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Abstract

We show that for a class of boundary value problems, the space of initial functions can
be stratified dependently on the limit behavior (as the time variable tends to infinity)
of solutions. Using known results on universal phenomena appearing in bifurcations of
one parameter families of one-dimensional maps, we establish that, for certain types
of boundary value dependence, a similar quantitative and qualitative universality is
also observed in the stratification and bifurcations of solutions.

Introduction

In this paper we describe universal phenomena (including quantitative ones) in bifurcations
of solutions of boundary value problems, which are generated by the universality in one
parameter families of one-dimensional maps. This universality is based on the following
properties of one-dimensional maps. It is known since sixtieth years that for the continuous
maps of the real line into itself, the coexistence of periods of cycles of such maps obeys
the following ordering of the natural numbers [10]:

1 ≺ 2 ≺ 22 ≺ 23 ≺ . . .

≺ 7 · 22 ≺ 5 · 22 ≺ 3 · 22 ≺ . . . ≺ 7 · 2 ≺ 5 · 2 ≺ 3 · 2 ≺ . . . ≺ 7 ≺ 5 ≺ 3 (1)

namely, if for some n ≥ 1, a continuous map f of the real line has a cycle of period n and
m ≺ n, then f has also a cycle of period m. Since there are different types of cycles with
the same period, it has been understood later that the ordering (1) has a certain analogue
for the set of types of cycles [12]. More detailed, for any n ≥ 1, each cycle of period n
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define a map on the n-point set considered according to the linear order on the real line
or, in other words, a cyclic permutation of integers 1, 2, . . . n that provides an equivalence
relation between cycles of the same period (this idea was treated in various contexts by
many workers). Since the number of different cyclic permutations of n points on the
real line is finite for each n, we have a finite number of different types for cycles of the
same period; these types will be denoted by (n, i) where n is the period of the cycle and
i ∈ {1, . . . , kn}; kn depends on the class of maps under consideration. If we consider the
class of unimodal maps only, then the analogue of the ordering (1) for types of cycles still
remains to be linear. (Recall that a continuous map is called unimodal if it has just one
turning point, i.e., the point where the map has a local extremum and hence it consists
of two monotone branches; for the sake of definiteness, this unique extremal point will be
supposed to be a maximum and denoted by c.) For the class of unimodal maps, we have
either (n, i) ≺ (m, j) or (m, j) ≺ (n, i) for any n, m ≥ 1 and i ∈ {1, . . . kn}, j ∈ {1, . . . km}:
the set of all types of cycles of unimodal maps obeys the ordering

(1, 1) ≺ (2, 1) ≺ (22, 1) ≺ (23, 1) ≺ . . .

≺ (5 · 2, 1) ≺ . . . ≺ (3 · 2, 1) ≺ (12, 2) ≺ . . . ≺ (5, 1) ≺ . . . ≺ (3, 1) ≺ (6, 2) ≺ . . .

≺ (4, k4) ≺ . . . ≺ (5, k5) ≺ . . . ≺ (6, k6) ≺ . . . ≺ (7, k7) ≺ . . . (2)

where “≺” has the same sense as in (1).

Remarks 1. Any (n, i′) in (2) is followed immediately by (2n, i′′) but there are types in
(2) having no immediate predecessor.

2. The ordering for the subset {(n, 1)}∞n=1 of types repeats the ordering (1).
3. The ordering (2) remains true in the space of all continuous maps of the real line if

we consider no other types of cycles additionally.
4. The ordering (1) provides a simple criterion for the complexity of one-dimensional

maps: it is natural to call a map “the simplest” if it has only fixed points and “the most
complicated” if it has a cycle of period 3. A similar criterion of complexity can be based
on the ordering (2).

If we consider a family of unimodal maps continuously depending on a parameter p,
then we can observe the appearance of cycles of various periods in accordance with (1)
and, if we use information about types of cycles, the appearance of various types of cycles
in accordance with (2) as the parameter varies. There are a lot of families of unimodal
maps, for which the appearance of cycles of all types can be observed for a finite interval
of the parameter. The simplest and most remarkable of them are quadratic families a
representative of which may be Fp(x) = −x2 + p. For the quadratic families, the simplest
decomposition of the parameter space with respect to various types of dynamical behavior
takes place and we use this family for our explanations in what follows in order to avoid
unimportant details.

