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Abstract

We study representations of the generalized Poincaré group and its extensions in the
class of Lie vector fields acting in a space of n + m independent and one depen-
dent variables. We prove that an arbitrary representation of the group P (n, m) with
max {n, m} ≥ 3 is equivalent to the standard one, while the conformal group C (n, m)
has non-trivial nonlinear representations. Besides that, we investigate in detail repre-
sentations of the Poincaré group P (2, 2), extended Poincaré groups P̃ (1, 2), P̃ (2, 2),
and conformal groups C (1, 2), C (2, 2) and obtain their linear and nonlinear represen-
tations.

1 Introduction

The central problem to be solved within the framework of the classical Lie approach to
investigation of the partial differential equation (PDE)

F (x, u, u
1
, u

2
, . . . , u

r
) = 0, (1)

where symbol u
k

denotes a set of k-th order derivatives of the function u = u (x), is to

compute its maximal symmetry group. Sophus Lie developed the universal infinitesimal
algorithm which reduced the above problem to solving some linear over-determined sys-
tem of PDE (see, e.g. [1–3]). The said method enables us to solve the inverse problem
of symmetry analysis of differential equations — description of equations invariant under
given transformation group. This problem is of great importance of mathematical and the-
oretical physics. For example, in relativistic field theory motion equations have to obey
the Lorentz-Poincaré-Einstein relativity principle. It means that equations considered
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should be invariant under the Poincaré group P (1, 3). That is why, there exists a deep con-
nection between the theory of relativistically-invariant wave equations and representations
of the Poincaré group [4–6].

There exists a vast literature on representations of the generalized Poincaré group
P (n, m) [6], n, m ∈ N but only a few papers are devoted to a study of nonlinear represen-
tations. It should be noted that nonlinear representations of the Poincaré and conformal
groups often occur as realizations of symmetry groups of nonlinear PDE such as eikonal,
Born-Infeld and Monge-Amperé equations (see [3] and references therein). On sets of so-
lutions of some nonlinear heat equations nonlinear representations of the Galilei group are
realized [3]. So, nonlinear representations of the transformations groups are intimately
connected with nonlinear PDE, and systematic study of these is of great importance.

In the present paper we obtain the complete description of the Poincaré group P (n, m)
(called for bravity the Poincaré group) and of its extensions – the extended Poincaré group
P̃ (n, m) and conformal group C (n, m) acting as Lie transformation groups in the space
R (n, m)×R1, where R (n, m) is the pseudo-Euclidean space with the metric tensor

gαβ =



1, α = β = 1, n,

−1, α = β = n + 1, n + m,

0, α 6= β.

The paper is organized as follows. In Section 2 we give all necessary notations and
definitions. In Section 3 we investigate representations of groups P (n, m), P̃ (n, m),
C (n, m) with max {n, m} ≥ 3 and prove, in particular, that each representation of the
Poincaré group P (n, m) with max {n, m} ≥ 3 is equivalent to the standard linear repre-
sentation. In Section 3 we study representations of the above groups with max {n, m} < 3
and show that groups P̃ (1, 2), C (1, 2), P (2, 2), P̃ (2, 2), C (2, 2) have nontrivial nonlinear
representations. It should be noted that nonlinear representations of the groups P (1, 1),
P̃ 1, 1), C (1, 1) were constructed in [9] and of the group P (1, 2) — in [10].

2 Notations and Definitions

Saying about a representation of the Poincaré group P (n, m) in the class of Lie transfor-
mation groups we mean the transformation group

x′µ = fµ (x, u, a), µ = 1, n + m,

u′ = g (x, u, a),
(2)

where a = {aN , N = 1, 2, . . . , n + m + C2
n+m} are group parameters preserving the

quadratic form S (x) = gαβ xα xβ. Here and below summation over the repeated indices
is understood.

It is common knowledge that a problem of description of inequivalent representations of
the Lie transformation group (2) can be reduced to a study of inequivalent representations
of its Lie algebra [1, 2, 12].
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D e f i n i t i o n 1 Set of n + m + C2
n+m differential operators Pµ, Jαβ = −jβα,

µ, α, β = 1, n + m of the form

Q = ξµ (x, u) ∂µ + η (x, u) ∂u (3)

satisfying the commutational relations

[Pα, Pβ ] = 0, [Pα, Pβγ ] = gαβ Pγ − gαγ Pβ,

[Jαβ , Jµν ] = gαν Jβµ + gβµ Jαν − gαµ Jβν − gβν Jαµ

(4)

is called a representation of the Poincaré algebra AP (n, m) in the class of Lie vector fields.
In the above formulae

∂µ =
∂

∂xµ
, ∂u =

∂

∂u
, [Q1, Q2] = Q1 Q2 −Q2 Q1; α, β, γ, µ, ν = 1, n + m.

