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6 Symmetry properties and exact solutions of system
(3.12)

As was mentioned in Sec. 3, ansatzes (3.4)–(3.7) reduce the NSEs (1.1) to the systems of
PDEs of a similar structure that have the general form (see (3.12)):

wiw1
i − w1

ii + s1 + α2w
2 = 0,

wiw2
i − w2

ii + s2 − α2w
1 + α1w

3 = 0,

wiw3
i − w3

ii + α4w
3 + α5 = 0,

wi
i = α3,

(6.1)

where αn (n = 1, 5) are real parameters.
Setting αk = 0 (k = 2, 5) in (6.1), we obtain equations describing a plane convective

flow that is brought about by nonhomogeneous heating of boudaries [25]. In this case
wi are the coordinates of the flow velocity vector, w3 is the flow temperature, s is the
pressure, the Grasshoff number λ is equal to −α1, and the Prandtl number σ is equal to
1. Some similarity solutions of these equations were constructed in [22]. The particular
case of system (6.1) for α1 = α2 = α4 = α5 = 0 and α3 = 1 was considered in [31].

In this section we study symmetry properties of system (6.1) and construct large sets
of its exact solutions.

Theorem 6.1 The MIA of (6.1) is the algebra
1. E1 =< ∂1, ∂2, ∂s > if α1 6= 0, α4 6= 0.

2. E2 =< ∂1, ∂2, ∂s, ∂w3 − α1z2∂s > if α1 6= 0, α4 = 0, (α1, α2, α5) 6= (0, 0, 0).
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3. E3 =< ∂1, ∂2, ∂s, ∂w3 − α1z2∂s, D̃ − 3w3∂w3 > if α1 6= 0, αk = 0, k = 2, 5.

4. E4 =< ∂1, ∂2, ∂s, J, (w3 + α5/α4)∂w3 > if α1 = 0, α4 6= 0.

5. E5 =< ∂1, ∂2, ∂s, J, ∂w3 > if α1 = α4 = 0, (α2, α3) 6= (0, 0), α5 6= 0.

6. E6 =< ∂1, ∂2, ∂s, J, ∂w3 , w3∂w3 > if α1 = α4 = α5 = 0, (α2, α3) 6= (0, 0).

7. E7 =< ∂1, ∂2, ∂s, J, ∂w3 , D̃ + 2w3∂w3 > if α5 6= 0, αl = 0, l = 1, 4.

8. E8 =< ∂1, ∂2, ∂s, J, ∂w3 , D̃, w3∂w3 > if αn = 0, n = 1, 5.

Here D̃ = zi∂i − wi∂wi − 2s∂s, J = z1∂2 − z2∂1 + w1∂w2 − w2∂w1, ∂i = ∂zi.

Note 6.1 The bases of the algebras E6 and E8 contain the operator w3∂w3 that is not
induced by elements of A(NS).

Note 6.2 If α4 6= 0, the constant α5 can be made to vanish by means of local transfor-
mation

w̃3 = w3 + α5/α4, s̃ = s− α1α5α
−1
4 z2, (6.2)

where the independent variables and the functions wi are not transformed. Therefore, we
consider below that α5 = 0 if α4 6= 0 .

Note 6.3 Making the non-local transformation

s̃ = s+ α2Ψ, (6.3)

where Ψ1 = w2, Ψ2 = −w1 (such a function Ψ exists in view of the last equation of
(6.1)), in system (6.1) with α3 = 0, we obtain a system of form (6.1) with α̃3 = α̃2 = 0.
In some cases (α1 6= 0, α3 = α4 = α5 = 0, α2 6= 0; α1 = α3 = α4 = 0, α2 6= 0)
transformation (6.3) allows the symmetry of (6.1) to be extended and non-Lie solutions to
be constructed. Moreover, it means that in the cases listed above system (6.1) is invariant
under the non-local transformation

ẑi = eεzi, ŵi = e−εwi, ŵ3 = eδεw3, ŝ = e−2εs+ α2(e−2ε − 1)Ψ,

where δ = −3 if α3 = α4 = α5 = 0, α1, α2 6= 0;
δ = 2 if α1 = α3 = α4 = 0, α2, α5 6= 0;
δ = 0 if α1 = α3 = α4 = α5 = 0, α2 6= 0.

Let us consider an ansatz of the form:

w1 = a1ϕ
1 − a2ϕ

3 + b1ω2,

w2 = a2ϕ
1 + a1ϕ

3 + b2ω2,

w3 = ϕ2 + b3ω2,

s = h+ d1ω2 + d2ω1ω2 + 1
2d3ω

2
2,

(6.4)

where a2
1 + a2

2 = 1, ω = ω1 = a1z2 − a2z1, ω2 = a1z1 + a2z2, B, ba, da = const,

bi = Bai, b3(B + α4) = 0,

d2 = α2B − α1b3a1, d3 = −B2 − α1b3a2,
(6.5)
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Table 1: Complete sets of inequivalent one-dimensional subalgebras of the algebras E1−E8

(a and al (l = 1, 4) are real constants)

Algebra Subalgebras
Values of

parameters

E1 < a1∂1 + a2∂2 + a3∂s >, < ∂s > a2
1 + a2

2 = 1

E2
< a1∂1 + a2∂2 + a3(∂w3 − α1z2∂s) >,
< ∂1 + a4∂s >,< ∂w3 − α1z2∂s >,< ∂s >

a2
1 + a2

2 = 1,
a4 6= 0

E3
< a1∂1 + a2∂2 + a3(∂w3 − α1z2∂s) >,< ∂1 + a4∂s >,

< D̃ − 3w3∂w3 >,< ∂w3 − α1z2∂s >,< ∂s >

a2
1 + a2

2 = 1,
a3 ∈ {−1; 0; 1},
a4 ∈ {−1; 1}

E4
< J + a1∂s + a2w

3∂w3 >,< ∂2 + a1∂s + a2w
3∂w3 >,

< w3∂w3 + a1∂s >,< ∂s >

E5
< J + a1∂s + a2∂w3 >,< ∂2 + a1∂s + a2∂w3 >,

< ∂w3 + a1∂s >,< ∂s >

E6

< J + a1∂s + a2w
3∂w3 >,< ∂2 + a1∂s + a2w

3∂w3 >,

< J + a1∂s + a3∂w3 >,< ∂2 + a1∂s + a3∂w3 >,

< w3∂w3 + a1∂s >,< ∂w3 + a1∂s >,< ∂s >

a2 6= 0,
a3 ∈ {−1; 0; 1}

E7
< D̃ + aJ + 2w3∂w3 >,< J + a1∂s + a2∂w3 >,

< ∂2 + a1∂s + a2∂w3 >,< ∂w3 + a2∂s >,< ∂s >

a2 ∈ {−1; 0; 1},
a1 ∈ {−1; 0; 1}

if a2 = 0

E8

< D̃ + aJ + a3w
3∂w3 >,< D̃ + aJ + a3∂w3 >,

< J + a1∂s + a4w
3∂w3 >,< ∂2 + a1∂s + a4w

3∂w3 >,

< J + a1∂s + a2∂w3 >,< ∂2 + a1∂s + a2∂w3 >,

< w3∂w3 + a1∂s >,< ∂w3 + a1∂s >,< ∂s >

ai ∈ {−1; 0; 1},
a4 6= 0
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Here and below ϕa = ϕa(ω) and h = h(ω). Indeed, formulas (6.4) and (6.5) determine a
whole set of ansatzes for system (6.1). This set contains both Lie ansatzes, constructed
by means of subalgebras of the form

< a1∂1 + a2∂2 + a3(∂w3 − α1z2∂s) + a4∂s >, (6.6)

and non-Lie ansatzes. Equation (6.5) is the necessary and sufficient condition to reduce
(6.1) by means of an ansatz of form (6.3). As a result of reduction we obtain the following
system of ODEs:

ϕ3ϕ1
ω − ϕ1

ωω + µ1jϕ
j + d1 + d2ω + α2ϕ

3 = 0,

ϕ3ϕ2
ω − ϕ2

ωω + µ2jϕ
j + α5 = 0,

ϕ3ϕ3
ω − ϕ3

ωω + hω − α2ϕ
1 + α1a1ϕ

2 = 0,

ϕ3
ω = σ,

(6.7)

where µ11 = −B, µ12 = −α1a2, µ21 = −b3, µ22 = −α4, σ = α3 − B. If σ = 0, system
(6.7) implies that

ϕ3 = C0 = const,

h = α2
∫
ϕ1(ω)dω − α1a1

∫
ϕ2(ω)dω,

and the functions ϕi satisfy system (4.23), where ν11 = d1 + α2C0, ν21 = d2, ν12 = α5,
ν22 = 0. If σ 6= 0, then ϕ3 = σω (translating ω, the integration constant can be made to
vanish),

h = −1
2σ

2ω2 + α2
∫
ϕ1(ω)dω − α1a1

∫
ϕ2(ω)dω,

and the functions satisfy system (4.29), where ν11 = d1, ν21 = d2 +α2σ, ν12 = α5, ν22 = 0.

Note 6.4 Step-by-step reduction of the NSEs (1.1) by means of ansatzes (3.4)–(3.7) and
(6.4) is equivalent to a particular case of immediate reduction of the NSEs (1.1) to ODEs
by means of ansatzes 5 and 6 from Subsec. 4.1.

Now let us choose such algebras, among the algebras from Table 1, that can be used
to reduce system (6.1) and do not belong to the set of algebras (6.6). By means of the
chosen algebras we construct ansatzes that are tabulated in the form of Table 2.

Substituting the ansatzes from Table 2 into system (6.1), we obtain the reduced systems
of ODEs in the functions ϕa and h:

1. ϕ2ϕ1
ω − ϕ1

ωω − ϕ1ϕ1 − ϕ2ϕ2 − 2h+ α1ϕ
3 sinω + 2ϕ2

ω = 0,

ϕ2ϕ2
ω − ϕ2

ωω + hω − 2ϕ1
ω + α1ϕ

3 cosω = 0,

ϕ2ϕ3
ω − ϕ3

ωω − 3ϕ1ϕ3 − 9ϕ3 = 0,

ϕ2
ω = 0.