Let p(n, i) denote the greatest lower bound for the set of the parameters p when the
map Fp : x → −x2 + p has a cycle of type (n, i) where (n, i) is from (2). Then by (2) we
must have

p(1, 1) < p(2, 1) < p(22, 1) < p(23, 1) < . . .

< p(5 · 2, 1) < . . . < p(3 · 2, 1) < . . . < p(5, 1) < . . . < p(3, 1) < p(6, 2) < . . .

< p(4, k4) < . . . < p(5, k5) < . . . < p(6, k6) < . . . < p(7, k7) < . . . (3)
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(Note that (3) holds for a much larger class of families of unimodal maps; it is necessary
to require the smoothness of the maps and the parameter dependence.)

For any type (n, i) there is an (open or semi-open) interval A(n, i) of the parameter
values such that the map Fp : x → −x2 +p has an attracting cycle of the type (n, i). For a
large class of families including the quadratic family, these intervals are mutually disjoint
and the points p(n, i) are the left ends of these interval. All intervals A(n, i) belong to
the interval P = [pmin, pmax] in the parameter space where pmin = p(1, 1) and pmax =
lim

n→∞
p(n, kn); in the particular case of the quadratic family Fp(x) = −x2 + p we have P =

[−1
4 , 2]. The interval P in the parameter space is characterized by the property that, for

any parameter value p ∈ P , the map Fp has a finite invariant interval. It has been recently
proved [16] that the set of parameters, for which corresponding maps in the quadratic
family have an attracting cycle, being contained in the interval P , contains an open dense
set in P . On the other hand, by the earlier result [6] the set of parameters corresponding
to maps with absolutely continuous invariant measure has a positive Lebesgue measure
(although, according to the above mentioned result from [16], this set is nowhere dense in
P because it belongs to the complement of the set of parameters when attracting cycles
exist). This shows that from the metric viewpoint, the complex dynamical behavior is not
exceptional in the quadratic family.

Since the interval P is bounded, we can define p(2∞, 1) = lim
n→∞

p(2n, 1). By a straight-
forward calculations we can see also that values p(2n, 1), n = 0, 1, . . ., converge geometri-
cally:

lim
n→∞

p(2n, 1)− p(2n−1, 1)
p(2n+1, 1)− p(2n, 1)

= δ (4)

where δ is the constant equal to 4.669 . . . (Note that the interval A(2n, 1) correspon-
ding to the existence of the attractive cycle of type (2n, 1) for Fp, has its ends at
the points p(2n, 1) and p(2n+1, 1). Hence the constant δ characterizes also the ratio
mes(A(2n, 1))/mes(A(2n+1, 1)) as n → ∞ where mes(·) denotes the Lebesgue measure
of a set.) For the limit parameter value p = p(2∞, 1), the map Fp has a minimal Cantor-
like set, which is the closure of the trajectory of the critical point c = 0 and which attracts
trajectories of almost all (with respect to the Lebesgue measure) points in I0(p). This
Cantor-like set is self-similar and a quantitative characterization of this self-similarity is
reflected by the relation

lim
n→∞

F 2n

p (c)− c

c− F 2n+1

p

= α (5)

for p = p(2∞, 1), where α is the constant equal to 2.502 . . .

Feigenbaum [4] and Collet and Tresser [1] were the first who numerically observed that
the constants δ and α are universal: they discovered independently that these constants
are the same for many different one parameter families of unimodal maps. Later similar
quantitative universalities were established for other sequences of parameter values in (3),
for example, it was observed that

lim
n→∞

lim
k→∞

mes(A((2k + 1)2n, 1))
mes(A((2k + 3)2n, 1))

= γ (6)

where γ = 2.905 . . . is one more universal constant (see [7]). The first rigorous proof of
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the universal phenomena (4) and (5) was obtained by Lanford [8]. For further references
see [3] and [2].

