorem is proved.

N o t e 2 Nonlinear representations of the conformal algebra given by (13) with ¢ = 1
and (15) are realized on the set of solutions of the eikonal equations [3, 14]

v Uz, Uz, £1 =0
and on the set of solutions of d’Alembert-eikonal system [15]

v Ug, Uz, 1 = 0,

Juv Uz,z, £ (n+m-—1) vl = 0.

Thus, the Poincaré group P (n,m) with max {n, m} > 3 has no truly nonlinear repre-
sentations. The only hope to obtain nonlinear representations of the Poincaré group is to
study the case when max {n,m} < 3.

4 Representations of the Algebras AP (n,m), AP (n,m),
AC (n,m) with max{n,m} <3

Representations of algebras AP (1,1), AP (1,1), AC (1,1) in the class of Lie vector fields
were completely described by Rideau and Winternitz [9]. They have established, in par-
ticular, that the Poincaré algebra AP(1,1) has no nonequivalent reperesentations distinct
from the standard one (9), while algebras AP (1,1), AC (1,1) admit nonlinear represen-
tations. In the paper [10] nonlinear representations of the Poincaré algebra AP (1,2)

P, = @L, J1g = 2105 + x201 + 0y,
Ji3 = x103 4+ x301 + cosu Oy, (18)

J23 = $263 — x382 —sinu au,
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were constructed and besides that, it was proved that an arbitrary representation of the
algebra AP (1,2) in the class of Lie vector fields is equivalent either to the standard
representation or to (18).

In the paper [11] we have constructed nonlinear representations of the algebras AP (2, 2)
and AC(2,2).

Theorem 4 Arbitrary representation of the Poincaré algebra AP (2,2) in the class of Lie
vector fields is equivalent to the following representation:

Py = 0p p=14

Jio = 1109 — 2901 + €9y,

Ji3 = w301 + 2103 +¢€ cos u Oy,

Jia = 3401+ 7104 F € sin u Oy, (19)
Jog = 1300 + 2003 + € sinu Oy,

Jog = 1409+ 2204 £ € cosu Oy,

J3g = w403 —x304 £ € Oy,

where e =0, 1.

P r oo f When, proving the theorem 1, we have established that the operators P, J,g
can be reduced to the form

P, =04, Juw = Gua Ta Oy — Jva Ta Oy + Fuva (1) Oa + Gy (u) Oy, (19a)

where Fq = —Fyua, Gu = —Gyy, are arbitrary smooth functions; pu, v, a = 1,4.
Consider the triplet of operators Jia, Ji3, Jos. From commutational relations (4)
we obtain the following system of nonlinear ordinary differential equations for functions

Gi2, G13, Gas: : .
Gaz = Gi3 Gi2 — G2 Gis,

Giz3 = Gio Gag— Goz Gra, (20)

Gz = Gz Gag— Goz Gz,

(a dot means differentiations with respect to ).
Multiplying the first equation of the system (20) by Gas, the second — by Gi3 and
the third — by G152 and summing we get an equality

Gy = G5 + G35, (21)
In the following one has to consider cases G123 # 0 and G152 = 0 separately.

Case 1, Gi2 #0 General solution of the algebraic equation (21) reads

Gi2 = f (u), Gi3 = f(u) cos g(u), Gas = f (u) sin g (u), (22)
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where f (u), g (u) are arbitrary smooth functions.
Substitution of (22) into (20) yields ¢ f2 = f. Since f(u) = g12 # 0, the equality
g = f~! holds. Consequently, the general solution of the system (20) is of the form

1

G2 =g ", Gi3 =g = cos g, Gos =g "

sin g,

where g = g (u) is an arbitrary smooth function.
On making the change of variables

=24, a=1,4, u = g (u),

which does not alter the structure of operators P,, J, (19a), we reduce operators
Ji2, Jog, Jig to the form

Jiz = a1 0y — 12 01 + Oy + Fia (u) Oa,
Jog = x3 0y + 29 O3+ (Sin u) Oy + Fgga (u) O, (23)
Ji3 = x301+x1 03+ (COS u) Oy + ﬁlga (u) O,

where Fion, Fbsa, Fisa, a= 1,4 are arbitrary smooth functions.
Substitution of (23) into (4) yields the system of linear ordinary differentional equa-
tions, which for general solution reads

Fioy = V+W, Fip = W-V, Fas=0Q,
15131 = V cosu— Q, ﬁ'132 = W cos u,

F’lgg = Q cos u — V, F‘zgl = V sin U,

15232 = W sinu-— Q, ﬁ233 = Q sin u — W,

ﬁ124 = R, ﬁ’134 = R cos u—Cy sin u,
Fyss = R sinu+Cy cos u.

Here V, W, Q, R are arbitrary smooth functions on u, C7 is an arbitrary constant.
The change of variables

¥y =x1 =V (u), xh =x9 — W (u),

ay=x3-Qu), ay=z4—[ R(u)du, v =u
reduce operators Jio, Jog, Ji3 to the form

Jig = 2102 — 1201 + Oy,
Jiz = x301 + 21035 — Cq sin udy + cos udy, (24)

Jog = 2309+ 1903+ C7 sin u 0y + sin u 0y,
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the rest of basis elements of the algebra AP (2,2) having the form (19a).

Computing commutational relations (4) for operators Ju; «, 3 = 1,4 given by for-
mulae (19a) with 4 = 1,3, v =4 and (24) we obtain system of equations for unknown
functions F),,o, Gu,; @ =1,4; p=1,3. General solution of the system reads

G14 = :FSiIl u, G24 = % cos u, G34 = :l:l, 01 = 0,

Fig1 = Foyp = Fag3 = Oy, Fo,3=0, a=5,

where (s is an arbitrary constant.
Substituting the result obtain into the formulae (19a) and making the change of vari-
ables
=24, a=1,3; ai=x4+Cy v =u

we conclude that operators Jo,, o = 1,3 are given by (19) with ¢ = 1.