D e f i n i t i o n 2 Set of 1 + n + m + C2
n+m differential operators Pµ, Jαβ =

−Jβα, D (µ, α, β = 1, n + m) of the form (3) satisfying the commutational relations (4)
and

[D, Jαβ ] = 0, [Pα, D] = Pα (α, β = 1, n + m) (5)

is called a representation of the extended Poincaré algebra AP̃ (n, m) in the class of Lie
vector fields.

Using the Lie theorem [1, 2] one can construct the (1 + n + m + C2
n+m)-parameter Lie

transformation group corresponding to the Lie algebra {Pµ, Jαβ , D}. This transformation
group is called a representation of the extended Poincaré group P̃ (n, m).

D e f i n i t i o n 3 Set of 1 + 2 (n + m) + C2
n+m differential operators Pµ, Jαβ =

−Jβα, D,Kµ (µ, α, β = 1, n + m) of the form (3) satisfying the commutational relations
(4), (5) and

[Kα, Kβ ] = 0, [Kα, Jβγ ] = gαβ Kγ − gαγ Kβ ,

[Pα, Kβ] = 2 (gαβ D − Jαβ), [D, Kα] = Kα,
(6)

is called a representation of the conformal algebra AC (n, m) in the class of Lie vector
fields.

(1 + 2 (n + m) + C2
n+m)-parameter transformation group corresponding to the Lie al-

gebra {Pµ, Jαβ , D, Kµ} is called a representation of the conformal group C (n, m).

D e f i n i t i o n 4 Representation of the Lie transformation group (2) is called linear
if functions fµ, g satisfy conditions fµ = fµ (x, a) (µ = 1, n + m), g = g̃ (x, a) u. If these
conditions are not satisfied, representation is called nonlinear.

D e f i n i t i o n 5 Representation of the Lie algebra in the class of Lie vector fields
(3) is called linear if coefficients of its basis elements satisfy the conditions

ξα = ξα (x), α = 1, n + m, η = η̃ (x) u, (7)

otherwise it is called nonlinear.
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Using the Lie equations [1, 2] it is easy to establish that if a Lie algebra has a nonlinear
representation, its Lie group also has a nonlinear representation and vice versa.

Since commutational relations (4)–(6) are not altered by the change of variables

x′α = Fα (x, u), u′ = G (x, u), (8)

two representations {Pα, Jαβ , D, Kα} and {P ′
α, J ′

αβ , D′, K ′
α} are called equivalent

provided they are connected by relations (8).

3 Representations of the Algebras AP (n, m), AP̃ (n, m),

AC (n, m) with max {n, m} ≥3

Theorem 1 Arbitrary representation of the Poincaré algebra AP (n, m) with
max {n, m} ≥ 3 in the class of Lie vector fields is equivalent to the standard repre-
sentation

Pα = ∂α, Jαβ = gαγ xγ ∂β − gβγ xγ ∂α (α, β = 1, n + m). (9)

P r o o f By force of the fact that operators Pα commute, there exists the change
of variables (8) reducing these to the form Pα = ∂α, α = 1, n + m (a rather sim-
ple proof of this assertion can be found in [1, 3]). Substituting operators Pα = ∂α,
Jαβ = ξαβγ (x, u) ∂γ + ηαβ (x, u) ∂u into relations [Pα, Jβγ ] = gαβ Pγ − gαγ Pβ and equa-
ting coefficients at the linearly-independent operators ∂α, ∂u we get a system of PDE
for unknown functions ξαβγ , ηαβ

ξαβγxµ = gµα gγβ − gµβ gγα,

ηαβxµ = 0, α, β, γ, µ = 1, n + m,

whence
ξαβγ = xα gγβ − xβ gγα + Fαβγ (u),

ηαβ = Gαβ (u).
(10)

Here Fαβγ = −Fβαγ , Gαβ = −Gβα are arbitrary smooth functions, α, β, γ =
1, n + m.