(6.8)
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Table 2: Ansatzes reducing system (6.1) (r = (z2
1 + z2

2)
1/2)

N
Values
of αn

Algebra
Invariant
variable

Ansatz

1
α1 6= 0,
αk = 0,
k = 2, 5

< D̃ − 3w3∂w3 > ω = arctan z2
z1

w1 = r−2(z1ϕ1 − z2ϕ
2),

w2 = r−2(z2ϕ1 + z1ϕ
2),

w3 = r−3ϕ3, s = r−2h

2
α1 = 0,
α5 = 0

< ∂2 + a1∂s + a2w
3∂w3 >,

a2 6= 0
ω = z1

w1 = ϕ1, w2 = ϕ2,
w3 = ϕ3ea2z2 ,
s = h+ a1z2

3
α1 = 0,
α4 = 0

< J + a1∂s + a2∂w3 > ω = r

w1 = z1ϕ
1 − z2r

−2ϕ2,
w2 = z2ϕ

1 + z1r
−2ϕ2,

w3 = ϕ3 + a2 arctan z2
z1
,

s = h+ a1 arctan z2
z1

4
α1 = 0,
α5 = 0

< J + a1∂s + a2w3∂w3 >
a2 6= 0 if α4 = 0

ω = r

w1 = z1ϕ
1 − z2r

−2ϕ2,
w2 = z2ϕ

1 + z1r
−2ϕ2,

w3 = ϕ3e
a2 arctan

z2
z1 ,

s = h+ a1 arctan z2
z1

5
α5 6= 0,
αl = 0,
l = 1, 4

< D̃ + aJ + 2w3∂w3 >
ω = arctan z2

z1
−

−a ln r

w1 = r−2(z1ϕ1 − z2ϕ
2),

w2 = r−2(z2ϕ1 + z1ϕ
2),

w3 = r2ϕ3, s = r−2h

6
αn = 0,
n = 1, 5 < D̃ + aJ + a1∂w3 >

ω = arctan z2
z1
−

−a ln r

w1 = r−2(z1ϕ1 − z2ϕ
2),

w2 = r−2(z2ϕ1 + z1ϕ
2),

w3 = ϕ3 + a1 ln r,
s = r−2h

7
αn = 0,
n = 1, 5

< D̃ + aJ + a1w
3∂w3 >,

a1 6= 0
ω = arctan z2

z1
−

−a ln r

w1 = r−2(z1ϕ1 − z2ϕ
2),

w2 = r−2(z2ϕ1 + z1ϕ
2),

w3 = ra1ϕ3, s = r−2h
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2. ϕ1ϕ1
ω − ϕ1

ωω + α2ϕ
2 + hω = 0,

ϕ1ϕ2
ω − ϕ2

ωω − α2ϕ
1 + a1 = 0,

ϕ1ϕ3
ω − ϕ3

ωω + (a2ϕ
2 + α4 − a2

2)ϕ
3 = 0,

ϕ1
ω = α3.

(6.9)

3. ωϕ1ϕ1
ω − ϕ1

ωω + ϕ1ϕ1 − ω−4ϕ2ϕ2 − 3ω−1ϕ1
ω+

α2ω
−2ϕ2 + ω−1hω = 0,

ωϕ1ϕ2
ω − ϕ2

ωω + ω−1ϕ2
ω − α2ω

2ϕ1 + a1 = 0,

ωϕ1ϕ3
ω − ϕ3

ωω + a2ω
−2ϕ2 − ω−1ϕ3

ω + α5 = 0,

2ϕ1 + ωϕ1
ω = α3.

(6.10)

4. ωϕ1ϕ1
ω − ϕ1

ωω + ϕ1ϕ1 − ω−4ϕ2ϕ2 − 3ω−1ϕ1
ω+

α2ω
−2ϕ2 + ω−1hω = 0,

ωϕ1ϕ2
ω − ϕ2

ωω + ω−1ϕ2
ω − α2ω

2ϕ1 + a1 = 0,

ωϕ1ϕ3
ω − ϕ3

ωω + a2ω
−2ϕ2ϕ3 − ω−1ϕ3

ω + (α4 − a2
2ω
−2)ϕ3 = 0,

2ϕ1 + ωϕ1
ω = α3.

(6.11)

5. (ϕ2 − aϕ1)ϕ1
ω − (1 + a2)ϕ1

ωω − ϕ1ϕ1 − ϕ2ϕ2 − ahω − 2h = 0,

(ϕ2 − aϕ1)ϕ2
ω − (1 + a2)ϕ2

ωω − 2(aϕ2
ω + ϕ1

ω) + hω = 0,

(ϕ2 − aϕ1)ϕ3
ω − (1 + a2)ϕ3

ωω + 2ϕ1ϕ3 − 4ϕ3 + 4aϕ3
ω + α5 = 0,

ϕ2
ω − aϕ1

ω = 0.

(6.12)

6. (ϕ2 − aϕ1)ϕ1
ω − (1 + a2)ϕ1

ωω − ϕ1ϕ1 − ϕ2ϕ2 − ahω − 2h = 0,

(ϕ2 − aϕ1)ϕ2
ω − (1 + a2)ϕ2

ωω − 2(aϕ2
ω + ϕ1

ω) + hω = 0,

(ϕ2 − aϕ1)ϕ3
ω − (1 + a2)ϕ3

ωω + a1ϕ
1 = 0,

ϕ2
ω − aϕ1

ω = 0.

(6.13)
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7. (ϕ2 − aϕ1)ϕ1
ω − (1 + a2)ϕ1

ωω − ϕ1ϕ1 − ϕ2ϕ2 − ahω − 2h = 0,

(ϕ2 − aϕ1)ϕ2
ω − (1 + a2)ϕ2

ωω − 2(aϕ2
ω + ϕ1

ω) + hω = 0,

(ϕ2 − aϕ1)ϕ3
ω − (1 + a2)ϕ3

ωω + a1ϕ
1ϕ3 − a2

1ϕ
3 + 2aa1ϕ

3
ω = 0,

ϕ2
ω − aϕ1

ω = 0.

(6.14)

Numeration of reduced systems (6.8)–(6.14) corresponds to that of the ansatzes in
Table 2. Let us integrate systems (6.8)–(6.14) in such cases when it is possible. Below, in
this section, Ck = const (k = 1, 6).

1. We failed to integrate system (6.8) in the general case, but we managed to find the
following particular solutions:

a) ϕ1 = −6℘(ω + C3,
1
3(4− 2C1), C2)− 2,

ϕ2 = ϕ3 = 0, h = 2ϕ1 + C1;

b) ϕ1 = −6C2
1e

2C1ω℘(eC1ω + C3, 0, C2) + 3C2
1 − 2,

ϕ2 = 5C1, ϕ3 = 0,

h = −12C2
1e

2C1ω℘(eC1ω + C3, 0, C2)− 2− 13
2 C

2
1 − 9

4C
4
1 ;

c) ϕ1 = C1, ϕ2 = C2, ϕ3 = 0, h = −1
2(C2

1 + C2
2 ).

Here ℘(τ,κ1,κ2) is the Weierstrass function that satisfies the equation (see [19]):

(℘τ )2 = 4℘3 − κ1℘− κ2. (6.15)

2. If α3 = 0, the last equation of (6.9) implies that ϕ1 = C1. It follows from the other
equations of (6.9) that

ϕ2 = C3 + C2e
C1ω − (a1C

−1
1 − α2)ω,

h = C6 − α2C3ω − α2C2C
−1
1 eC1ω + 1

2α2(a1C
−1
1 − α2)ω2

if C1 6= 0, and

ϕ2 = C3 + C2ω + 1
2a1ω

2,

h = C6 − α2C3ω − 1
2α2C2ω

2 − 1
6α2a1ω

3

if C1 = 0. The function ϕ3 satisfies the equation

ϕ3
ωω − C1ϕ

3
ω + (a2

2 − α4 − a2ϕ
2)ϕ3 = 0. (6.16)

We solve equation (6.16) for the following cases:
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A. C2 = a1 − α2C1 = 0:

ϕ3 =



e
1
2
C1ω(C4e

µ1/2ω + C5e
−µ1/2ω), µ > 0,

e
1
2
C1ω(C4 + C5ω), µ = 0,

e
1
2
C1ω(C4 cos((−µ)1/2ω) + C5 sin((−µ)1/2ω)), µ < 0,

where µ = 1
4C

2
1 − a2

2 + α4 + a2C3.

B. C1 = a1 = 0, C2 6= 0 ([19]):

ϕ3 = ξ1/2Z1/3(2
3(−a2C2)1/2ξ3/2),

where ξ = ω + (C3a2 − a2
2 − α4)/(a2C2). Here Zν(τ) is the general solution of the Bessel

equation (4.22).

C. C1 = 0, a1 6= 0 ([19]):

ϕ3 = (ω + C2a
−1
1 )−1/2W (ν, 1

4 , (
1
2a1a2)−1/2(ω + C2a

−1
1 )2),

where ν = 1
4(1

2a1a2)−1/2(a2
2 − α4 − a2C3 + 1

2a2C
2
3a
−1
1 ). Here W (κ, µ, τ) is the general

solution of the Whittaker equation (4.21).

D. C1 6= 0, C2 6= 0, a1 − α2C1 = 0 ([19]):

ϕ3 = e
1
2
C1ωZν(2C−1

1 (−a2C2)1/2e
1
2
C1ω),

where ν = C−1
1 (C2

1 + 4(α4 + a2C3 − a2
2))

1/2. Here Zν(τ) is the general solution of the
Bessel equation (4.22).