At last, each value p(n, i) in (3) corresponds to the interval P (n, i), which is charac-
terized by the property that, for any p ∈ P (n, i), besides a cycle of type (n, i), the map Fp

has an interval cycle of type (n, i). (Similarly to the definition of a cycle, an interval cycle
is defined to be a finite collection of mutually disjoint intervals cyclically mapped by the
mapping each into another; also similarly to the case of cycles, the type of the interval cycle
can be defined.) In particular, we have P (1, 1) = P , P (2, 1) = (p(2, 1), p(2, 1)) ⊂ P (1, 1)
where p(2, 1) = lim

k→∞
p(2k + 1, 1), . . ., P (2n, 1) = (p(2n, 1), p(2n, 1)) ⊂ P (2n−1, 1) where

p(2n, 1) = lim
k→∞

p((2k + 1)2n−1, 1), and so on. Note that the point p(2∞, 1) is the intersec-

tion of all P (2n, 1), and the length of P (2n+1, 1) is reduced by the factor δ with respect
to the length of P (2n, 1) as n →∞.

In the present paper we develop the results of [15] and show that similar quantitative
and universal phenomena can be observed in solution bifurcations of some boundary value
problems when initial or boundary conditions vary.

Reducible boundary value problems

There is a class of boundary value problems, which can be reduced to difference equations.
We consider the following example of coupled partial differential equations with boundary
and initial conditions:

∂u

∂t
− a

∂u

∂x
= 0,

∂v

∂t
+ b

∂v

∂x
= 0, x ∈ [0, 1], t ≥ 0, (7)

where a, b > 0;

u = v at x = 0,

∂u

∂t
= f(v)

∂v

∂t
at x = 1, (8)

u(x, 0) = s1(x) and v(x, 0) = s2(x). (9)

Solutions of the boundary value problem (7)-(9) are the functions u(x, t) = y1(t + x
a ),

v(x, t) = y2(t − x
b ), which satisfy both boundary and initial conditions. Due to (8) the

problem of determination of such functions can be reduced to the difference-differential
equation

y′(t) = f(y(t− 1))y′(t− 1) (10)

under the initial conditions
y(t) = s(t), t ∈ [0, 1] (11)

where s(t) is defined by the initial conditions (9):

s(t) =

{
s2(1− a+b

a t) if t ∈ [0, a/(a + b)]
s1(a+b

b t− a
b ) if t ∈ [a/(a + b), 1]

. (12)
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It should be noted that equations of the type (10) were studied in [9], [11].
The problem (10)–(11) is reduced to the following difference equation with continuous

argument
y(t) = F (y(t− 1)) + p, p = s(1)− F (s(0)) (13)

under the initial conditions

y(t) = s(t), t ∈ [0, 1), (11′)

where F is a primitive function for f ; we will assume that F (0) = 0.
We see that equation (13) depends on the parameter p = p(s) = s1(1) − F (s2(1))

which is determined by the initial conditions (9). The limit behavior of solutions of the
difference equation (13) with continuous argument depends essentially on the dynamics of
the corresponding map from the one parameter family

y → F (y) + p (14)

of the real line into itself, and since the dynamics of the map varies as the parameter p
varies, the asymptotic behavior of solutions of the boundary value problem (7)–(9) is also
depending on the initial conditions (9) according to the dependence of the dynamics on
the parameter in the family (14).

Note that if the second boundary condition in (8) is replaced by the condition

u = F (v) + p,

where p is a parameter, then evidently the boundary value problem can be also reduced
to the difference equation (13) but in this case the new parameter p is independent from
the initial data. Note also that such method of reduction of boundary value problems to
difference, difference-differential or difference-integral equations has been studied in [13].