Consider the third commutational relation from (4) under 1 ≤ α, β, µ, ν ≤ n, β =
µ. Equating coefficients at the operator ∂u, we get the system of nonlinear ordinary
differential equations for Gµν (u)

Gαν = Gαβ Ġβν −Gβν Ġαβ (11a)

(no summation over β), where a dot means differentiation with respect to u.
Since (11a) holds under arbitrary α, β, ν = 1, n, we can redenote subscripts in order

to obtain the following equations

Gβν = Gβα Ġαν −Gαν Ġβα, (11b)
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Gαβ = Gαν Ġνβ −Gνβ Ġαν (11c)

(no summation over α and ν).
Multiplying (11a) by Gαν , (11b) by Gβν , (11c) by Gαβ and summing we get

G2
αµ + G2

βµ + G2
αβ = 0,

whence Gαν = Gβγ = Gαβ = 0.
Since α, β, ν are arbitrary indices satisfying the restriction 1 ≤ α, β, ν ≤ n, we

conclude that Gαβ = 0 for all α, β = 1, 2, . . . , n.
Furthermore, from commutational relations for operators Jαβ , α, β = 1, n we get the

homogeneous system of linear algebraic equations for functions Fαβγ (u), which general
solution reads

Fαβγ = Fα (u) gβγ − Fβ (u) gαγ , α, β, γ = 1, n,

where Fα (u) are arbitrary smooth functions.
Consequently, the most general form of operators Pµ, Jαβ with 1 ≤ α, β ≤ n

satisfying (4) is equivalent to the following:

Pµ = ∂µ, Jαβ = (xα + Fα (u)) ∂β − (xβ + Fβ (u)) ∂α.

Making in the above operators the change of variables

x′µ = xµ + Fµ (u), µ = 1, n,

x′A = xA, A = n + 1, n + m, u′ = 0

and omitting primes we arrive at the formulae (9) with 1 ≤ α, β ≤ n.
Consider the commutator of operators Jαβ , JαA under 1 ≤ α, β ≤ n, n + 1 ≤ A ≤

n + m

[Jαβ , JαA] = [xα ∂β − xβ ∂α, gαγ xγ ∂A − gAγ xγ ∂α + FαAγ (u) ∂γ+

GαA (u) ∂u ] = xA ∂β − xβ ∂A.
(12a)

On the other hand, by force of commutational relations (4) an equality

[Jαβ , JαA] = JβA (12b)

holds. Comparing right-hand sides of (12a) and (12b) we come to conclusion that FαAγ =
0, GαA = 0. Consequently, operators JαA = −JAα with α = 1, n, A = n + 1, n + m have
the form (9).

Analogously, computing the commutator of operators JαA, JAB under 1 ≤ α ≤ n,
n + 1 ≤ A, B ≤ n + m and taking into account commutational relations (4) we get
FABγ = 0, A,B = n + 1, n + m, γ = 1, n. Consequently, operators JAB are of the form

JAB = xB ∂A − xA ∂B + GAB (u) ∂u, A, B = n + 1, n + m.

At last, substituting the results obtained into commutational relations

[JαA, JαB] = −JAB
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(no summation over α), where α = 1, n, A, B = n + 1, n + m, we get

GAB = 0, A, B = n + 1, n + m.

Thus, we have proved that there exists the change of variables (8) reducing an arbitrary
representation of the Poincaré algebra AP (n, m) with max {n, m} ≥ 3 to the standard
representation (9). Theorem is proved.

N o t e 1 Poincaré algebra AP (n, m) contains as a subalgebra the Euclid algebra
AE (n) with basis elements Pα, Jαβ , α, β = 1, n. When proving the above theorem we
have established that arbitrary representations of the algebra AE (n) with n ≥ 3 in the
class of Lie vector fields are equivalent to the standard representation

Pµ = ∂µ, Jαβ = xα ∂β − xβ ∂α, µ, α, β = 1, n.

Theorem 2 Arbitrary representation of the extended Poincaré algebra AP̃ (n, m) with
max {n, m} ≥ 3 in the class of Lie vector fields is equivalent to the following representation:

Pα = ∂α, Jαβ = gαγ xγ ∂β − gβγ xγ ∂α,

D = xα ∂α + ε u ∂u,
(13)

where ε = 0, 1; α, β, γ = 1, n + m.