E. C1 6= 0, a1 − α2C1 6= 0, C2 = 0 ([19]):

ϕ3 = e
1
2
C1ωξ1/2Z1/3

(
2
3(a2(a1C

−1
1 − α2))

1/2ξ3/2
)
,

where ξ = ω+(a2
2− 1

4C
2
1−C3a2−α4)/(a2(a1C

−1
1 −α2)). Here Zν(τ) is the general solution

of the Bessel equation (4.22).
If α3 6= 0, then ϕ1 = α3ω (translating ω, the integration constant can be made to

vanish),

ϕ2 = C1 + C2
∫
e

1
2
α3ω2

dω + a1
∫
e

1
2
α3ω2

(∫
e−

1
2
α3ω2

dω
)
dω + α2ω,

h = C3 − 1
2(α2

2 + α2
3)ω

2 − α2C1ω − α2C2

(
ω
∫
e

1
2
α3ω2

dω − α−1
3 e

1
2
α3ω2

)
−

α2a1

(
ω
∫
e

1
2
α3ω2

(
∫
e−

1
2
α3ω2

dω)dω − α−1
3 e

1
2
α3ω2 ∫

e−
1
2
α3ω2

dω + α−1
3 ω

)
,

and the function ϕ3 satisfies the equation

ϕ3
ωω − α3ωϕ

3
ω + (a2

2 − α4 − a2ϕ
2)ϕ3 = 0. (6.17)
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We managed to find a solution of (6.17) only for the case a1 = C2 = 0, i.e.,

ϕ3 = e
1
4
α3ω2

V (α1/2
3 (ω + 2a2α2α

−2
3 ), ν),

where ν = 4α−1
3 (α4 + a2C1 − a2

2(α
2
2α
−2
3 + 1)). Here V (τ, ν) is the general solution of the

Weber equation

4Vττ = (τ2 + ν)V. (6.18)

3. The general solution of system (6.10) has the form:

ϕ1 = C1ω
−2 + 1

2α3, (6.19)

ϕ2 = C2 + C3
∫
ωC1+1e

1
4
α3ω2

dω − 1
2α2ω

2+

a1
∫
ωC1+1e

1
4
α3ω2

(∫
ω−C1−1e−

1
4
α3ω2

dω
)
dω,

(6.20)

ϕ3 = C4 + C5
∫
ωC1−1e

1
4
α3ω2

dω+

∫
ωC1−1e

1
4
α3ω2

(∫
ω1−C1e−

1
4
α3ω2

(α5 + a2ω
−2ϕ2)dω

)
dω,

h = C6 − 1
8α

2
3ω

2 − 1
2C

2
1ω
−2 +

∫
(ϕ2(ω))2ω−3dω − α2

∫
ω−1ϕ2(ω)dω. (6.21)

4. System (6.11) implies that the functions ϕi and h are determined by (6.19)–(6.21),
and the function ϕ3 satisfies the equation

ϕ3
ωω− ((C1−1)ω−1+ 1

2α3ω)ϕ3
ω + (a2ω

−2(a2−ϕ2)− α4)ϕ3 = 0. (6.22)

We managed to solve equation (6.22) in following cases:

A. C3 = a1 = 0, α3 6= 0:

ϕ3 = ω
1
2
C1−1e

1
8
α3ω2

W (κ, µ, 1
4α3ω

2),

where κ = 1
4(2−C1 − (4α4 + 2α2a2)α−1

3 ), µ = 1
4(C2

1 − 4a2
2 + 4a2C2)1/2. Here W (κ, µ, τ)

is the general solution of the Whittaker equation (4.21).
Let α3 = 0, then

ϕ2 =



C2 + C3 lnω + 1
4(a1 + 2α2)ω2, C1 = −2,

C2 + 1
2C3ω

2 + 1
2a1ω

2(lnω − 1
2), C1 = 0,

C2 + C3(C1 + 2)−1ωC1+2 − 1
2C
−1
1 (a1 − α2C1)ω2, C1 6= 0,−2.

B. C3 = a1 − α2C1 = 0:

ϕ3 =



ω
1
2
C1Zν(µ1/2ω), µ 6= 0,

ω
1
2
C1(C5ω

ν + C6ω
−ν), µ = 0, ν 6= 0,

ω
1
2
C1(C5 + C6 lnω), µ = 0, ν = 0,

(6.23)
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where µ = −α4, ν = 1
2(C2

1−4a2
2+4a2C2)1/2. Here and below Zν(τ) is the general solution

of the Bessel equation (4.22).

C. C3 = 0, C1 6= 0: ϕ3 is determined by (6.23), where

µ = 1
2a2C

−1
1 (a1 − α2C1)− α4, ν = 1

2(C2
1 − 4a2

2 + 4a2C2)1/2.

D. C1 = a1 = 0: ϕ3 is determined by (6.23), where

µ = −1
2a2C3 − α4, ν = (−a2

2 + a2C2)1/2.

E. C3 6= 0, C1 6∈ {0;−2}, a2(a1 − α2C1)− 2α4C1 = 0:

ϕ3 = ω
1
2
C1Zν(µω1+ 1

2
C1),

where µ = 2C1/2
3 (C1 + 2)−3/2, ν = (C1 + 2)−1(C2

1 − 4a2
2 + 4a2C2)1/2.

F. C1 = −2, C3 6= 0, a2(a1 + 2α2) + 4α4 = 0 ([19]):

ϕ3 = ω−1ξ1/2Z1/3(2
3C

1/2
3 ξ3/2),

where ξ = lnω + C−1
3 (a2

2 − a2C2 − 1).

G. C1 = 2, C3 < 0, 1− a2
2 + a2C2 ≥ 0:

ϕ3 = W (κ, µ, 1
2(−C3)1/2ω2),

where κ = 1
8(−C3)−1/2(−4α4 +a2

2−2α2a2), µ = 1
2(1−a2

2 +a2C2)1/2. Here W (κ, µ, τ)
is the general solution of the Whittaker equation (4.21).

5–7. Identical corollaries of system (6.12), (6.13), and (6.14) are the equations

ϕ2 = aϕ1 + C1, (6.24)

h = a(1 + a2)ϕ1
ω + (2 + 2a2 − aC1)ϕ1 + C2, (6.25)

(1 + a2)ϕ1
ωω+(4a−C1)ϕ1

ω + ϕ1ϕ1+4ϕ1+(1 + a2)−1(C2
1 +2C2)=0. (6.26)

We found the following solutions of (6.26):

A. If (1 + a2)−1(C2
1 + 2C2) < 4:

ϕ1 = (4− (1 + a2)−1(C2
1 + 2C2))

1/2 − 2. (6.27)

B. If C1 = 4a:

ϕ1 = −6℘

(
ω

(1 + a2)1/2
+ C4,

4
3
− (C2

1 + 2C2)
3(1 + a2)

, C3

)
− 2. (6.28)

Here and below ℘(τ,κ1,κ2) is the Weierstrass function satisfying equation (6.15). If
C2 = 2− 6a2 and C3 = 0, a particular case of (6.28) is the function

ϕ1 = −6(1 + a2)ω2 − 2 (6.29)
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(the constant C4 is considered to vanish).

C. If C1 6= 4a, (1 + a2)−1(C2
1 + 2C2)− 4 = −9µ4:

ϕ1 = −6µ2e−2ξ℘(e−ξ + C4, 0, C3) + 3µ2 − 2, (6.30)

where ξ = (1 + a2)−1/2µω, µ = 1
5(4a − C1)(1 + a2)−1/2. If C3 = 0, a paticular case of

(6.30) is the function

ϕ1 = −6µ2e−2ξ(e−ξ + C4)−2 + 3µ2 − 2, (6.31)

where the constant C4 is considered not to vanish.
The function ϕ3 has to be found for systems (6.12), (6.13), and (6.14) individually.

5. The function ϕ3 satisfy the equation

(1 + a2)ϕ3
ωω − (C1 + 4a)ϕ3

ω − (2ϕ1 − 4)ϕ3 − α5 = 0.

If ϕ1 is determined by (6.27), we obtain

ϕ3 = exp(1
2(1 + a2)−1(C1 + 4a)ω)·

C5 exp(ν1/2ω) + C6 exp(−ν1/2ω), ν > 0
C5 cos((−ν)1/2ω) + C6 sin((−ν)1/2ω), ν < 0
C5 + C6ω, ν = 0

+


−α5(2ϕ1 − 4)−1, 2ϕ1 − 4 6= 0
−α5(4a+ C1)−1ω, 2ϕ1 − 4 = 0, C1 + 4a 6= 0
1
2α5(1 + a2)−1ω2, 2ϕ1 − 4 = 0, C1 + 4a = 0

 ,
where ν = 1

4(1 + a2)−2(C1 + 4a)2 − (1 + a2)−1(4− 2ϕ1).

6. In this case ϕ3 satisfy the equation

(1 + a2)ϕ3
ωω − C1ϕ

3
ω = a1ϕ

1.

Therefore,

ϕ3 = C5 + C6 exp((1 + a2)−1C1ω) + a1C
−1
1

(∫
ϕ1(ω)dω+

exp((1 + a2)−1C1ω)
∫

exp(−(1 + a2)−1C1ω)ϕ1(ω)dω
)

for C1 6= 0, and

ϕ3 = C5 + C6ω + a1(1 + a2)−1(ω
∫
ϕ1(ω)dω −

∫
ωϕ1(ω)dω)

for C1 = 0.

7. The function ϕ3 satisfy the equation

(1 + a2)ϕ3
ωω − (C1 + 2a1a)ϕ3

ω + (a2
1 − a1ϕ

1)ϕ3 = 0. (6.32)
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A. If ϕ1 is determined by (6.27), it follows that

ϕ3 = exp(1
2(1 + a2)−1(C1 + 2a1a)ω)·

C5 exp(ν1/2ω) + C6 exp(−ν1/2ω), ν > 0
C5 cos((−ν)1/2ω) + C6 sin((−ν)1/2ω), ν < 0
C5 + C6ω, ν = 0

 ,
where ν = 1

4(1 + a2)−2(C1 + 2a1a)2 − (1 + a2)−1(a2
1 − a1ϕ

1).

B. If C1 = 4a, that is, ϕ1 is determined by (6.27), we obtain

ϕ3 = exp(a(a1 + 2)(1 + a2)−1ω)θ(τ),

where τ = (1+ a2)−1/2ω+C4. Here the function θ = θ(τ) is the general solution of of the
following Lame equation ([19]):

θττ + (6a1℘(τ) + a2
1 + 2a1 − a2(2 + a1)2(1 + a2)−1)θ = 0

with the Weierstrass function

℘(τ) = ℘
(
τ, 1

3(4− (1 + a2)−1(C2
1 + 2C2)), C3

)
.

Consider the particular case when C2 = 2 − 6a2 and C3 = 0 additionally, i.e., ϕ1

can be given in form (6.29). Depending on the values of a and a1, we obtain the following
expression for ϕ3:

Case 1. a1 6= −2, a1 6= 2a2:

ϕ3 = |ω|1/2exp

(
a(2 + a1)
1 + a2

ω

)
Zν

(
((2 + a1)(a1 − 2a2))1/2

1 + a2
ω

)
,

where ν = (1
4 − 6a1)1/2.

Case 2. a1 = −2: ϕ3 = C5ω
4 + C6ω

−3.

Case 3. a1 = 2a2:

Case 3.1. 48a2 < 1: ϕ3 = |ω|1/2e2aω(C5ω
σ + C6ω

−σ),
where σ = 1

2

√
1− 48a2.

Case 3.2. 48a2 = 1, that is, a = ± 1
12

√
3: ϕ3 = |ω|1/2(C5 + C6 lnω).

Case 3.3. 48a2 > 1: ϕ3 = |ω|1/2e2aω(C5 cos(γ lnω) + C6 sin(γ lnω)),
where γ = 1

2

√
48a2 − 1.