Stratification of the space of initial functions

Let us consider equation (10) which the problem (7) – (9) is reduced to. It is clear that
properties of any solution of the problem (7) – (9), including boundedness, periodicity in t
and other ones, are determined by properties of the corresponding solution of the problem
(10)–(11). Every initial function s(t) of the form (12), t ∈ [0, 1], defines a unique solution
ys(t), t ≥ 0, of the equation (10). As we have seen above, the behavior of this solution
depends essentially on the value p(s) = s(1)− F (s(0)) = s1(1)− F (s2(1)).

Let us suppose that the function f in the boundary conditions (8) of the boundary
value problem (7)–(9) belongs to the class C2(R1, R1) of twice continuously differentiable
functions of the real line R1 and satisfies the following two conditions:

(A) f(0) = 0 and f ′(y) < −ε for some fixed ε > 0 and for all y;
(B) yf ′′(y) ≥ 0 for all y.

An example of the function satisfying these conditions may be any linear function of the
form f(y) = −ky where k > 0.

Under these conditions on the function f , any map from the one parameter family
Fp(y) = F (y) + p(s) (see (14)) belongs to the class C3(R1, R1) and satisfy the following
conditions:
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(i) Fp is unimodal, i.e., it has just one point c at which the derivative of Fp vanishes
and alternates its sign (by the condition (A) above we have c = 0 in this case);

(ii) F ′′
p (y) < −ε, i.e., the map Fp is convex;

(iii) Fp has negative Schwarzian derivative, i.e.,

F ′′′
p (y)

F ′
p(y)

− 3
2

(
F ′′

p (y)
F ′

p(y)

)2

< 0 for y 6= c.

The condition (iii) guarantees that the unimodal map Fp has at most one attractor,
and the condition (ii) together with (iii) imply that the dynamics of Fp becomes more
complicated as the parameter p increases.

For the family Fp satisfying the conditions (i)–(iii), the following conclusions can be
derived. Since Fp(y) = F (y) + p is a family of unimodal maps and the parameter p is in-
cluded additively into the family, there exist finite pmin = p(1, 1) and pmax = lim

n→∞
p(n, kn);

pmin is defined by the system of equations y = F (y) + p and F ′(y) = 1 and corresponds
to the appearance of the fixed point; pmax is defined by the equation F (p) = F (p + F (p))
(but F (p) 6= 0) and corresponds to the case when the point y = 0 hits the left fixed point
in two steps (0 → p → p+F (p) → p+F (p+F (p)) = p+F (p) → . . ., i.e., F 2(0) = F 3(0)).

As has been mentioned above, each p ∈ P = [pmin, pmax] corresponds to a bounded
invariant interval I(p) = [ap, a

′
p] where ap is the left one of two fixed points (i.e., the least

of two roots of the equation y = F (y) + p), and a′p is its preimage (i.e., a root of the
equation F (ap) + p = a′p). If p < pmin, then Fn

p (y0) → −∞ for any y0 as n → ∞; if
p > pmax, then Fn

p (y0) → −∞ for any y0 except for points from a Cantor set of zero
Lebesgue measure; if p ∈ P but y0 6∈ I(p), then in this case we have Fn

p (y0) → −∞ as
well. Therefore a solution of the difference equation (13), (11′) is bounded only if the
initial function s(t) satisfies the conditions p(s) = s(1)− F (s(0)) ∈ P and Is(t) ⊂ I(p(s)),
where Is(t) = { y |y = s(t), t ∈ [0, 1]}. (Note that for any p > pmax, there still exist two
bounded solutions y(t) ≡ a where a is one of two fixed points of Fp(y), i.e., of the roots of
the equation a = F (a) + p.)

In the space of initial functions (12) we consider the subset

P = {s ∈ C1([0, 1]) : p(s) ∈ P and s(t) ∈ I(p(s)) for t ∈ [0, 1]}

where I(p(s)) denotes the maximal bounded invariant interval of Fp(s). Then the set P
consists of the initial functions generating bounded solutions of the problem (7)–(9). Note
that the set P is “massive” because it contains an open set (with respect to the uniform
metrics in C([0, 1])).

