
”Nonlinear Mathematical Physics” 1994, V.1, N 3, 267–274.

Homogeneous Manifold, Loop Algebra,

Coupled KdV System and

Generalised Miura Transformation

I.MUKHOPADHYA and A. Roy CHOWDHURY

High Energy Physics Division,
Departament of Physics, Jadavpur University
Calcutta 700 032, India

Submitted by P.OLVER
Received March 20, 1994

Abstract
Coupled KdV equations are deduced by considering the homogeneous manifold cor-
responding to the homogeneous Heisenberg subalgebra of the Loop group (L(S1,
SL(2, C)). Utilisation of Birkhoff decomposition and further subalgebra considera-
tion leads to a new generalised form of Miura map and two sets of modified equations.
A second set of Miura transformation can also be generated leading to complicated
form of coupled integrable systems.

1 Introduction

The use of Lie algebra and Lie groups in the study of integrable systems have proved to
be very fruitful over the last two decade. While the AKNS [1] approach leads to a variety
of equations all at a time, the variant of the method [2] using homogeneous spaces of Lie
algebra and its affine version leads to a specific form only. In this respect the basic formu-
lations those exist are due to Adler [3], Kostant [4], Syms [5], Guil [6], and others. While
some uses the co-adjeint action on the affine Lie algebra as the starting point, others go
for the zero curvature equation in conjunction with the classical r-matrix [8]. Each of the
methods have the respective advantage and disadvantages. A closely related approach is
that of pseudo-differential operators [9] whose relation with the matrix Lax pair has been
exhaustively studied in the famous article of Drinfeld and Sokolov [10]. It may be worth
mentioning that the Miura-map has played a prominent role in these formulations and
in the study of nonlinear KdV system as a whole. It is the aim of the present work to
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show how to construct coupled KdV systems by considering the homegeneuos manifold
of Heisenberg subalgebra (homogeneous) and to derive a set of generalised. Miura like
transformations from the factorization problem. This is achieved here through a chain of
decomposition of the Lie algebra SL(2, C)-valued holomorphic functions on the unit disc.
The paper is organized as follows. In section two we have shown how the considerations of
the homogeneous Heisenberg subalgebra leades to the coupled KdV system, through the
use of the zero curvature representation. In section three the factorization property of the
Lax eigenfunction is invoked and a generalised Miura map is deduced. Actually we have
two such maps each leading to a different set of modified coupled set of equations. In the
last section we show how a further consideration of the factorization problem associated
with the obtained modified equation leads to second modified class of equations which are
also integrable.

2 Coupled KdV System and Loop Groups

We denote by g = L(S1, SL(2, C)) the Lie algebra of smooth functions on the circle
S1 = {λ ∈ 6C : |λ| = 1} with values in the complex Lie algebra of 2 × 2 matrices of zero
trace. Such an algebra is the loop algebra. The boundary values on the circle S1 of the
holomorphic function over the Riemann sphere |λ| < 1 and |λ| > 1 respectively allow us
to define the subalgebras g+ and g−, with the direct sum decomposition of g as

g = g+ ⊕ g−.

In terms of fourier series expansion of an element X we have

X(λ) =
∑

x− nλn, X SL(2, c) and X(λ) = X+ −X−

tha above decomposition then reades:

X+(λ) =
∑
n≥0

Xnλ
n, X−(λ) = −

∑
n<0

Xnλ
n

the loop group G = L(S1, SL(2, C)) of smooth functions of S1 with values in 2×2 complex
matrices (having determinant equal to unity) admits g as its Lie–algebra. The subgroups
pertaining to g+, g− are defined similarly.

The element ψ of G for which there exists ψ+ ∈ G+ and ψ− ∈ G−, obeys the factori-
zation condition

ψ = ψ−1
− · ψ+ (1)

in the sense of Birkhoff [11]. Using the factorizability assumption we can map the point
ψ, G+ into the element ψ− ∈ G−. A consequence of this is that we have a co–ordinate
system, the Lie algebra g, for the set of points ψ ·G+ in G/G+ assiciated to factorizable
elements ψ in G.

Let us assume that p be the G valued function of the two complex variable x and t
given by

p(x, t) = exp(xH + tH3) (2)
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where H ∈ g the element
(
λ 0
0 −λ

)
.