C. Let the conditions

C1 6= 4a, (1 + a2)−1(C2
1 + 2C2)− 4 = −9µ4

be satisfied, that is, let ϕ1 be determined by (6.30). Transforming the variables in equation
(6.32) by the formulas:

ϕ3 = τ−1/2 exp
(

1
2(C1 + 2aa1)(1 + a2)−1ω

)
θ(τ),
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τ = exp(−µ(1 + a2)−1/2ω),

we obtain the following equation in the function θ = θ(τ):

τ2θττ + (6a1τ
2℘(τ + C4, 0, C3) + σ)θ = 0, (6.33)

where σ = µ−2(a2
1 + 2a1 − 1

4(1 + a2)−1(C2
1 + 2aa1)2)− 3a1 + 1

4 . If σ = 0, equation (6.33)
is a Lame equation.

In the particular case when ϕ1 is determined by (6.31), equation (6.33) has the form:

τ2(τ + C4)2θττ + (6a1τ
2 + σ(τ + C4)2)θ = 0. (6.34)

By means of the following transformation of variables:

θ = |ξ|ν1 |ξ − 1|ν2ψ(ξ), ξ = −C−1
4 τ,

where ν1(ν1 − 1) + σ = 0 and ν2(ν2 − 1) + 6a1 = 0, equation (6.34) is reduced to a
hypergeometric equation of the form (see [19]):

ξ(ξ − 1)ψξξ + (2(ν1 + ν2)ξ − 2ν1)ψξ + 2ν1ν2ψ = 0.

If σ = 0, equation (6.34) implies that

(τ + C4)2θττ + 6a1θ = 0.

Therefore,

θ = C5|τ + C4|1/2−ν + C6|τ + C4|1/2+ν

if a1 <
1
24 , where ν = (1

4 − 6a1)1/2 ,

θ = |τ + C4|1/2(C5 + C6 ln |τ + C4|)

if a1 = 1
24 , and

θ = |τ + C4|1/2(C5 cos(ν ln |τ + C4|) + C6 sin(ν ln |τ + C4|))

if a1 >
1
24 , where ν = (6a1 − 1

4)1/2.

7 Exact solutions of system (2.9)

Among the reduced systems from Sec. 2, only particular cases of system (2.9) have Lie
symmetry operators that are not induced by elements from A(NS). Therefore, Lie reduc-
tions of the other systems from Sec. 2 give only solutions that can be obtained by means
of reducing the NSEs with two- and three-dimensional subalgebras of A(NS).

Here we consider system (2.9) with ρi vanishing. As mentioned in Note 2.5, in this
case the vector-function ~m has the form ~m = η(t)~e, where ~e = const, |~e| = 1, and
η = η(t) = |~m(t)| 6= 0. Without loss of generality we can assume that ~e = (0, 0, 1), i.e.,

~m = (0, 0, η(t)).

For such vector ~m, conditions (2.5) are satisfied by the following vector ~ni:

~n1 = (1, 0, 0), ~n2 = (0, 1, 0).
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Therefore, ansatz (2.4) and system (2.9) can be written, respectively, in the forms:

u1 = v1, u2 = v2, u3 = (η(t))−1(v3 + ηt(t)x3),

p = q − 1
2ηtt(t)(η(t))

−1x2
3,

(7.1)

where v = v(y1, y2, y3), q = q(y1, y2, y3), yi = xi, y3 = t , and

vi
t + vjvi

j − vi
jj + qi = 0,

v3
t + vjv3

j − v3
jj = 0,

vi
i + ρ3 = 0,

(7.2)

where ρ3 = ρ3(t) = ηt/η.
It was shown in Note 2.8 that there exists a local transformation which make ρ3 vanish.

Therefore, we can consider system (7.2) only with ρ3 vanishing and extend the obtained
results in the case ρ3 6= 0 by means of transformation (2.12). However it will be sometimes
convenient to investigate, at once, system (7.2) with an arbitrary function ρ3.

The MIA of (7.2) with ρ3 = 0 is given by the algebra

B =< R3(ψ̄), Z1(λ), D1
3, ∂t, J

1
12, ∂v3 , v3∂v3 >

(see notations in Subsec. 2.1). We construct complete sets of inequivalent one-dimensional
subalgebras of B and choose such algebras, among these subalgebras, that can be used
to reduce system (7.2) and do not lie in the linear span of the operators R3(ψ̄), Z1(λ),
J1

12, i.e., the operators which are induced by operators from A(NS) for arbitrary ρ3. As
a result we obtain the following algebras (more exactly, the following classes of algebras):

The one-dimentional subalgebras:

1. B1
1 =< D1

3 + 2κJ1
12 + 2γv3∂v3 + 2β∂v3 >, where γβ = 0.

2. B1
2 =< ∂t + κJ1

12 + γv3∂v3 + β∂v3 >, where γβ = 0, κ ∈ {0; 1}.
3. B1

3 =< J1
12 + γv3∂v3 + Z1(λ(t)) >, where γ 6= 0, λ ∈ C∞((t0, t1),R).

4. B1
4 =< R3(ψ̄(t))+γv3∂v3 >, where γ 6= 0, ψ̄(t) = (ψ1(t), ψ2(t)) 6= (0, 0) ∀t ∈ (t0, t1),

ψi ∈ C∞((t0, t1),R).

The two-dimentional subalgebras:

1. B2
1 =< ∂t + β2∂v3 , D1

3 + κJ1
12 + γv3∂v3 + β1∂v3 >, where γβ1 = 0, (γ − 2)β2 = 0.

2. B2
2 =< D1

3 + 2γ1v
3∂v3 + 2β1∂v3 , J1

12 + γ2v
3∂v3 + β2∂v3 + Z1(ε|t|−1) >, where

γ1β1 = 0, γ2β2 = 0, γ1β2 − γ2β1 = 0.

3. B2
3 =< D1

3 +2κJ1
12+2γ1v

3∂v3 +2β1∂v3 , R3(|t|σ+1/2 cos τ, |t|σ+1/2 sin τ)+γ2v
3∂v3+

β2∂v3 +Z1(ε|t|σ−1) >, where τ = κ ln |t|, (γ1 + σ)β1− γ2β1 = 0, σγ2 = 0, εσ = 0.

4. B2
4 =< ∂t + γ1v

3∂v3 + β1∂v3 , J1
12 + γ2v

3∂v3 + β2∂v3 + Z1(ε) >, where γ1β1 = 0,

γ2β2 = 0, γ1β2 − γ2β1 = 0.

5. B2
5 =< ∂t + κJ1

12 + γ1v
3∂v3 + β1∂v3 , R3(eσt cos κt, eσt sin κt) +Z1(εeσt) + γ2v

3∂v3+
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β2∂v3 >, where (γ1 + σ)β1 − γ2β1 = 0, σγ2 = 0, εσ = 0.

6. B2
6 =< R3(ψ̄1)+γv3∂v3 , R3(ψ̄2) >, where ψ̄i = (ψi1(t), ψi2(t)) 6= (0, 0) ∀t ∈ (t0, t1),

ψij ∈ C∞((t0, t1),R), ψ̄1
tt · ψ̄2 − ψ̄1 · ψ̄2

tt = 0, γ 6= 0. Hereafter ψ̄1 · ψ̄2 := ψ1iψ2i.

Let us reduce system (7.2) to systems of PDEs in two independent variables. With the
algebras B1

1–B1
4 we can construct the following complete set of Lie ansatzes of codimension

1 for system (7.2) with ρ3 = 0:

1. v1 = |t|−1/2(w1 cos τ − w2 sin τ) + 1
2y1t

−1 − κy2t
−1,

v2 = |t|−1/2(w1 sin τ + w2 cos τ) + 1
2y2t

−1 + κy1t
−1,

v3 = |t|γw3 + β ln |t|,

q = |t|−1s+ 1
2(κ2 + 1

4)t−2r2,

(7.3)

where τ = κ ln |t|, γβ = 0,

z1 = |t|−1/2(y1 cos τ + y2 sin τ), z2 = |t|−1/2(−y1 sin τ + y2 cos τ).

Here and below wa = wa(z1, z2), s = s(z1, z2), r = (y2
1 + y2

2)
1/2.

2. v1 = w1 cos κt− w2 sin κt− κy2,

v2 = w1 sin κt+ w2 cos κt+ κy1,

v3 = w3eγt + βt,

q = s+ 1
2κ2r2,

(7.4)

where κ ∈ {0; 1}, γβ = 0,

z1 = y1 cos κt+ y2 sin κt, z2 = −y1 sin κt+ y2 cos κt.

3. v1 = y1r
−1w3 − y2r

−2w1 − γy2r
−2,

v2 = y2r
−1w3 + y1r

−2w1 + γy1r
−2,

v3 = w2eγ arctan y2/y1 ,

q = s+ λ(t) arctan y2/y1,

(7.5)

where z1 = t, z2 = r, γ 6= 0, λ ∈ C∞((t0, t1),R).

4. v̄ = (ψ̄ · ψ̄)−1
(
(w1 + γ)ψ̄ + w3θ̄ + (ψ̄ · ȳ)ψ̄t − z2θ̄t

)
v3 = w2 exp(γ(ψ̄ · ψ̄)−1(ψ̄ · ȳ))

q = s− (ψ̄ · ψ̄)−1(ψ̄tt · ȳ)(ψ̄ · ȳ) + 1
2(ψ̄ · ψ̄)−2(ψ̄tt · ψ̄)(ψ̄ · ȳ)2,

(7.6)

where z1 = t, z2 = (θ̄ · ȳ), γ 6= 0, v̄ = (v1, v2), ȳ = (y1, y2), ψi ∈ C∞((t0, t1),R),
θ̄ = (−ψ2, ψ1).
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Substituting ansatzes (7.3) and (7.4) into system (7.2) with ρ3 = 0, we obtain a reduced
system of the form (6.1), where

α1 = 0, α2 = −1, α3 = −2κ, α4 = γ, α5 = β if t > 0 and

α1 = 0, α2 = 1, α3 = 2κ, α4 = −γ, α5 = −β if t < 0

for ansatz (7.3) and

α1 = 0, α2 = 0, α3 = −2κ, α4 = γ, α5 = β

for ansatz (7.4). System (6.1) is investigated in Sec. 6 in detail.
Because the form of ansatzes (7.3) is not changed after transformation (2.12), it is

convinient to substitute their into a system of form (7.2) with an arbitrary function ρ3.
As a result of substituting, we obtain the following reduced systems:

3. w3
1 + w3w3

2 − z−3
2 (w1 + γ)2 − (w3

22 + z−1
2 w3

2 − z−2
2 w3) + s2 = 0,

w1
1 + w3w1

2 − w1
22 + z−1

2 w1
2 + λ = 0,

w2
1 + w3w2

2 − w2
22 − z−1

2 w2
2 + γz−2

2 w1w2 = 0,

w3
2 + z−1

2 w3 = −η1/η.