Considering the continuous map p : C([0, 1]) → R1, which is defined by the equality
p = s1(1) − F (s2(1)), we obtain a stratification of the set of initial functions P of the
boundary value problem (7)–(9) induced by the stratification of the space of parameter
values of the family Fp described in the introductory section. Moreover, the map p :
C([0, 1]) → R1 generate a mesure µ on the set of initial functions defined for preimages
of Lebesgue measurable sets L ∈ R1 by the equality µ(p−1(L)) = mes(L) where mes(L)
denote the Lebesgue measure of L. Using this measure µ and the universality for one-
dimensional maps, we can estimate ”the thickness” of the strata in the space of initial
functions.
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The following theorem is an example of a rigorous result in this direction. Using the
notation from the introductory section, we define

P(2n, 1) = {s ∈ P : p(s) ∈ P (2n, 1)}

and
A((2m + 1)2n, 1) = {s ∈ P : p(s) ∈ A((2m + 1)2n, 1)}

n = 0, 1, 2 . . . and m = 0, 1, 2, . . .. We have that P = P(1, 1) ⊃ P(2, 1) ⊃ P(22, 1) ⊃ . . .
and A(i, 1), i = 1, 2, . . ., are mutually disjoint subsets of P. (Note that each of these sets
has a nonempty interior.)

Theorem 1 With the universal constants δ = 4.669201 . . . and γ = 2.94805 . . ., the
following asymptotic formulas are true:

lim
n→∞

µ(P(2n, 1))
µ(P(2n+1, 1)

= lim
n→∞

µ(A((2m + 1)2n, 1))
µ(A((2m + 1)2n+1, 1))

= δ

(where m ≥ 1 is fixed) and

lim
n→∞

lim
m→∞

µ(A((2m + 1)2n, 1))
µ(A((2m + 3)2n, 1))

= γ.

Similarly to the sets A((2m + 1)2n, 1) we can also define the sets

A(l, i) = {s ∈ P : p(s) ∈ A(l, i)}

and the sets
P(l, i) = {s ∈ P : p(s) ∈ P (l, i)}

for all l ≥ 1 and i = 1, . . . kl, and formulate corresponding statements estimating measures
of these sets.

Using theorem 1 and the results represented in the next section, we can see that
theorem 1 provides an estimate for sets of initial functions generating solutions of the
boundary value problem (7)–(9) in dependence on various types of limit behavior.

Asymptotic properties of solutions

Solutions of the boundary value problem (7)–(9) are single-valued smooth functions defined
in the semi-strip D = {0 ≤ x ≤ 1}×{t ≥ 0}. Nevertheless the function which describes the
limit behavior of a solution may be nonsmooth and even may not be single-valued (see [13]
for more details). Therefore we complete the space C1(D) of continuously differentiable
functions on D containing the solutions of the problem (7)–(9) by many-valued functions
on D, values of which at points of the semi-strip D are either a point or a closed subset
of the real line R1 (it is sufficient to consider only the functions, the values of which are
either a point or a closed interval). This extended space is denoted by C+(D).

In order that the distance between points of the space C+(D) can be measured, we use
the Hausdorff distance between graphs of the functions representing these points: if Γ1
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and Γ2 denote graphs of two functions from C+(D), then the Hausdorff distance between
these graphs is defined to be

∆(Γ1,Γ2) = max{ sup
z∈Γ1

ρ(z,Γ2), sup
z∈Γ2

ρ(z, Γ1)} (15)

where, as is customary, ρ(z, B) denotes the distance from the point z to the set B.
In order to describe the limit behavior of a solution of the problem (7)–(9), we use the

following definition.

Definition Let w1 ∈ C(D) and w2 ∈ C+(D). We say that w2 is a limit function for w1

as t →∞ if
∆
(
ΓT (w1(x, t)),ΓT (w2(x, t))

)
→ 0, as T →∞, (16)

where ΓT (·) denotes the graph of a function for t ≥ T . Functions from C+(D) which are
limit functions for solutions of the boundary value problem (7)–(9) are called generalized
solutions of the problem (7)–(9).

As is customary, we say that a function w(x, t) ∈ C+(D) is periodic with period ν in
t if w(x, t + ν) = w(x, t) for all t ≥ 0, x ∈ [0, 1].