The centralizer of H in g is called the homogeneous Heisenberg subalgebra and consists
of the series of the form tnH

n, for odd, tn ∈ 6C. Remark that for n even Hn ∼ 1 set

ψ = p · g (3)

where g is a constant element independent of x and t. From

ψ = ψ−1
− · ψ+. (4)

On taking right differential we get

dψ− · ψ−1
− +Adψ− · Γ = dψ+ψ

−1
− (5)

with

Γ = dψ · ψ−1 = Hdx+H3dt. (6)

From equation (5)

∂Xψ− · ψ−1
− + P−(Adψ− ·H) = 0,

∂tψ− · ψ−1
− + P−(Adψ− ·H3) = 0

(7)

where P− denotes projection on g− parallel to g+. We can also write

ψ− = U ′Z ′ (8)

where

U ′ = exp(U), Z ′ = exp(Z)

with

U(λ) =
[

0 λ−1(r +B)
−C 0

]
; Z(λ) =

[
A 0
0 −A

]
.

So that U with r = 0 ∈ g− ∩ Im adH and Z takes values in g− ∩ Ker adH as can be
checked by easy computation. Now, from equation (7)

∂xU
′ · U ′−1 +AdU ′ · (∂xZ) + P−(AdU ′ ·H) = 0 (9)

which reduces to

∂xU +
1
2
[U · ∂xU ] +

1
31

[U, [U, ∂xU ] ] + · · ·+ ∂xZ + [U, ∂xZ]+

1
2

[U, [U, ∂xZ] ] + · · ·+ P−

(
H + [U,H] +

1
2

[U, [U,H] ] + · · ·
)

= 0. (10)

We now set

A =
∑

Anλ
−n, B =

∑
Bnλ

−n, C =
∑

λ−nCn
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whence equation (10) leades to

rt −
1
4
rxxx + 6r rxC1 = 0 (11)

and

C1t −
1
4
C1xxx + 6rC1C1x = 0

which is the required coupled KdV system.
Now to chek the consistency of the equation set (11) we revert to the other half of the

factorization equation. We calculate,

ω+ = P+(Adψ− · Γ) (12)

this yields:

ω+ = Mdx+Ndt (13)

with

M = P+(Adψ− ·H) = P+

[
eU ·He−U

]
=
(

λ −2r
−2C1 −λ

)
(14)

along with

N = P+(Adψ− ·H3) = P+

[
λ2(eUHe−U )

]
=

 λ3 − 2[(λC1 + C2)r] +B1C1 −2(λ2r + λB1 +B2) + 4/3r2C1

−2(λ2C1 + λC2 + C3) + 4/3rC2
1 −λ3 + 2[r(λC1 + C2) +B1C1]

 . (15)

So that the zero curvature condition

Nt −NX + [M,N ] = 0 (16)

immediately implies,
(i) that the equations coming from the diagonal elements of (16) are identically satis-

fied.
(ii) the (12) and (21) elements lead to the equations (11).

3 Generalised Miura Transformation

From equation (14) and (15) we can at once

∂xψ− · ψ−1
− + P−(Adψ− ·M) = 0,

∂tψ− · ψ−1
− + P−(Adψ− ·N) = 0.

(17)

Now we invoke the decomposition

g = g+ ⊕ g− (18)
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for a fixed λ1 ∈ D(0, 1), where D represents the unit disc with centre at the origin, so that

g− =
{(

0 0
C 0

)
, c ∈ 6C

}
, (19)

g+ = X ∈ g; X(λ1) =
(
a b
0 −a

)
, a, b ∈ 6C.

Then we have ψ− = exp(t−g−) =
(

1 0)
V 1

)
and

∂xψ− · ψ−1
− =

(
0 0
vx 0

)
along with

Adψ− ·M =

 λ1 + 2rv −2r

2vλ1 − 2C1 + 2v2r −(2vr + λ1)

 (20)

whence the first equation of (17) gives,

2C1 = vX + 2vλ1 + 2v2r. (21)

So that v represents the new nonlinear variable. To obtain the time flow for this new vari-
able we concentrate on equation (17) again, this time on its time part. Which immediately
leads to

vt + 22vN11 +N21 − v2N12 = 0 (22)

which is seen to reduce to,

vt −
1
4
vxxx − 3vvxrx + 6v2r2vx + 6rvvxλ1 = 0 (23)

after we have used

N11 = λ3 − 2λrC1 + rC1x − rxC1 = −N22,

N12 = −2λ2r − λrx − 1/2rxx + 4r2C1,

N21 = −2λ2C1 + λC1x − 1/2C1xx + 4rC2
1 .

The other equation of the coupled set is

rt −
1
4
rxxx + 3rrx(vx + 2vλ1 + 2v2r) = 0. (24)

So we have obtained the Miura transformation given by equation (17) which is genera-
lised in the sense that it contains terms cubic in the nonlinear variables. So equation (21)
gives the map (C1, r)−.(v, r), and equations (23) and (24) represent the modified set.