P r o o f From theorem 1 it follows that a representation of the Poincaré algebra
AP (n, m) = 〈Pµ, Jαβ〉 can always be reduced to the form (9). To find the explicit form of
the dilatation operator D = ξµ (x, u) ∂µ + η (x, u) ∂u we use the commutational relations
[Pα, D] = Pα. Equating coefficients at linearly-independent operators ∂µ, ∂u, we get

ξµxα = δµα, ηxα = 0,

where δµα is a Kronecker symbol; µ, α = 1, n + m.
Integrating the above equations we have

ξµ = xµ + Fµ (u), η = G (u),

where Pµ (u), G (u) are arbitrary smooth functions.
Using commutational relations [Jµν , D] = 0 we arrive at the following equalities:

gµγ Fγ ∂ν − gνγ Fγ ∂µ = 0; µ, ν = 1, n + m,

whence Fγ = 0, γ = 1, n + m.
Thus, the most general form of the operator D is the following:

D = xµ ∂µ + G (u) ∂u.

Provided G (u) = 0, we get the formulae (13) under ε = 0. If G (u) = 0, then after
making the change of variables

x′µ = xµ, µ = 1, n + m, u′ =
∫

(G (u))−1 du
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we obtain the formulae (8) under ε = 1. Theorem is proved.

Theorem 3 Arbitrary representation of the conformal algebra AC (n, m) with
max {n, m} ≥ 3 in the class of Lie vector fields is equivalent to one of the following
representations:

1) operators Pµ, Jαβ , D are given by (13), and operators Kα have the form

Kα = 2gαβ xβD − (gµν xµ xν) ∂α; (14)

2) operators Pµ, Jαβ , D are given by (13) with ε = 1, and operators Kα have the form

Kα = 2gαβ xβD − (gµν xµ xν ± u2) ∂α. (15)

P r o o f From theorem 2 it follows that the basis of the algebra AP̃ (n, m) up to the
change of variables (8) can be chosen in the form (13).

From the commutational relations for operators Pα = ∂α and Kβ = ξβµ (x, u) ∂µ +
ηβ (x, u) ∂u we get the following system of PDE:

ξβµxα = 2 gαβ xµ − 2 gαν xνδβµ + 2 gβν xν δµα,

ηβxα = 2 ε gβα u.

Integrating these we have

ξβµ = 2 gβν xν xµ − gαν xα xν δβµ + Fβµ (u), ,

ηβ = 2 ε xβ u + Gβ (u),

where Fβµ, gβ are arbitrary smooth functions, α, β, µ, ν = 1, n + m.
Next, we make use of commutational relations [D, Kα] = Kα. Direct computation

shows that the following equalities hold

[D, Kα] = [xµ∂µ + ε u∂u, 2 gαβ xβ (xµ ∂µ + ε u∂u)− gµν xµ xν ∂α+

Fαβ (u) ∂β + Gα (u) ∂u] = 2 gαβ xβ (xµ ∂µ + ε u∂u)−

(gµν xµ xν) ∂α + (ε u Fαβu − Fαβ) ∂β + ε (u Gαu −Gα) ∂u.

Comparison of the right-hand sides of the above equalities yields the system of PDE

2 Fαβ = ε u Fαβu,

Gα = ε (u Gαu −Gα), α, β = 1, n + m.
(16)

In the following, we will consider the cases ε = 0 and ε = 1 separately.

Case 1, ε =0 Then it follows from (16) that Fαβ = 0, Gα = 0, α, β = 1, n + m,
i.e. operators Kµ are given by (14) with ε = 0. It is not difficult to verify that the rest of
commutational relations (6) also holds.
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Case 2, ε =1 Integrating the equations (16) we get

Fαβ = Cαβ u2, Gα = Cα u2,

where Cαβ , Cα are arbitrary real constants.
Next, from the commutational relations for Kα, Jµν it follows that

Cαβ = C δαβ , Cα = 0,

where C is an arbitrary constant, α, β = 1, n + m.
Thus, operators Kµ have the form

Kµ = 2 gµν xν D − (gαβ xα xβ) ∂µ + C u2 ∂µ. (17)

Easy check shows that the operators (17) commute, whence it follows that all commu-
tational relations of the conformal algebra hold.

If in (17) C = 0, then we have the case (14) with ε = 1. If C 6= 0, then after rescaling
the dependent variable u′ = u |c|1/2 we obtain the operators (15). Theorem is proved.