(7.7)

4. w1
1 + w3w1

2 − (ψ̄ · ψ̄)w1
22 = 0,

w3
1 + w3w3

2 − (ψ̄ · ψ̄)w3
22 + (ψ̄ · ψ̄)s2 + 2(w1 + γ)(ψ̄ · θ̄)(ψ̄ · ψ̄)−1−

2(ψ̄t · ψ̄)(ψ̄ · ψ̄)−1w3 + (2ψ̄t · ψ̄t − ψ̄tt · ψ̄)(ψ̄ · ψ̄)−1z2 = 0,

w2
1 + w3w2

2 − (ψ̄ · ψ̄)w2
22 + γ(ψ̄ · ψ̄)−1(w1 + (ψ̄t · θ̄)(ψ̄ · ψ̄)−1z2)w2 = 0,

w3
2 + ηt/η = 0.

(7.8)

Unlike systems 8 and 9 from Subsec. 3.2, systems (7.7) and (7.8) are not reduced to linear
systems of PDEs.

Let us investigate system (7.7). The last equation of (7.7) immediately gives

(w3
2 + z−1

2 w3)2 = w3
22 + z−1

2 w3
2 − z−2

2 w3 = 0, w3 = (χ− 1)z−1
2 − 1

2ηtη
−1z2, (7.9)

where χ = χ(t) is an arbitrary differentiable function of t = z2. Then it follows from the
first equation of (7.7) that

s =
∫
z−3
2 (w1 + γ)2dz2 − 1

2(χ− 1)2z−2
2 + 1

4z
2
2

(
(ηt/η)t − 1

2(ηt/η)2
)
− χt ln |z2|.

Substituting (7.9) into the remaining equations of (7.7), we get

w1
1 − w1

22 + (χz−1
2 − 1

2ηtη
−1z2)w1

2 + λ = 0,

w2
1 − w2

22 + ((χ− 2)z−1
2 − 1

2ηtη
−1z2)w2

2 + γz−2
2 w1w2 = 0.

(7.10)

By means of changing the independent variables

τ =
∫
|η(t)|dt, z = |η(t)|1/2z2, (7.11)
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system (7.10) can be transformed to a system of a simpler form:

w1
τ − w1

zz + χ̂z−1w2
z + λ̂|η̂|−1 = 0,

w2
τ − w2

zz + (χ̂− 2)z−1w2
z + γz−2w1w2 = 0,

(7.12)

where η̂(τ) = η(t), χ̂(τ) = χ(t), and λ̂(τ) = λ(t).
If λ(t) = −2Cη(t)(χ(t)− 1) for some fixed constant C, particular solutions of (7.10)

are functions

w1 = Cη(t)z2
2 , w2 = f(z1, z2) exp(γC

∫
η(t)dt),

where f is an arbitrary solution of the following equation

f1 − f22 + ((χ− 2)z−1
2 − 1

2ηtη
−1z2)f2 = 0. (7.13)

In the variables from (7.11), equation (7.13) has form (5.22) with η̃(τ) = χ(t)− 2.
In the case λ(t) = 8C(χ(t)− 1)η(t)

∫
η(t)(χ(t)− 3)dt (C = const), particular solutions

of (7.10) are functions

w1 = C
(
(η(t))2z4

2 − 4z2
2η(t)

∫
η(t)(χ(t)− 3)dt

)
,

w2 = f(z1, z2) exp(1
2(γC)1/2η(t)z2

2 + ξ(t)),

where ξ(t) = −(γC)1/2
∫
η(t)(χ(t) − 3)dt + 4γC

∫
η(t)(

∫
η(t)(χ(t) − 3)dt)dt and f is an

arbitrary solution of the following equation

f1 − f22 + ((χ− 2)z−1
2 − (1

2ηtη
−1 + 2(γC)1/2)z2)f2 = 0. (7.14)

After the change of the independent variables

τ =
∫
|η(t)| exp(4(γC)1/2

∫
η(t)dt)dt, z = |η(t)|1/2 exp(2(γC)1/2

∫
η(t)dt)z2

in (7.14), we obtain equation (5.22) with η̃(τ) = χ(t)− 2 again.
Let us continue to system (7.8). The last equation of (7.8) integrates with respect to

z2 to the following expression: w3 = −ηtη
−1z2 + χ. Here χ = χ(t) is an differentiable

function of z1 = y3 = t. Let us make the transformation from the symmetry group of (7.2):

¯̃v(t, ȳ) = v̄(t, ȳ − ξ̄(t)) + ξ̄t(t), ṽ3 = v3, q̃(t, ȳ) = q(t, ȳ − ξ̄(t))− ξ̄tt(t) · ȳ,

where ξ̄tt · ψ̄ − ξ̄ · ψ̄tt = 0 and

ξ̄t · θ̄ + χ+ ηtη
−1(ξ̄ · θ̄)− |ψ̄|−2(ξ̄ · ψ̄)(ψ̄t · θ̄) + |ψ̄|−2(ξ̄ · θ̄)(θ̄t · θ̄) = 0.

Hereafter |ψ̄|2 = ψ̄ · ψ̄. This transformation does not modify ansatz (7.6), but it makes
the function χ vanish, i.e., w̃3 = −ηtη

−1z2. Therefore, without loss of generality we may
assume, at once, that w3 = −ηtη

−1z2.
Substituting the expression for w3 in the other equations of (7.8), we obtain that

s = z2
2 |ψ̄|−2

(
(1
2 ψ̄tt · ψ̄ − ψ̄t · ψ̄t − (ψ̄t · ψ̄)ηtη

−1)|ψ̄|−2 + 1
2ηttη

−1 − (ηt)2η−2
)
−

2(ψ̄t · θ̄)|ψ̄|−2
∫
w1(z1, z2)dz2,
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w1
1 − η1η

−1z2w
1
2 − |ψ̄|2w1

22 = 0,

w2
1 − η1η

−1z2w
2
2 − |ψ̄|2w2

22 + γ|ψ̄|−2(2(ψ̄t · θ̄)|ψ̄|−2z2 + w1)w2 = 0.
(7.15)

The change of the independent variables

τ =
∫
(η(t)|ψ̄|)2dt, z = η(t)z2

reduces system (7.15) to the following form:

w1
τ − w1

zz = 0,

w2
τ − w2

zz + γ| ¯̂ψ|−4η̂−2(2(¯̂ψt ·
¯̂
θ)η̂z + w1)w2 = 0,

(7.16)

where ¯̂
ψ(τ) = ψ̄(t), ¯̂

θ(τ) = θ̄(t), η̂(τ) = η(t).
Particular solutions of (7.15) are the functions

w1 = C1 + C2η(t)z2 + C3(1
2(η(t)z2)2 +

∫
(η(t)|ψ̄|)2dt),

w2 = f(t, z2) exp(ξ2(t)z2
2 + ξ1(t)z2 + ξ0(t)),

where (ξ2(t), ξ1(t), ξ0(t)) is a particular solution of the system of ODEs:

ξ2t − 2ηtη
−1ξ2 − 4|ψ̄|2(ξ2)2 + 1

2C3γη
2|ψ̄|−2 = 0,

ξ1t − ηtη
−1ξ1 − 4|ψ̄|2ξ2ξ1 + 2γ(ψ̄t · θ̄)|ψ̄|−4 + C2γη|ψ̄|−2 = 0,

ξ0t − 2|ψ̄|2ξ2 − |ψ̄|2(ξ1)2 + γ(C1 + C3
∫
(η(t)|ψ̄|)2dt)|ψ̄|−2 = 0,

and f is an arbitrary solution of the following equation

f1 − |ψ̄|2f22 + ((ηtη
−1 + 4|ψ̄|2ξ2)z2 + 2|ψ̄|2ξ1)f2 = 0. (7.17)

Equation (7.17) is reduced by means of a local transformation of the independent variables
to the heat equation.

Consider the Lie reductions of system (7.2) to systems of ODEs. The second basis
operator of the each algebra B2

k, k = 1, 5 induces, for the reduced system obtained from
system (7.2) by means of the first basis operator, either a Lie symmetry operator from
Table 2 or a operator giving a ansatz of form (6.4). Therefore, the Lie reduction of system
(7.2) with the algebras B2

1 −B2
5 gives only solutions that can be constructed for system

(7.2) by means of reducing with the algebras B1
1 and B1

2 to system (6.1).
With the algebra B2

6 we obtain an ansatz and a reduced system of the following forms:

v̄ = φ̄+ λ−1(θ̄i · ȳ)ψ̄i
t, v3 = φ3 exp(γλ(θ̄1 · ȳ)),

s = h− 1
2λ
−1(ψ̄i

tt · ȳ)(θ̄i · ȳ),
(7.18)

where φa = φa(ω), h = h(ω), ω = t, λ = ψ11ψ22 − ψ12ψ21 = ψ̄1 · θ̄1 = ψ̄2 · θ̄2,
θ̄1 = (ψ22,−ψ21), θ̄2 = (−ψ12, ψ11), and

φ̄t + λ−1(θ̄i · φ̄)ψ̄i
t = 0, φ3

t + (γλ−1(θ̄1 · φ̄)− γ2λ−2(θ̄1 · θ̄1))φ3 = 0,

λ−1(θ̄i · ψ̄i
t) + ηtη

−1 = 0.
(7.19)
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Let us make the transformation from the symmetry group of system (7.2):

¯̃v(t, ȳ) = v̄(t, ȳ − ξ̄) + ξ̄t, ṽ3(t, ȳ) = v3(t, ȳ − ξ̄), s̃(t, ȳ) = s(t, ȳ − ξ̄)− ξ̄tt · ȳ,

where

ξ̄t + λ−1(θ̄i · ξ̄)ψ̄i
t + φ̄ = 0. (7.20)

It follows from (7.20) that ξ̄tt = λ−1(θ̄i · ξ̄)ψ̄i
tt, i.e., θ̄i

tt · ξ̄ − θ̄i · ξ̄tt = 0. Therefore, this
trasformation does not modify ansatz (7.18), but it makes the functions φi vanish. And
without loss of generality we may assume, at once, that φi ≡ 0. Then

φ3 = C exp
(∫

(γλ−1|θ|)2dt
)
, C = const.

The last equation of system (7.19) is the compatibility condition of system (7.2) and ansatz
(7.18).