We now observe that in the above Miura transformation only variable C1 is changed
and r remains the same. On the otherhand if we consider another decomposition of g.

g = g+ ⊕ g− (25)
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where g+
(
a 0
c −a

)
and g−

(
0 b
0 0

)
again for some fixed λ− 1. Then we get

ψ− = exp(t−g−) =
(

1 u
0 1

)
and proceeding as (26)

above we get

2r = ux − 2λ1u+ 2u2C1. (27)

A straightforward calculation using the time part of equation (17) leads to:

ut −
1
4
uxxx + 6u2

xC
2
1 − 3uuxC1x − 6λ1uuxC = 0 (28)

the other equation set can be seen to be:

C1t −
1
4
C1xxx + 3C1C1x(ux − 2λ1u+ 2u2C1) = 0 (29)

so this time we have the second Miura map (27), giving the transformation C1, r) −.
(C1, u) and the modified equations are given by (28), and (29).

4 Further Miura Map

We now consider ω+ = dψ · ψ−1 so that ∂xψ = Mψ, M being given by equation (14) and
ψ stands for a general eigen solution,

ψ =
(
φ11 φ12

φ21 φ22

)
. (30)

Due to the condition ψx = Mψ this can also be written as

φ =

 φ11 φ12

1
2r

(λφ11 − φ11x)
1
2r

(λφ12 − φ12x)

 . (31)

Now if we take ψ− =
(

1 0
v 1

)
, then from the Birkhoff decomposition

ψ+ =

 φ11 φ12

vφ11 +
1
2r

(λφ11 − φ11x) vφ12 +
1
2r

(λφ12 − φ12x)

 . (32)

For ψ+ to be upper traingular we get the the following condition,

v = − 1
2r

(
λ− φ1

11x

φ11

)
(33)

where φ1
11 = φ11(λ1), where λ1 ∈ D(0, 1). We also impose the condition that detψ = 1

which results in the

φ11φ12x − φ12φ11x = −2r. (34)
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We next evaluate dψ+ · ψ−1
+ . From the contraction with the vector field ∂x we get

ω+(∂x)11 = 2vr + λ,

ω+(∂x)22 = −(2vr + λ),

ω+(∂x)12 = −2vr,

ω+(∂x)21 = 2v(λ− λ1) +
λ

2

(
r2rx −

rx
r2

)
,

(35)

which is nothing but the space part of the one form ω+ = Qdx + Rdt – we also keep in
mind that

ψ =
(

1 0
v 1

) (
φ11 φ12

φ21 φ22

)
. (36)

We next take a λ2 ∈ D(0, 1), λ2 6= λ1 and seek ψ1 once more in the form:

ψ− =
(

1 0
w 1

)
. (37)

This factorization equation leades to (as before)

v =
[
1
2
λ2

(
rx
r2

− r2rx

)
− wx − 2w2r − 2wλ2

]
1
a
, (38)

a = 4wr + 2(λ2 − λ1).

We now try to reconstruct the time part which implies.

φ11t = N11φ11 +N12φ12,

φ12t = N11φ12 +N12φ22,

φ21t = N21φ11 +N22φ21,

φ22t = N21φ12 +N22φ22

(39)

where φ21 =
1
2r

(λφ11 − φ11x), φ22 =
1
2r

(λφ12 − φ12x).

The contraction with vector field ∂t will yield the time part, but the calculation is lengthy
and tedious. We therefore quote some of the results only:

ω+(∂t)11 = 2λ2vr + λvrx +
1
2
(vrxx + rC1x − rxC1 + λ3)−

(λr + 2r2v)(vx + 2vλ1 + 2v2r),

ω+(∂t)22 = −ω+(∂t)11,

ω+(∂t)12 = 2r2(vx + 2vλ1 + 2v2r)− 2λ2r − λvx −
1
2
rxx

(40)
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and so on. The next step is to eliminate C1 in terms of r from these equations making these
expressions to depend only on r and v only. One can then utilise the transformation given
in equation (38) to eliminate v in terms of ω. So finally everything will depend on (r, ω)
only. Use of these relations will result in a integrable equation. The said computation
is very cumbersome and we have indicated the basic steps. The important point is that
it is possible to carry out two successive Miura map to generate new coupled integrable
systems.

5 Discussions

In our above analysis we have indicated how the homogeneous manifold considerations
can be used to generate coupled KdV system. The factorization in the sense of Birkhoff
can be used to construct different Miura maps. Finally we make the remark that in the
second stage of the transformations we could have taken

ψ− =
(

1 Z
0 1

)
(41)

that is ψ− to be upper traingular whence

ψ =
(

1 u
0 1

) (
φ11 φ12

φ21 φ22

)
(42)

then pursue the process of elimination again to produce a new form of second stage Miura
map as in the case of first stage Miura transformation.

One of the authors (I.M) wishes to thank C.S.I.R. (Govt. of India) for a fellowship
which made this work possible.
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