N o t e 2 Nonlinear representations of the conformal algebra given by (13) with ε = 1
and (15) are realized on the set of solutions of the eikonal equations [3, 14]

gµν uxµ uxν ± 1 = 0

and on the set of solutions of d’Alembert-eikonal system [15]

gµν uxµ uxν ± 1 = 0,

gµν uxµxν ± (n + m− 1) u−1 = 0.

Thus, the Poincaré group P (n, m) with max {n, m} ≥ 3 has no truly nonlinear repre-
sentations. The only hope to obtain nonlinear representations of the Poincaré group is to
study the case when max {n, m} < 3.

4 Representations of the Algebras AP (n, m), AP̃ (n, m),

AC (n, m) with max {n, m} <3

Representations of algebras AP (1, 1), AP̃ (1, 1), AC (1, 1) in the class of Lie vector fields
were completely described by Rideau and Winternitz [9]. They have established, in par-
ticular, that the Poincaré algebra AP (1, 1) has no nonequivalent reperesentations distinct
from the standard one (9), while algebras AP̃ (1, 1), AC (1, 1) admit nonlinear represen-
tations. In the paper [10] nonlinear representations of the Poincaré algebra AP (1, 2)

Pµ = ∂µ, J12 = x1∂2 + x2∂1 + ∂u,

J13 = x1∂3 + x3∂1 + cos u ∂u,

J23 = x2∂3 − x3∂2 − sin u ∂u,

(18)
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were constructed and besides that, it was proved that an arbitrary representation of the
algebra AP (1, 2) in the class of Lie vector fields is equivalent either to the standard
representation or to (18).

In the paper [11] we have constructed nonlinear representations of the algebras AP (2, 2)
and AC(2, 2).

Theorem 4 Arbitrary representation of the Poincaré algebra AP (2, 2) in the class of Lie
vector fields is equivalent to the following representation:

Pµ = ∂µ, µ = 1, 4,

J12 = x1∂2 − x2∂1 + ε ∂u,

J13 = x3∂1 + x1∂3 + ε cos u ∂u,

J14 = x4∂1 + x1∂4 ∓ ε sin u ∂u,

J23 = x3∂2 + x2∂3 + ε sinu ∂u,

J24 = x4∂2 + x2∂4 ± ε cos u ∂u,

J34 = x4∂3 − x3∂4 ± ε ∂u,

(19)

where ε = 0, 1.

P r o o f When, proving the theorem 1, we have established that the operators Pµ, Jαβ

can be reduced to the form

Pµ = ∂µ, Jµν = gµα xα ∂ν − gνα xα ∂µ + Fµνα (u) ∂α + Gµν (u) ∂u, (19a)

where Fµνα = −Fνµα, Gµν = −Gνµ are arbitrary smooth functions; µ, ν, α = 1, 4.
Consider the triplet of operators J12, J13, J23. From commutational relations (4)

we obtain the following system of nonlinear ordinary differential equations for functions
G12, G13, G23:

G23 = G13 Ġ12 −G12 Ġ13,

G13 = G12 Ġ23 −G23 Ġ12,

G12 = G13 Ġ23 −G23 Ġ13,

(20)

(a dot means differentiations with respect to u).
Multiplying the first equation of the system (20) by G23, the second — by G13 and

the third — by G12 and summing we get an equality

G2
12 = G2

13 + G2
23. (21)

In the following one has to consider cases G12 6= 0 and G12 = 0 separately.

Case 1, G12 6= 0 General solution of the algebraic equation (21) reads

G12 = f (u), G13 = f (u) cos g (u), G23 = f (u) sin g (u), (22)
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where f (u), g (u) are arbitrary smooth functions.
Substitution of (22) into (20) yields ġ f2 = f . Since f (u) = g12 6= 0, the equality

ġ = f−1 holds. Consequently, the general solution of the system (20) is of the form

G12 = ġ−1, G13 = ġ−1 cos g, G23 = ġ−1 sin g,

where g = g (u) is an arbitrary smooth function.
On making the change of variables

x′α = xα, α = 1, 4, u′ = g (u),

which does not alter the structure of operators Pµ, Jµν (19a), we reduce operators
J12, J23, J13 to the form