8 Conclusion

In this article we reduced the NSEs to systems of PDEs in three and two independent
variables and systems of ODEs by means of the Lie method. Then, we investigated
symmetry properties of the reduced systems of PDEs and made Lie reductions of systems
which admitted non-trivial symmetry operators, i.e., operators that are not induced by
operators from A(NS). Some of the systems in two independent variables were reduced to
linear systems of either two one-dimensional heat equations or two translational equations.
We also managed to find exact solutions for most of the reduced systems of ODEs.

Now, let us give some remaining problems. Firstly, we failed, for the present, to
describe the non-Lie ansatzes of form 1.6 that reduce the NSEs. (These ansatzes include,
for example, the well-known ansatzes for the Karman swirling flows (see bibliography in
[16]). One can also consider non-local ansatzes for the Navier-Stokes field, i.e., ansatzes
containing derivatives of new unknown functions.

Second problem is to study non-Lie (i.e., non-local, conditional, and Q-conditional)
symmetries of the NSEs [13].

And finally, it would be interesting to investigate compatability and to construct exact
solutions of overdetermined systems that are obtained from the NSEs by means of different
additional conditions. Usually one uses the condition where the nonlinearity has a simple
form, for example, the potential form (see review [36]), i.e., rot((~u · ~∇)~u) = ~0 (the NS fields
satisfying this condition is called the generalized Beltrami flows). We managed to describe
the general solution of the NSEs with the additional condition where the convective terms
vanish [29, 30]. But one can give other conditions, for example,

4~u = ~0, ~ut + (~u · ~∇)~u = ~0,

and so on.
We will consider the problems above elsewhere.
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Appendix

A Inequivalent one-, two-, and three-dimensional subal-
gebras of A(NS)

To find complete sets of inequivalent subalgebras of A(NS), we use the method given, for
example, in [27, 28]. Let us describe it briefly.

1. We find the commutation relations between the basis elements of A(NS).
2. For arbitrary basis elements V , W 0 of A(NS) and each ε ∈ R we calculate the

adjoint action

W (ε) = Ad(εV )W 0 = Ad(exp(εV ))W 0

of the element exp(εV ) from the one-parameter group generated by the operator V on
W 0. This calculation can be made in two ways: either by means of summing the Lie series

W (ε) =
∞∑

n=0

εn

n!
{V n,W 0} = W 0 +

ε

1!
[V,W 0] +

ε2

2!
[V, [V,W 0]] + . . . , (A.1)

where {V 0,W 0} = W 0, {V n,W 0} = [V, {V n−1,W 0}], or directly by means of solving the
initial value problem

dW (ε)
dε

= [V,W (ε)], W (0) = W 0. (A.2)

3. We take a subalgebra of a general form with a fixed dimension. Taking into account
that the subalgebra is closed under the Lie bracket, we try to simplify it by means of
adjoint actions as much as possible.

A.1 The commutation relations and the adjoint representation of the
algebra A(NS)

Basis elements (1.2) of A(NS) satisfy the following commutation relations:

[J12, J23] = −J31, [J23, J31] = −J12, [J31, J12] = −J23,

[∂t, Jab] = [D,Jab] = 0, [∂t, D] = 2∂t,

[∂t, R(~m)] = R(~mt), [D,R(~m)] = R(2t~mt − ~m),

[∂t, Z(χ)] = Z(χt), [D,Z(χ)] = Z(2tχt + 2χ),

[R(~m), R(~n)] = Z(~mtt · ~n− ~m · ~ntt), [Jab, R(~m)] = R( ~̃m),

[Jab, Z(χ)] = [Z(χ), R(~m)] = [Z(χ), Z(η)] = 0,

(A.3)

where m̃a = mb, m̃b = −ma, m̃c = 0, a 6= b 6= c 6= a.
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Note A.1 Relations (A.3) imply that the set of operators (1.2) generates an algebra when,
for example, the parameter-functions ma and χ belong to C∞((t0, t1),R) (C∞0 ((t0, t1),R),
A((t0, t1),R)), i.e., the set of infinite-differentiable (infinite-differentiable finite, real an-
alytic) functions from (t0, t1) in R, where −∞ ≤ t0 < t1 ≤ +∞. But the NSEs (1.1)
admit operators (1.3) and (1.4) with parameter-functions of a less degree of smooth-
ness. Moreover, the minimal degree of their smoothness depends on the smoothness that
is demanded for the solutions of the NSEs (1.1). Thus, if ua ∈ C2((t0, t1) × Ω,R)
and p ∈ C1((t0, t1) × Ω,R), where Ω is a domain in R3, then it is sufficient that
ma ∈ C3((t0, t1),R) and χ ∈ C1((t0, t1),R). Therefore, one can consider the ”pseu-
doalgebra” generated by operators (1.2). The prefix ”pseudo-” means that in this set of
operators the commutation operation is not determined for all pairs of its elements, and
the algebra axioms are satisfied only by elements, where they are defined. It is better to
indicate the functional classes that are sets of values for the parameters ma and χ in
the notation of the algebra A(NS). But below, for simplicity, we fix these classes, taking
ma, χ ∈ C∞((t0, t1),R), and keep the notation of the algebra generated by operators (1.2)
in the form A(NS). However, all calculations will be made in such a way that they can
be translated for the case of a less degree of smoothness.

Most of the adjoint actions are calculated simply as sums of their Lie series. Thus,

Ad(ε∂t)D = D + 2ε∂t, Ad(εD)∂t = e−2ε∂t,

Ad(εZ(χ))∂t = ∂t − εZ(χt), Ad(εZ(χ))D = D − εZ(2tχt + 2χ),

Ad(εR(~m))∂t = ∂t − εR(~mt)− 1
2ε

2Z(~mt · ~mtt − ~m · ~mttt),

Ad(εR(~m))D = D − εR(2t~mt − ~m)−

1
2ε

2Z(2t~mt · ~mtt − 2t~m · ~mttt − 4~m · ~mtt),

Ad(εR(~m))Jab = Jab − εR( ~̃m) + ε2Z(mamb
tt −ma

ttm
b),

Ad(εR(~m))R(~n) = R(~n) + εZ(~mtt · ~n− ~m · ~ntt), Ad(εJab)R(~m) = R( ~̂m),

Ad(εJab)Jcd = Jcd cos ε+ [Jab, Jcd] sin ε ((a, b) 6= (c, d) 6= (b, a)),

(A.4)

where

m̃a = mb, m̃b = −ma, m̃c = 0, a 6= b 6= c 6= a,

m̂d = md cos ε+ m̃d sin ε, m̂c = mc, a 6= b 6= c 6= a, d ∈ {a; b}.

Four adjoint actions are better found by means of integrating a system of form (A.2). As
a result we obtain that

Ad(ε∂t)Z(χ(t)) =Z(χ(t+ ε)), Ad(εD)Z(χ(t)) =Z(e2εχ(te2ε)),

Ad(ε∂t)R(~m(t))=R(~m(t+ ε)), Ad(εD)R(~m(t))=R(e−ε ~m(te2ε)).
(A.5)

Cases where adjoint actions coincide with the identical mapping are omitted.
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Note A.2 If Z(χ(t)) ∈ A(NS)[C∞((t0, t1),R)] with −∞ < t0 or t1 < +∞, the ad-
joint representation Ad(ε∂t) (Ad(εD)) gives an equivalence relation between the operators
Z(χ(t)) and Z(χ(t+ ε)) (Z(χ(t)) and Z(e2εχ(te2ε))) that belong to the different algebras

A(NS)[C∞((t0, t1),R)] and A(NS)[C∞((t0 − ε, t1 − ε),R)]

(A(NS)[C∞((t0, t1),R)] and A(NS)[C∞((t0e−2ε, t1e
−2ε),R)])

respectively. An analogous statement is true for the operator R(~m). Equivalence of subal-
gebras in Theorems A.1 and A.2 is also meant in this sense.

Note A.3 Besides the adjoint representations of operators (1.2) we make use of discrete
transformation (1.6) for classifying the subalgebras of A(NS),

To prove the theorem of this section, the following obvious lemma is used.

Lemma A.1 Let N ∈ N.

A. If χ ∈ CN ((t0, t1),R), then ∃η ∈ CN ((t0, t1),R): 2tηt + 2η = χ.

B. If χ ∈ CN ((t0, t1),R), then ∃η ∈ CN ((t0, t1),R): 2tηt − η = χ.

C. If mi ∈ CN ((t0, t1),R) and a ∈ R, then ∃li ∈ CN ((t0, t1),R):

2tl1t − l1 + al2 = m1, 2tl2t − l2 − al1 = m2.

A.2 One-dimensional subalgebras

Theorem A.1 A complete set of A(NS)-inequivalent one-dimensional subalgebras of
A(NS) is exhausted by the following algebras:

1. A1
1(κ) =< D + 2κJ12 >, where κ ≥ 0.

2. A1
2(κ) =< ∂t + κJ12 >, where κ ∈ {0; 1}.

3. A1
3(η, χ) =< J12+R(0, 0, η(t))+Z(χ(t)) > with smooth functions η and χ. Algebras

A1
3(η, χ) and A1

3(η̃, χ̃) are equivalent if ∃ε, δ ∈ R, ∃λ ∈ C∞((t0, t1),R):

η̃(t̃) = e−εη(t), χ̃(t̃) = e2ε(χ(t) + λtt(t)η(t)− λ(t)ηtt(t)), (A.6)

where t̃ = te−2ε + δ.

4. A1
4(~m,χ) =< R(~m(t))+Z(χ(t)) > with smooth functions ~m and χ: (~m,χ) 6≡ (~0, 0).

Algebras A1
4(~m,χ) and A1

4( ~̃m, χ̃) are equivalent if ∃ε, δ ∈ R, ∃C 6= 0, ∃B ∈ O(3),
∃~l ∈ C∞((t0, t1),R3):

~̃m(t̃) = Ce−εB~m(t), χ̃(t̃) = Ce2ε(χ(t) +~ltt(t) · ~m(t)− ~mtt(t) ·~l(t)), (A.7)

where t̃ = te−2ε + δ.
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P r o o f Consider an arbitrary one-dimensional subalgebra generated by

V = a1D + a2∂t + a3J12 + a4J23 + a5J31 +R(~m) + Z(χ).

The coefficients a4 and a5 are omitted below since they always can be made to vanish by
means of the adjoint representations Ad(ε1J12) and Ad(ε2J31).

