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Abstract

Analyzing the spectrum of the Schrödinger-Pauli Hamiltonian for a particle of spin
s > 1/2 we find that some energy levels are degenerated while the other are not. We
investigate the symmetry (which is neither super- nor parasymmetry) causing this
specific degeneration.

In quantum mechanics, supersymmetry [1] and parasupersymmetry [2, 3] appear as fine
extensions of the usual Lie or dynamical symmetries. In particular they enable to ex-
plain such specific degenerations of energy spectra which are not caused by a dynamical
symmetry [1].

In this paper we want to point out that there exist a symmetry (called the weak
supersymmetry (WSS) in the following) which is in some sense more fine than symmetries
of super- and parasupersymmetric quantum mechanics. Like supersymmetry, WSS is
realized by charges commuting with the Hamiltonian and causing the specific degeneration
of its spectrum. But in contrast with super- and parasupersymmetries, weak supercharges
do not generate the Hamiltonian in a unique fashion, and moreover, the mentioned dege-
neration characterizes the limited set of energy levels.

Consider the Schrödinger-Pauli equation for an arbitrary spin particle

i
∂Ψ
∂t

= HΨ ≡
(
π2

2m
+

eg

2m
S ·H

)
ψ, g =

1
s
, (1)

where

π2 = π2
1 + π2

2 + π2
3, πa = pa − eAa, pa = −i∂/∂xa, a = 1, 2, 3, H = iπ × π.

Here Sa are the spin matrices realizing an irreducible representation D(s) of the algebra
AO(3), so that

[Sa, Sb] = iεabcSc, SaSa = s(s+ 1). (2)
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Equation (1) appears as a nonrelativistic approximation of Poincaré-invariant equa-
tions for arbitrary spin particles, interacting minimally with an external field, see, e.g.,
[4]. Moreover, the Galilei-invariant wave equations [5, 6] also reduce to the form (1). In
both cases we have g = 1/s, but this value can be corrected by introducing the anomalous
interaction [7].

In the case of a particle in a constant magnetic field directed along the third axis we
have in (1)

A0 = A3 = 0, A1 = −xa/2,

A2 = x1H/2, H1 = H2 = 0, H3 = H = const. (3)

Moreover, we set p3 = 0 for simplicity.
If s = 1/2 then Sa = σa/2, σa are the Pauli matrices. The eigenvalues of the corre-

sponding Hamiltonian H of (1), (3) have the form [8]

Enν =
1
2

(
2n+ 1 +

ν

s

)
eH

2m
, (4)

where n = 0, 1, . . . , ν = ±s = ±1/2. These eigenvalues (Landau levels) are double dege-
nerated since

En±s = En±1 ∓s, (5)

where the only exception is the ground state level E0−s which is a singlet.
A possible explanation of this degeneration is that the corresponding equation (1), (3)

admits two specific symmetries (supercharges)

Q1 =
1√
2m

(σ1π1 + σ2π2), Q2 =
1√
2m

(σ1π2 − σ2π1) (6)

which satisfy the following relations

[Q1,H] = [Q2,H] = 0, (7)

[Q1, Q2] = 0, Q2
1 = Q2

2 = H. (8)

The relations (7), (8) determine the superalgebra sqm(2) and characterize a dinamical
system whose energy values (i.e., the eigenvalues of the Hamiltonian H) have the same
degeneracy as the Landau levels [1].

In the case of s > 1/2 the spectrum of the Hamiltonian (1), (3) is given again by formula
(4), where, however, ν = s, s − 1, . . . , s [4]. Moreover, the energy levels corresponding to
ν = ±s have the typical supersymmetric degeneration (5) while the other levels are not
degenerated.

Let us construct the weak supercharges causing this specific degeneration. For s = 1
we set in (6)

σ1 = S2
1 − S2

2 , σ2 = S1S2 + S2S1. (9)

Then, using (2) and the relations

SaSbSc + ScSbSa = δabSc + δbcSa,

we find immediatelly that the operators (6), (9) are constants of motion, i.e., they commute
with H of (1), (3). Furtheremore, these operators satisfy the anticommutation relations
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(8) only on the subset of solutions Ψ′ = SΨ corresponding to ν = ±s and thus cause the
supersymmetric degeneration of the related energy values.