Since any solution of the boundary value problem (7)–(9) has the specific form u(x, t) =
y(t + x

a ), v(x, t) = y(t − x
b ) where y(t) is a solution of the difference-differential problem

(10)–(11), the limit behavior of solutions of the problem (7)–(9) is described by the limit
behavior of corresponding solutions of the problem (10)–(11). Therefore we consider the
family (14) and use the idea of prolongations of trajectories (see, for example, [11]) in order
to understand the limit behavior of solutions: for any point y in the maximal invariant
interval I(p) of the map Fp, we set

F ∗
p (y) =

⋂
ε>0

⋂
j≥0

⋃
i≥j

F i!
p (Uε(y)) (17)

where, as is customary, Uε(y) denotes the ε-neighborhood of the point y in the interval
Ip, the overlined set denotes the closure of this set, i! = 1 · 2 · . . . · i and 0! = 1.

The equality (17) defines a map F ∗
p : I(p) → 2I(p) and the asymptotic behavior of a

solution ys(t) of the difference-differential equation (10) corresponding to an initial function
s(t) that can be characterized by the function y∗s(t), which is defined by the equality

y∗s(t) = F i
p(F

∗
p (s(t− i))) for t ∈ [i, i + 1),

i = 0, 1, 2, . . .. More exactly, by using the Hausdorff distance for graphs of functions, we
have

∆
(
ΓT (ys(t)),ΓT (y∗s(t))

)
→ 0, as T →∞,

where ΓT (y(t)) denotes the graph of a function y(t) for t ≥ T .
The following two propositions consider sets of initial functions which generate solu-

tions characterized respectively by limit generalized solutions of quite different types (see,
for example, [13]).

Proposition 1 In the set P of initial functions generating bounded solutions of the
boundary value problem (7)–(9), there is an open dense subset P+ such that for any
s(t) ∈ P+ the corresponding solution u(x, t), v(x, t) of the problem (7)–(9) tends (in the
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Hausdorff metrics for graphs) as t →∞ to a generalized periodic solution u∗(x, t), v∗(x, t)
(with a period of the form m · ω where m is a positive integer and ω = 1

a + 1
b ). This limit

solution, in turn, is single-valued at almost all points of the semi-strip D (from both an
category and the Lebesgue measure points of view).

On the other hand, due to the above mentioned result of [6], for the induced measure
µ on the set of initial functions, which has been defined above by the relation p(s) =
s(1) − F (s(0)), we have µ(P\P+) > 0. Hence the set of initial functions, which generate
solutions of the boundary value problem (7)–(9) characterized by ”random” asymptotic
behavior, is not exceptional from the metric viewpoint. Namely, the following statement
takes place.

Proposition 2 In the set P of initial functions generating bounded solutions of the
boundary value problem (7)-(9), there is a subset Pσ of positive measure µ such that for
any s(t) ∈ Pσ the corresponding solution u(x, t), v(x, t) of the boundary value problem
(7)–(9), tends as t → ∞ (in the Hausdorff metrics for graphs), to a generalized periodic
solution u∗(x, t), v∗(x, t), which is interval-valued at any point of the semi-strip D.

Of course, it is possible to use more sophisticated metrics in order to describe asymp-
totic behavior of solutions more exactly. For example, if we use the special metric from
[14] involving all finite-dimensional joint distributions combined with averaging operation,
then we can consider generalized periodic solutions in Proposition 2 as random functions
in a certain sense.

Let us consider the sequence

P = P(1, 1) ⊃ P(2, 1) ⊃ P(22, 1) ⊃ P(23, 1) ⊃ . . .

of nested sets of initial functions, which has been defined above. Recall that for any initial
function s ∈ P(2n, 1), the corresponding map Fp has an interval cycle of type (2n, 1). The
map Fp(2∞,1), which corresponds to initial functions from the set P(2∞, 1) =

⋂
n≥0 P(2n, 1),

has an infinite sequence of nested interval cycles of types (2n, 1), n = 0, 1, . . ., which ap-
proximate its Cantor-like attractor. Due to the above mentioned quantitative universality
of the metric structure of this attractor, we can formulate the following statement, which
establishes a possibility for the approximation of solutions of the boundary value problem
(7)–(9) by periodic solutions.