If a1 6= 0 we get ã1 = 1 by means of a change of basis. Next, step-by-step we make a2,
~m, and χ vanish by means of the adjoint representations Ad(−1

2a2a
−1
1 ∂t), Ad(R(~l)), and

Ad(Z(χ)), where

~l∈C∞((t0 + 1
2a2a

−1
1 , t1 + 1

2a2a
−1
1 ),R3), η∈C∞((t0 + 1

2a2a
−1
1 , t1 + 1

2a2a
−1
1 ),R),

and ~l, η are solutions of the equations

2t~lt −~l + a3a
−1
1 (l2,−l1, 0)T = ~̂m, 2tηt + 2η = χ̂+ 1

2(~ltt · ~̂m−~l · ~̂mtt)

with ~̂m(t) = a−1
1 ~m(t− 1

2a2a
−1
1 ) and χ̂(t) = a−1

1 χ(t− 1
2a2a

−1
1 ). Such ~l and η exist in virtue

of Lemma A.1. As a result we obtain the algebra A1
1(κ), where 2κ = a3a

−1
1 . In case κ < 0

additionally one has to apply transformation (1.6) with b = 1.
If a1 = 0 and a2 6= 0, we make ã2 = 1 by means of a change of basis. Next, step-by-step

we make ~m and χ vanish by means of the adjoint representations Ad(R(~l)) and Ad(Z(χ)),
where ~l ∈ C∞((t0, t1),R3), η ∈ C∞((t0, t1),R), and

a2
~lt + a3(l2,−l1, 0)T = ~m, a2ηt = χ+ 1

2(~ltt · ~m−~l · ~mtt).

If a3 = 0 we obtain the algebra A1
2(0) at once. If a3 6= 0, using the adjoint representation

Ad(εD) and transformation (1.6) (in case of need), we obtain the algebra A1
2(1).

If a1 = a2 = 0 and a3 6= 0, after a change of basis and applying the adjoint repre-
sentation Ad(R(−a−1

3 m2, a−1
3 m1, 0)) we get the algebra A1

3(η, χ̃), where η = a−1
3 m3 and

χ̃ = a−1
3 χ+ a−2

3 (m1
ttm

2 −m1m2
tt). Equivalence relation (A.6) is generated by the adjoint

representations Ad(εD), Ad(δ∂t), and Ad(R(0, 0, λ)).
If a1 = a2 = a3 = 0, at once we get the algebra A1

4(~m,χ). Equivalence relation (A.7)
is generated by the adjoint representations Ad(εD), Ad(δ∂t), Ad(R(~l)), and Ad(εabJab).

A.3 Two-dimensional subalgebras

Theorem A.2 A complete set of A(NS)-inequivalent two-dimensional subalgebras of
A(NS) is exhausted by the following algebras:

1. A2
1(κ) =< ∂t, D + κJ12 >, where κ ≥ 0.

2. A2
2(κ, ε) =< D, J12 +R(0, 0,κ|t|1/2) + Z(εt−1) >, where κ ≥ 0, ε ≥ 0.

3. A2
3(κ, ε) =< ∂t, J12 +R(0, 0,κ) + Z(ε) > , where κ ∈ {0; 1}, ε ≥ 0 if κ = 1 and

ε ∈ {0; 1} if κ = 0.

4. A2
4(σ,κ, µ, ν, ε) =< D+2κJ12, R(|t|σ+1/2(ν cos τ, ν sin τ, µ))+Z(ε|t|σ−1) >, where

τ = κ ln |t|, κ > 0, µ ≥ 0, ν ≥ 0, µ2 + ν2 = 1, εσ = 0, and ε ≥ 0.

5. A2
5(σ, ε) =< D, R(0, 0, |t|σ+1/2) + Z(ε|t|σ−1) >, where εσ = 0 and ε ≥ 0.
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6. A2
6(σ, µ, ν, ε) =< ∂t + J12, R(νeσt cos t, νeσt sin t, µeσt) + Z(εeσt) >, where µ ≥ 0,

ν ≥ 0, µ2 + ν2 = 1, εσ = 0, and ε ≥ 0.

7. A2
7(σ, ε) =< ∂t, R(0, 0, eσt) +Z(εeσt) >, where σ ∈ {−1; 0; 1}, εσ = 0, and ε ≥ 0.

8. A2
8(λ, ψ

1, ρ, ψ2) =< J12 +R(0, 0, λ)+Z(ψ1), R(0, 0, ρ)+Z(ψ2) > with smooth func-
tions (of t) λ, ρ, and ψi: (ρ, ψ2) 6≡ (0, 0) and λttρ− λρtt ≡ 0. Algebras A2

8(λ, ψ
1, ρ, ψ2)

and A2
8(λ̃, ψ̃

1, ρ̃, ψ̃2) are equivalent if ∃C1 6= 0, ∃ε, δ, C2 ∈ R, ∃θ ∈ C∞((t0, t1),R):

λ̃(t̃) = eε(λ(t) + C2ρ(t)), ρ̃(t̃) = C1e
−ερ(t),

ψ̃1(t̃) = e2ε(ψ1(t) + θtt(t)λ(t)− θ(t)λtt(t)+

+C2(ψ2(t) + θtt(t)ρ(t)− θ(t)ρtt(t))),

ψ̃2(t̃) = C1e
2ε(ψ2(t) + θtt(t)ρ(t)− θ(t)ρtt(t)),

(A.8)

where t̃ = te−2ε + δ.

9. A2
9(~m

1, χ1, ~m2, χ2) =< R(~m1(t)) + Z(χ1(t)), R(~m2(t)) + Z(χ2(t)) > with smooth
functions ~mi and χi:

~m1
tt · ~m2 − ~m1 · ~m2

tt = 0, rank((~m1, χ1), (~m2, χ2)) = 2.

Algebras A2
9(~m

1, χ1, ~m2, χ2) and A2
9( ~̃m1, χ̃1, ~̃m2, χ̃2) are equivalent if ∃ε, δ ∈ R,

∃{aij}i,j=1,2 : det{aij} 6= 0, ∃B ∈ O(3), ∃~l ∈ C∞((t0, t1),R3):

~̃mi(t̃) = e−εaijB~m
j(t),

χ̃i(t̃) = e2εaij(χj(t) +~ltt(t) · ~mj(t)−~l(t) · ~mj
tt(t)),

(A.9)

where t̃ = te−2ε + δ.

10. A2
10(κ, σ) =< D + κJ12, Z(|t|σ) >, where κ ≥ 0, σ ∈ R.

11. A2
11(σ) =< ∂t + J12, Z(eσt) >, where σ ∈ R.

12. A2
12(σ) =< ∂t, Z(eσt) > where σ ∈ {−1; 0; 1}.

The proof of Theorem A.2 is analogous to that of Theorem A.1. Let us take an
arbitrary two-dimensional subalgebra generated by two linearly independent operators of
the form

V i = ai
1D + ai

2∂t + ai
3J12 + ai

4J23 + ai
5J31 +R(~mi) + Z(χi),

where ai
n = const(n = 1, 5) and [V 1, V 2] ∈< V 1, V 2 > . Considering the different possible

cases we try to simplify V i by means of adjoint representation as much as possible. Here
we do not present the proof of Theorem A.2 as it is too cumbersome.
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A.4 Three-dimensional subalgebras

We also constructed a complete set of A(NS)-inequivalent three-dimensional subalgebras.
It contains 52 classes of algebras. By means of 22 classes from this set one can obtain
ansatzes of codimension three for the Navier-Stokes field. Here we only give 8 superclasses
that arise from unification of some of these classes:

1. A3
1 =< D, ∂t, J12 >.

2. A3
2 =< D + κJ12, ∂t, R(0, 0, 1) >, where κ ≥ 0.

Here and below κ, σ, ε1, ε2, µ, ν, and aij are real constants.

3. A3
3(σ, ν, ε1, ε2) =< D, J12 + ν(R(0, 0, |t|1/2 ln |t|) + Z(ε2|t|−1 ln |t|)) + Z(ε1|t|−1),

R(0, 0, |t|σ+1/2) + Z(ε2|t|σ−1) >, where νσ = 0, ε1 ≥ 0, ν ≥ 0, and σε2 = 0.

4. A3
4(σ, ν, ε1, ε2) =< ∂t, J12 +Z(ε1)+ ν(R(0, 0, t)+Z(ε2t)), R(0, 0, eσt)+Z(ε2eσt) >,

where νσ = 0, σε2 = 0, and, if σ = 0, the constants ν, ε1, and ε2 satisfy one of the
following conditions:

ν = 1, ε1 ≥ 0; ν = 0, ε1 = 1, ε2 ≥ 0; ν = ε1 = 0, ε2 ∈ {0; 1}.

5. A3
5(κ, ~m

1, ~m2, χ1, χ2) =< D + 2κJ12, R(~m1) + Z(χ1), R(~m2) + Z(χ2) >,

where κ ≥ 0, rank(~m1, ~m2) = 2,

t~mi
t − 1

2 ~m
i + κ(mi2,−mi1, 0)T = aij ~m

j ,

tχi
t + χi = aijχ

j , aij = const,

(a11 + a22)(a21 ~m
1 · ~m1 + (a22 − a11)~m1 · ~m2 − a12 ~m

2 · ~m2+

+2κ(m12m21 −m11m22)) = 0.
(A.10)

This superclass contains eight inequivalent classes of subalgebras that can be obtained
from it by means of a change of basis and the adjoint actions

Ad(δ1D), Ad(δ2J12), Ad(R(~n) + Z(η))

(Ad(δD), Ad(εabJab), Ad(R(~n) + Z(η)))

if κ > 0 (κ = 0) respectively. Here the functions ~n and η satisfy the following equations:

t~nt − 1
2~n+ κ(n2,−n1, 0)T = bi ~m

i,

tηt + η = biχi + 1
2 t(~nttt · ~n− ~ntt · ~nt) + ~ntt · ~n+ κ(n1n2

tt − n1
ttn

2).

6. A3
6(κ, ~m

1, ~m2, χ1, χ2) =< ∂t + κJ12, R(~m1) + Z(χ1), R(~m2) + Z(χ2) >,

where κ ∈ {0; 1}, rank(~m1, ~m2) = 2,

~mi
t − κ(mi2,−mi1, 0)T = aij ~m

j , tχi
t = aijχ

j ,



SYMMETRY REDUCTION AND EXACT SOLUTIONS 183

and aij are constants satisfying (A.10). This superclass contains eight inequivalent classes
of subalgebras that can be obtained from it by means of a change of basis and the adjoint
actions

Ad(δ1∂t), Ad(δ2J12), Ad(R(~n) + Z(η))

(Ad(δ1∂t), Ad(δ2D), Ad(εabJab), Ad(R(~n) + Z(η)))

if κ = 1 (κ = 0) respectively. Here the functions ~n and η satisfy the following equations:

~nt + κ(n2,−n1, 0)T = bi ~m
i,

ηt = biχi + 1
2(~nttt · ~n− ~ntt · ~nt) + κ(n1n2

tt − n1
ttn

2).