Instead of (8) the weak supercharges satisfy the following double commutation relations

[Q1, [Q1, Q2]] = Q2H, [Q2, [Q2, Q1]] = Q1H (10)

which are typical for parasupercharges, i.e., symmetries of parasupersymmetric quantum
mechanics [3]. But in contrast with parasupercharges, the weak supercharges do not define
the Hamiltonian in a unique fassion. Indeed, if Q1, Q2 are of the form (6), (9), the relations
(10) are invariant with respect to a change

H → H + (1− S2
3)Ĥ(1− S2

3)

where Ĥ is an arbitrary operator defined on the three-component wave functions Ψ.
Thus we find a specific symmetry of the equation (1), (3) for s = 1. It is generated

by the weak supercharges QA of (6), (9), which satisfy the relations (7), (10) typical for
parasupersymmetric models, but cause the supersymmetric degeneration of the subset of
the Hamiltonian eigenvalues. Moreover, the weak supercharges do not satisfy the relations
(7), (10) characterizing usual supercharges.

The limited number of degenerated eigenvalues and absence of the strong condition
(8) for charges (which is replaced by the weaker condition (10)) are the distinquishing
features of the weak supersymmetry in comparison with the usual supersymmetry.

We notice that the weak supersymmetry is valid for the Schrödinger-Pauli equation
(1) describing a particle of arbitrary spin in the uniform magnetic field, where

A0 = A3 = 0, A1 = A1(x1, x2), A2 = A2(x1, x2). (11)

The corresponding weak supercharges for s = 1/2 and s = 1 are given by relations (6),
(11) and (9). For s = 3/2 we can set in (6)

σ1 =
1
12

(S3
1 − S2

1S2 − S2S
2
1 − S1S2S1),

σ2 =
1
12

(S3
2 + S2S

2
1 + S2

1S2 + S2S1S2) (12)

and for arbitrary s

σ1 =
1
ks

[
(S1 − iS2)

2s + (S1 + iS2)
2s
]
,

σ2 =
1
ks

[
(S1 − iS2)

2s − (S1 + iS2)
2s
]
, (13)

ks =
2s−1∏
n=1

[2sn− n(n− 1)]
1
2 C2s−n

2s−1

where Ca
b is the number of combinations from b elements by a.

The considered equation admits weak supersymmetry also for the case of any value of
g = 1/ν0 with a fixed integer (for integer s) or half integer (for integer s) ν0,−s ≤ ν0 ≤ s.
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For example, if s = 3/2, g = 2, then the correcponding supercharges have the form (6),
(11) with the following σ-matrices

σ1 =
1

16
√

3
(9− 4S2

3)S1(9− 4S2
3), σ2 =

1
16
√

3
(9− 4S2

3)S2(9− 4S2
3).

For another symmetries of a type ”between super- and parasupersymmetries” see [9],
[10]. We notice that the charges found in [9] are linear combinations of parasupercharges
obtained in [11].

In conclusion we note that relations (7), (8), satisfied by weak supercharges, are valid
for a lot of symmetries. It is the case for supercharges (since (7), (9) is a consequence of (7),
(8)), for parasupercharges [3], and for the hidden symmetries of Rubakov-Spiridonov para-
supersymmetric quantum mechanics [2] found in [12]. The two dimensional Schrödinger
equation with the Coulomb potential

i
∂

∂t
ψ =

[
1

2m

(
p2
1 + p2

2

)
+
e

x

]
Ψ, x =

√
x2

1 + x2
2

also admits the two symmetries (Runge-Lentz vector components)

Q1 =
x1

x
+

1
em

(x1p
2
1 − x2p1p2 + ip1/2),

Q2 =
x2

x
+

1
em

(x2p
2
1 − x1p1p2 + ip2/2),

satisfying (7), (10).
Thus, WSS and the symmetries mentioned above are nothing but different realizations

of the algebra (7), (9).
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