Theorem 2 For any initial function s(t) ∈ P(2n, 1),n ≥ 0, the corresponding solution
u(x, t), v(x, t) of the boundary value problem (7)–(9) can be approximated by the gener-
alized periodic solution u∗∗(x, t), v∗∗(x, t) of period 2n · ω in t (where ω = 1

a + 1
b ) such

that
lim sup
T→∞

∆
(
ΓT (u(x, t)),ΓT (u∗∗(x, t))

)
∼ α−n,

lim sup
T→∞

∆
(
ΓT (v(x, t)),ΓT (v∗∗(x, t))

)
∼ α−n,

where α = 2.502 . . . is a universal constant (see (5)). This generalized periodic solution
can be chosen such that it is single-valued at almost all points (from both the category and
Lebesgue measure viewpoints) in the semi-strip D.

Due to Theorems 1 and 2 we can see that having defined initial functions approximately
to within some ε > 0, it is sufficient to determine F ∗∗

p (y) for some n such that α−n ≈ ε. We
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can see also that the set of initial functions (and hence solutions as well), for which such
approximation holds, is diminishing much faster than ε decreases because the constant δ
is greater than α.

Note that besides the universality argument, the proof of Theorem 2 is based also on
the result of [5] where it has been proved that the attractor of any unimodal map with
negative Schwarzian attracts almost all points in the invariant interval of the map. Note
also that analogous statement may be formulated for other infinite sequences of above
defined sets P(n, i) of initial functions of the boundary value problem (7)–(9).

An example

Let us consider a simple example when the function f(y) in the boundary conditions (8)
is linear: f(y) = −ky where k > 0. In this case the boundary value problem (7)–(9) is
reduced to the following difference equation with continuous argument

y(t) = −k

2
y2(t− 1) + p,

p = p(s(t)) = s1(1) + (s2(1))2,

which corresponds to the family of maps Fp : y → −k
2y2 +p and where the initial function

s(t) is defined by (12). For the sake of definiteness we set k = 2.
For p ∈ [−1/4, 2], the interval I(p) = [−q(p), q(p)], where q(p) = 1/2 +

√
1/4 + p, is

an invariant interval of the map Fp, i.e. Fp(I(p)) ⊂ I(p). For any y 6∈ I(p), points F i
p(y)

tend to −∞ as i → ∞. A solution u(x, t), v(x, t) of the boundary value problem (7)–(9)
is bounded only if

s(t) ∈ P = {s ∈ C1([0, 1]) : s1(1) + (s2(1))2 ∈ [−1/4, 2] and
s(t) ∈ [−q, q] for all t ∈ [0, 1]},

where q = 1/2 +
√

1/4 + s1(1) + (s2(1))2.
Other sets P(2n, 1), n ≥ 1, and A(m, i), m, i ≥ 1, are defined similarly:

P(1, 1) = P, A(1, 1) = {s ∈ P : p(s) ∈ [−1/4, 3/4]},
P(2, 1) = {s ∈ P : p(s) ∈ [3/4, 1.543 . . .]}, A(2, 1) = {s ∈ P : p(s) ∈ [3/4, 5/4]},
P(4, 1) = {s ∈ P : p(s) ∈ [5/4, 1.43 . . .]}, A(4, 1) = {s ∈ P : p(s) ∈ [5/4, 1.368 . . .]},

and so on. Note that having defined P(1, 1), P(2, 1) and several more first sets, we can
determine other sets P(2n, 1) approximately by using estimates established by theorem 1.
An analogous observation is true for the sequence of sets A(2n, 1), n = 0, 1, . . . Note also
that for this example the boundary conditions (8) we have⋂

i≥0

P(2i, 1) = {s ∈ P : s1(1) + (s2(1))2 = p(2∞, 1)},

where p(2∞, 1) = 1.4011 . . .
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