7. A3
7(η

1, η2, η3, χ) =< J12 +R(0, 0, η3), R(η1, η2, 0), R(−η2, η1, 0) >, where

ηa ∈ C∞((t0, t1),R), η1
ttη

2 − η1η2
tt ≡ 0, ηiηi 6≡ 0, η3 6= 0.

Algebras A3
7(η

1, η2, η3) and A3
7(η̃

1, η̃2, η̃3) are equivalent if ∃δa ∈ R, ∃δ4 6= 0:

η̃1(t̃) = δ4(η1(t) cos δ3 − η2(t) sin δ3),

η̃2(t̃) = δ4(η1(t) sin δ3 + η2(t) cos δ3),

η̃3(t̃) = e−δ1η3(t),

(A.11)

where t̃ = te−2δ1 + δ2.

8. A3
8(~m

1, ~m2, ~m3) =< R(~m1), R(~m2), R(~m3) >, where

~ma ∈ C∞((t0, t1),R3), rank(~m1, ~m2, ~m3) = 3, ~ma
tt · ~mb − ~ma · ~mb

tt = 0.

Algebras A3
8(~m

1, ~m2, ~m3) and A3
8( ~̃m

1
, ~̃m

2
, ~̃m

3
) are equivalent if ∃δi ∈ R3, ∃B ∈ O(3),

∃{dab} : det{dab} 6= 0 such that

~̃ma(t̃) = dabB~m
b(t), (A.12)

where t̃ = te−2δ1 + δ2.

B On construction of ansatzes for the Navier-Stokes field
by means of the Lie method

The general method for constructing a complete set of inequivalent Lie ansatzes of a
system of PDEs are well known and described, for examle, in [27, 28]. However, in some
cases when the symmetry operators of the system have a special form, this method can
be modified [9]. Thus, in the case of the NSEs, coefficients of an arbitrary operator

Q = ξ0∂t + ξa∂a + ηa∂ua + η0∂p
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from A(NS) satisfy the following conditions:

ξ0 = ξ0(t, ~x), ξa = ξa(t, ~x), ηa = ηab(t, ~x)ub + ηa0(t, ~x),

η0 = η01(t, ~x)p+ η00(t, ~x).
(B.1)

(The coefficients ξa, ξ0, ηa, and η0 also satisfy stronger conditions than (B.1). For example
if Q ∈ A(NS), then ξ0 = ξ0(t), ηab = const, and so on. But conditions (B.1) are sufficient
to simplify the general method.) Therefore, ansatzes for the Navier-Stokes field can be
constructing in the following way:

1. We fix a M -dimensional subalgebra of A(NS) with the basis elements

Qm = ξm0∂t + ξma∂a + (ηmabub + ηma0)∂ua + (ηm01p+ ηm00)∂p, (B.2)

where M ∈ {1; 2; 3}, m = 1,M, and

rank{(ξm0, ξm1, ξm2, ξm3), m = 1,M} = M. (B.3)

To construct a complete set of inequivalent Lie ansatzes of codimension M for the Navier-
Stokes field, we have to use the set of M -dimensional subalgebras from Sec. A. Condition
(B.3) is neeeded for the existance of ansatzes connected with this subalgebra.

2. We find the invariant independent variables ωn = ωn(t, ~x), n = 1, N, where
N = 4−M, as a set of functionally independent solutions of the following system:

Lmω = Qmω = ξm0∂tω + ξma∂aω = 0, m = 1,M, (B.4)

where Lm := ξm0∂t + ξma∂a.

3. We present the Navier-Stokes field in the form:

ua = fab(t, ~x)vb(ω̄) + ga(t, ~x), p = f0(t, ~x)q(ω̄) + g0(t, ~x), (B.5)

where va and q are new unknown functions of ω̄ = {ωn, n = 1, N}. Acting on represen-
tation (B.5) with the operators Qm, we obtain the following equations on functions fab,
ga, f0, and g0:

Lmfab = ηmacf cb, Lmga = ηmabgb + ηma0, c = 1, 3,

Lmf0 = ηm01f0, Lmg0 = ηm01g0 + ηm00.
(B.6)

If the set of functions fab, f0, ga, and g0 is a particular solution of (B.6) and satisfies the
conditions rank{(f1b, f2,b, f3b), b = 1, 3} = 3 and f0 6= 0, formulas (B.5) give an ansatz
for the Navier-Stokes field.

The ansatz connected with the fixed subalgebra is not determined in an unique manner.
Thus, if

ω̃l = ω̃l(ω̄), det
{
∂ω̃l

∂ωn

}
l,n=1,N

6= 0,

f̃ab(t, ~x) = fac(t, ~x)F cb(ω̄), g̃a(t, ~x) = ga(t, ~x) + fac(t, ~x)Gc(ω̄),

f̃0(t, ~x) = f0(t, ~x)F 0(ω̄), g̃0(t, ~x) = g0(t, ~x) + f0(t, ~x)G0(ω̄),

(B.7)
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the formulas

ua = f̃ab(t, ~x)ṽb(¯̃ω) + g̃a(t, ~x), p = f̃0(t, ~x)q(¯̃ω) + g̃0(t, ~x) (B.8)

give an ansatz which is equivalent to ansatz (B.5). The reduced system of PDEs on
the functions ṽa and q̃ is obtained from the system on va and q by means of a local
transformation. Our problem is to find or ”to guess”, at once, such an ansatz that the
corresponding reduced system has a simple and convenient form for our investigation.
Otherwise, we can obtain a very complicated reduced system which will be not convenient
for investigation and we can not simplify it.

Consider a simple example.
Let M = 1 and let us give the algebra < ∂t + κJ12 >, where κ ∈ {0; 1} . For this

algebra, the invariant independent variables ya = ya(t, ~x) are functionally independent
solutions of the equation Ly = 0 (see (B.4)), where

L := ∂t + κ(x1∂x2 − x2∂x1). (B.9)

There exists an infinite set of choices for the variables ya. For example, we can give the
following expressions for ya:

y1 = arctan
x1

x2
− κt, y2 = (x2

1 + x2
2)

1/2, y3 = x3.

However choosing ya in such a way, for κ 6= 0 we obtain a reduced system which strongly
differs from the ”natural” reduced system for κ = 0 (the NSEs for steady flows of a
viscous fluid in Cartesian coordinates). It is better to choose the following variables ya:

y1 = x1 cos κt+ x2 sin κt, y2 = −x1 sin κt+ x2 cos κt, y3 = x3.

The vector-functions ~f b = (f1b, f2b, f3b), b = 1, 3, should be linearly independent solutions
of the system

Lf1 = −κf2, Lf2 = κf1, Lf3 = 0

and the function f0 should satisfy the equation Lf0 = 0 and the condition f0 6= 0. Here
the operator L is defined by (B.9). We give the following values of these functions:

~f 1 = (cos κt, sin κt, 0), ~f 2 = (− sin κt, cos κt, 0), ~f 3 = (0, 0, 1), f0 = 1.

The functions ga and g0 are solutions of the equations

Lg1 = −κg2, Lg2 = κg1, Lg3 = 0, Lg0 = 0.

We can make, for example, ga and g0 vanish. Then the corresponding ansatz has the form:

u1 = ṽ1 cos κt− ṽ2 sin κt, u2 = ṽ1 sin κt+ ṽ2 cos κt, u3 = ṽ3, p = q̃, (B.10)

where ṽa = ṽa(y1, y2, y3) and q̃ = q̃(y1, y2, y3) are the new unknown functions. Substituting
ansatz (B.10) into the NSEs, we obtain the following reduced system:

ṽaṽ1
a − ṽ1

aa + q̃1 + κy2ṽ
1
1 − κy1ṽ

1
2 − κṽ2 = 0,

ṽaṽ2
a − ṽ2

aa + q̃2 + κy2ṽ
2
1 − κy1ṽ

2
2 + κṽ1 = 0,

ṽaṽ3
a − ṽ3

aa + q̃3 + κy2ṽ
3
1 − κy1ṽ

3
2 = 0,

ṽa
a = 0.

(B.11)
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Here subscripts 1,2, and 3 of functions in (B.11) denote differentiation with respect to y1,
y2, and y3 accordingly. System (B.11), having variable coefficients, can be simplified by
means of the local transformation

ṽ1 = v1 − κy2, ṽ2 = v2 + κy1, ṽ3 = v3, q̃ = q + 1
2 (y2

1 + y2
2). (B.12)

Ansatz (B.10) and system (B.11) are transformed under (B.12) into ansatz (2.2) and
system (2.7), where

g1 = −κx2, g2 = κx1, g3 = 0, g0 = 1
2 κ2(x2

1 + x2
2), (B.13)

γ1 = −2κ, and γ2 = 0. Therefore, we can give the values of ga and g0 from (B.13) and
obtain ansatz (2.2) and system (2.7) at once.

The above is a good example how a reduced system can be simplified by means of
modifying (complicating) an ansatz corresponding to it. Thus, system (2.7) is simpler
than system (B.11) and ansatz (2.2) is more complicated than ansatz (B.10).

Finally, let us make several short notes about constructing other ansatzes for the
Navier-Stokes field.

Ansatz corresponding to the algebra A1
4(~m,χ) (see Subsec. A.2) can be constructed

only for such t that ~m(t) 6= ~0. For these values of t, the parameter-function χ can be
made to vanish by means of equivalence transformations (A.7).

Ansatz corresponding to the algebra A2
8(λ, ψ

1, ρ, ψ2) (see Subsec. A.3) can be con-
structed only for such t that ρ(t) 6= 0. For these values of t, the parameter-function
ψ2 can be made to vanish by means of equivalence transformations (A.8). Moreover, it
can be considered that λtρ − λρt ∈ {0; 1}. The algebra obtained finally is denoted by
A2

8(λ, χ, ρ, 0).
Ansatz corresponding to the algebra A2

9(~m
1, χ1, ~m2, χ2) (see Subsec. A.3) can be

constructed only for such t that rank(~m1, ~m2) = 2. For these values of t, the parameter-
functions χi can be made to vanish by means of equivalence transformations (A.9).

The algebras A2
10(κ, σ), A2

11(σ), and A2
12(σ) can not be used to construct ansatzes

by means of the Lie algorithm.
In view of equivalence transformation (A.11), the functions ηi in the algebra

A3
7(η

1, η2, η3) (see Subsec. A.4) can be considered to satisfy the following condition:

η1
t η

2 − η1η2
t ∈ {0; 1

2 }.
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