J12 = x1 ∂2 − x2 ∂1 + ∂u + F̃12α (u) ∂α,

J23 = x3 ∂2 + x2 ∂3 + (sin u) ∂u + F̃23α (u) ∂α,

J13 = x3 ∂1 + x1 ∂3 + (cos u) ∂u + F̃13α (u) ∂α,

(23)

where F̃12α, F̃23α, F̃13α, α = 1, 4 are arbitrary smooth functions.
Substitution of (23) into (4) yields the system of linear ordinary differentional equa-

tions, which for general solution reads

F̃121 = V̇ + W,

F̃131 = V̇ cos u−Q,

F̃133 = Q̇ cos u− V,

F̃232 = Ẇ sin u−Q,

F̃124 = R,

F̃234 = R sin u + C1 cos u.

F̃122 = Ẇ − V, F̃123 = Q̇,

F̃132 = Ẇ cos u,

F̃231 = V̇ sin u,

F̃233 = Q̇ sin u−W,

F̃134 = R cos u− C1 sin u,

.

Here V,W,Q,R are arbitrary smooth functions on u, C1 is an arbitrary constant.
The change of variables

x′1 = x1 − V (u), x′2 = x2 −W (u),

x′3 = x3 −Q (u), x′4 = x4 −
∫

R (u) du, u′ = u

reduce operators J12, J23, J13 to the form

J12 = x1 ∂2 − x2 ∂1 + ∂u,

J13 = x3 ∂1 + x1 ∂3 − C1 sin u ∂u + cos u ∂u,

J23 = x3 ∂2 + x2 ∂3 + C1 sin u ∂u + sin u ∂u,

(24)
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the rest of basis elements of the algebra AP (2, 2) having the form (19a).
Computing commutational relations (4) for operators Jab; α, β = 1, 4 given by for-

mulae (19a) with µ = 1, 3, ν = 4 and (24) we obtain system of equations for unknown
functions Fµ4α, Gµ4 ; α = 1, 4; µ = 1, 3. General solution of the system reads

G14 = ∓ sin u, G24 = ± cos u, G34 = ±1, C1 = 0,

F141 = F242 = F343 = C2, Fα4β = 0, α = β,

where C2 is an arbitrary constant.
Substituting the result obtain into the formulae (19a) and making the change of vari-

ables
x′α = xα, α = 1, 3; x′4 = x4 + C2; u′ = u

we conclude that operators Jα4 , α = 1, 3 are given by (19) with ε = 1.

Case 2, G12= 0 In this case from (21) it follows that G12 = G13 = G23 = 0. Computing
commutators of operators J12, J14 and J12, J24 we get G14 = G24. Next, computing
commutator of operators J13, J23 we came to conclusion that G34 = 0.

Substitution of operators Jµν from (19a) with Gµη = 0, µ, ν = 1, 4 into commutatio-
nal relations (4) yields a homogenerous system of linear algebraic equations for functions
Fµνα. Its general solution can be represented in the form

Fµνα = Fµ (u) gνα − Fν (u) gµα, µ, ν, α = 1, 4,

where Fµ (u) are arbitrary smooth functions.
Consequently, operators (19a) take the form

Pµ = ∂µ, Jαβ = gαγ (xγ + Fγ (u)) ∂β − gβγ (xγ + Fγ (u)) ∂α.

Making in the above operators the change of variables x′µ = xµ+Fµ (u), µ = 1, 4, u′ =
u we arrive at formulae (19) with ε = 0. Theorem is proved.

Theorem 5 Arbitrary representations of the extended Poincaré algebra AP̃ (2, 2) in the
class of Lie vector fields is equalent to one of the following representatins:

1) Pµ, Jαβ are of the form (19) with ε = 1, D = xµ ∂µ;

2) Pµ, Jαβ are of the form (19) with ε = 0, D = xµ ∂µ + ε1 u ∂u, ε1 = 0, 1.