Case 2, G12=0 In this case from (21) it follows that G132 = G13 = Ga3 = 0. Computing
commutators of operators Jio, Ji4 and Jio, Jog we get Gi4 = Go4. Next, computing
commutator of operators Ji3, Jog we came to conclusion that Gs4 = 0.

Substitution of operators J,,, from (19a) with G, =0, p, v = 1,4 into commutatio-
nal relations (4) yields a homogenerous system of linear algebraic equations for functions
F,uo. Its general solution can be represented in the form

Fuva =F,(u) gva — Fy (W) guas  p, v, =14,

where F), (u) are arbitrary smooth functions.
Consequently, operators (19a) take the form

By =0y, Jap = gary (T4 + Fy (u)) O — gpy (x4 + Fy (1)) Oa.

Making in the above operators the change of variables mL =z,+F, (u), p=1,4, v =

u we arrive at formulae (19) with € = 0. Theorem is proved.

Theorem 5 Arbitrary representations of the extended Poincaré algebra AP (2,2) in the
class of Lie vector fields is equalent to one of the following representatins:

1) Py, Jag are of the form (19) withe =1, D =x,0,;
2) Py, Jag are of the form (19) withe =0, D =x, Oy +¢e1u0y, €1 =0,1.

Theorem 6 Arbitrary representation of the conformal algebra AC (2,2) in thew class of
Lie vector field is equivalent to one of the following representations:

1) Py, Jap are of the form (19) with e =0,
D=2x,0,+c1ud,, €1 =01,
Ko=2g0p 28D — (g Ty ) O

2) Py, Jag are of the form (19) with € = 0,
D =12,0,+ 10y,

Ko =290 28D — (g zp v £ u?) Ou;
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3) Py, Ju are of the form (19) with e =1,
D = 24 0a,
K1 =221D — (g ®pxy) 01 + 2 (22 + 23 cos u F x4 sinu) Oy,
Ky =2x9D — (g xpxy) 02 + 2 (—x1 + @3 sin u £ x4 cosu) Oy,
K3 =—-223D — (g x,xy) 03 + 2 (£x4 + 21 cos u — 29 sinu) Oy,
Ky =—-224D — (g pxy) 04 + 2 (Fog £ 1 sin u F 2 cosu) Oy,
where i, o, B, v=1,2,3,4.

Proofs of the theorems 5 and 6 are similar to the proofs of the theorems 2, 3 that is
why they are omitted.

In conclusion of the Section we adduce all nonequivalent representations of the ex-
tended Poincaré algebra AP (1,2) [10]

1) Py, Jap are of the form (9),
D=x,0,+eu0y, €=0,1;
2) P,, Jup are of the form (18),
D=uz,0,
and the conformal algebra AC (1,2) [10]
1) Py, Jap are of the form (9),
D=2,0,+¢cud,, €=0,1,
Ko =2ga8 28D — (g p x0) Ou;
2) P,, Jup are of the form (9),
D =2,0,+ udy,
Ko =260 28D — (g xp 0 = u?) Ou;
3) Py, Jap are of the form (18),
D =x,0,,
Ky =2x1D — (g xp ) 01 + 2 (x2 + 23 cos u) Oy,
Ky = —-229D — (g xp xy) 02 + 2 (—x1 + x3 sin u) Oy,
K3 =—-223D — (g v, x,) 03 — 2 (21 cos u + x2 sinu) 0.

Here u, «, 8, v=1,2,3.

Conclusion

Thus, we have obtained the complete description of nonequivalent representations of the
generalized Poincaré group P (n,m) by operators of the form (3). This fact makes a prob-
lem of constructing Poincaré-invariant equations of the form (1) purely algorithmic. To
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obtain all nonequivalent Poincaré-invariant equations on the order N, one has to construct
complete sets of functionally-independent differential invariants of the order N for each
nonequivalent representation [1,2].

For example, each P (n,m)-invariant first-order PDE with max{n,m} > 3 can be
reduced by appropriate change of variables (2) to the eikonal equation

Guv ULL“M Ux, = F(U), (26)

where F'(u) is an arbitrary smooth function.

Equation (26) with an arbitrary F (u) is invariant under the algebra AP (n,m) having
the basis elements (9). Provided F(u) = 0, n = m = 2, it admits also the Poincaré
algebra with the basis elements (19) [11].

Another interesting example is provided by P (1,n)-invariant PDE (n > 3). In [16]
a complete basis of functionally-independent differential invariants of the order 2 of the
algebra AP (1,n) with the basis elements (9) has been constructed. Since each represen-
tation of the algebra AP (1,n) with n > 3 is equivalent to (9), the above mentioned result
gives the exhaustive description of Poincaré-invariant equations (1) in the Minkowski space
R(1,n).

It would be of interest to apply the technique developed in [15] to construct PDE of
the order higher than 1 which are invariant under the Poincaré algebra AP (2,2) with the
basis elements (19).

In the present papers we have studied representations of the Poincaré algebra in spaces
with one dependent variable. But no less important is to investigate nonlinear represen-
tations of the Poincaré algebra in spaces with more number of dependent variables [17].
Linear representations of such a kind are realized on sets of solutions of the complex
d’Alembert, of Maxwell, and of Dirac equations. If nonlinear representations in question
would be obtained, one could construct principially new Poincaré-invariant mathematical
models for describing real physical processes.

We intend to study the above mentioned problems in our future publications. Be-
sides that, we will construct nonlinear representations of the Galilei group G (1,n), which
plays in Galilean relativistic quantum mechanics the same role as the Poincaré group in
relativistic field theory.
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