Theorem 6 Arbitrary representation of the conformal algebra AC (2, 2) in thew class of
Lie vector field is equivalent to one of the following representations:

1) Pµ, Jαβ are of the form (19) with ε = 0,

D = xα ∂α + ε1 u ∂u, ε1 = 0, 1,

Kα = 2 gαβ xβ D − (gµν xµ xν) ∂α;

2) Pµ, Jαβ are of the form (19) with ε = 0,

D = xα ∂α + u ∂u,

Kα = 2 gαβ xβ D − (gµν xµ xν ± u2) ∂α;
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3) Pα, Jµν are of the form (19) with ε = 1,

D = xα ∂α,

K1 = 2x1D − (gµν xµ xν) ∂1 + 2 (x2 + x3 cos u∓ x4 sinu) ∂u,

K2 = 2x2D − (gµν xµ xν) ∂2 + 2 (−x1 + x3 sin u± x4 cos u) ∂u,

K3 = −2 x3D − (gµν xµ xν) ∂3 + 2 (±x4 + x1 cos u− x2 sin u) ∂u,

K4 = −2 x4D − (gµν xµ xν) ∂4 + 2 (∓x4 ± x1 sin u∓ x2 cos u) ∂u,

where µ, α, β, ν = 1, 2, 3, 4.

Proofs of the theorems 5 and 6 are similar to the proofs of the theorems 2, 3 that is
why they are omitted.

In conclusion of the Section we adduce all nonequivalent representations of the ex-
tended Poincaré algebra AP̃ (1, 2) [10]

1) Pµ, Jαβ are of the form (9),

D = xµ ∂µ + ε u ∂u, ε = 0, 1;

2) Pµ, Jαβ are of the form (18),

D = xµ ∂µ

and the conformal algebra AC (1, 2) [10]

1) Pµ, Jαβ are of the form (9),

D = xµ ∂µ + ε u ∂u, ε = 0, 1,

Kα = 2 gαβ xβ D − (gµν xµ xν) ∂α;

2) Pµ, Jαβ are of the form (9),

D = xµ ∂µ + u ∂u,

Kα = 2 gαβ xβ D − (gµν xµ xν ± u2) ∂α;

3) Pµ, Jαβ are of the form (18),

D = xµ ∂µ,

K1 = 2x1D − (gµν xµ xν) ∂1 + 2 (x2 + x3 cos u) ∂u,

K2 = −2 x2D − (gµν xµ xν) ∂2 + 2 (−x1 + x3 sin u) ∂u,

K3 = −2 x3D − (gµν xµ xν) ∂3 − 2 (x1 cos u + x2 sinu) ∂u.

Here µ, α, β, ν = 1, 2, 3.

Conclusion

Thus, we have obtained the complete description of nonequivalent representations of the
generalized Poincaré group P (n, m) by operators of the form (3). This fact makes a prob-
lem of constructing Poincaré-invariant equations of the form (1) purely algorithmic. To
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obtain all nonequivalent Poincaré-invariant equations on the order N , one has to construct
complete sets of functionally-independent differential invariants of the order N for each
nonequivalent representation [1,2].

For example, each P (n, m)-invariant first-order PDE with max {n, m} ≥ 3 can be
reduced by appropriate change of variables (2) to the eikonal equation

gµν uxµ uxν = F (u), (26)

where F (u) is an arbitrary smooth function.
Equation (26) with an arbitrary F (u) is invariant under the algebra AP (n, m) having

the basis elements (9). Provided F (u) = 0, n = m = 2, it admits also the Poincaré
algebra with the basis elements (19) [11].

Another interesting example is provided by P (1, n)-invariant PDE (n ≥ 3). In [16]
a complete basis of functionally-independent differential invariants of the order 2 of the
algebra AP (1, n) with the basis elements (9) has been constructed. Since each represen-
tation of the algebra AP (1, n) with n ≥ 3 is equivalent to (9), the above mentioned result
gives the exhaustive description of Poincaré-invariant equations (1) in the Minkowski space
R (1, n).

It would be of interest to apply the technique developed in [15] to construct PDE of
the order higher than 1 which are invariant under the Poincaré algebra AP (2, 2) with the
basis elements (19).

In the present papers we have studied representations of the Poincaré algebra in spaces
with one dependent variable. But no less important is to investigate nonlinear represen-
tations of the Poincaré algebra in spaces with more number of dependent variables [17].
Linear representations of such a kind are realized on sets of solutions of the complex
d’Alembert, of Maxwell, and of Dirac equations. If nonlinear representations in question
would be obtained, one could construct principially new Poincaré-invariant mathematical
models for describing real physical processes.

We intend to study the above mentioned problems in our future publications. Be-
sides that, we will construct nonlinear representations of the Galilei group G (1, n), which
plays in Galilean relativistic quantum mechanics the same role as the Poincaré group in
relativistic field theory.
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