Nonlinear Representations for Poincaré and Galilei algebras and nonlinear equations for electromagnetic fields

Wilhelm FUSHCHYCH, Ivan TSYFRA and Vyacheslav BOYKO,
Institute of Mathematics of the National Ukrainian Academy of Sciences, Tereshchenkivska Street 3, 252004 Kiev, Ukraina

Abstract

We construct nonlinear representations of the Poincaré, Galilei, and conformal algebras on a set of the vector-functions $\Psi=(\vec{E}, \vec{H})$. A nonlinear complex equation of Euler type for the electromagnetic field is proposed. The invariance algebra of this equation is found.

1 Introduction

It is well known that the linear representations of the Poincare algebra $A P(1,3)$ and conformal algebra $A C(1,3)$, with the basis elements

$$
\begin{align*}
& P_{\mu}=i g^{\mu \nu} \partial_{\nu}, \quad J_{\mu \nu}=x_{\mu} P_{\nu}-x_{\nu} P_{\mu}+S_{\mu \nu}, \tag{1}\\
& D=x_{\nu} P^{\nu}-2 i, \tag{2}\\
& K_{\mu}=2 x_{\mu} D-\left(x_{\nu} x^{\nu}\right) P_{\mu}+2 x^{\nu} S_{\mu \nu}, \tag{3}
\end{align*}
$$

is realized on the set of solutions of the Maxwell equations for the electromagnetic field in vacuum (see. e.g.[1, 2])

$$
\begin{align*}
\frac{\partial \vec{E}}{\partial t} & =\operatorname{rot} \vec{H}, & \frac{\partial \vec{H}}{\partial t} & =-\operatorname{rot} \vec{E}, \tag{4}\\
\operatorname{div} \vec{E} & =0, & \operatorname{div} \vec{H} & =0 . \tag{5}
\end{align*}
$$

Here $S_{\mu \nu}$ realize the representation $D(0,1) \oplus D(1,0)$ of the Lorentz group.
Operators (1) - (3) satisfy the following commutation relations:

$$
\begin{equation*}
\left[P_{\mu}, P_{\nu}\right]=0, \quad\left[P_{\mu}, J_{\alpha \beta}\right]=i\left(g_{\mu \alpha} P_{\beta}-g_{\mu \beta} P_{\alpha}\right), \tag{6}
\end{equation*}
$$

$$
\begin{align*}
& {\left[J_{\alpha \beta}, J_{\mu \nu}\right]=i\left(g_{\beta \mu} J_{\alpha \nu}+g_{\alpha \nu} J_{\beta \mu}-g_{\alpha \mu} J_{\beta \nu}-g_{\beta \nu} J_{\alpha \mu}\right),} \tag{7}\\
& {\left[D, P_{\mu}\right]=-i P_{\mu}, \quad\left[D, J_{\mu \nu}\right]=0,} \tag{8}\\
& {\left[K_{\mu}, P_{\alpha}\right]=i\left(2 J_{\alpha \mu}-2 g_{\mu \alpha} D\right), \quad\left[K_{\mu}, J_{\alpha \beta}\right]=i\left(g_{\mu \nu} K_{\beta}-g_{\mu \beta} K_{\alpha}\right),} \tag{9}\\
& {\left[K_{\mu}, D\right]=-i K_{\mu}, \quad\left[K_{\mu}, K_{\nu}\right]=0, \quad \mu, \nu, \alpha, \beta=0,1,2,3 .} \tag{10}
\end{align*}
$$

In this paper the nonlinear representations of the Poincaré, Galilei, and conformal algebras for the electromagnetic field \vec{E}, \vec{H} are constructed. In particular, we prove that the continuity equation for the electromagnetic field is not invariant under the Lorentz group if the velocity of the electromagnetic field is taken in accordance with the Poynting definition. Conditional symmetry of the continuity equation is studied. The complex Euler equation for the electromagnetic field is introduced. The symmetry of this equation is investigated.

2 Formulation of the main results

The operators, realizing the nonlinear representations of the Poincaré algebras $A P(1,3)=\left\langle P_{\mu}, J_{\mu \nu}\right\rangle, \quad A P_{1}(1,3)=\left\langle P_{\mu}, J_{\mu \nu}, D\right\rangle$, and conformal algebra $A C(1,3)=$ $\left\langle P_{\mu}, J_{\mu \nu}, D, K_{\mu}\right\rangle$, have the structure

$$
\begin{align*}
& P_{\mu}=\partial_{x_{\mu}}, \tag{11}\\
& J_{k l}=x_{k} \partial_{x_{l}}-x_{l} \partial_{x_{k}}+S_{k l}, \tag{12}\\
& J_{0 k}=x_{0} \partial_{x_{k}}+x_{k} \partial_{x_{0}}+S_{0 k}, \quad k, l=1,2,3, \tag{13}\\
& D=x_{\mu} \partial_{x_{\mu}}, \tag{14}\\
& K_{0}=x_{0}^{2} \partial_{x_{0}}+x_{0} x_{k} \partial_{x_{k}}+\left(x_{k}-x_{0} E^{k}\right) \partial_{E^{k}}-x_{0} H^{k} \partial_{H^{k}}, \tag{15}\\
& K_{l}=x_{0} x_{l} \partial_{x_{0}}+x_{l} x_{k} \partial_{x_{k}}+\left[x_{k} E^{l}-x_{0}\left(E^{l} E^{k}-H^{l} H^{k}\right)\right] \partial_{E^{k}}+ \\
& \quad\left[x_{k} H^{l}-x_{0}\left(H^{l} E^{k}+E^{l} H^{k}\right)\right] \partial_{H^{k}}, \tag{16}
\end{align*}
$$

where

$$
\begin{aligned}
& S_{k l}=E^{k} \partial_{E^{l}}-E^{l} \partial_{E^{k}}+H^{k} \partial_{H^{l}}-H^{l} \partial_{H^{k}}, \\
& S_{0 k}=\partial_{E^{k}}-\left(E^{k} E^{l}-H^{k} H^{l}\right) \partial_{E^{l}}-\left(E^{k} H^{l}+H^{k} E^{l}\right) \partial_{H^{l}} .
\end{aligned}
$$

The operators, realizing the nonlinear representations of the Galilei algebras $A G^{(2)}(1,3)=\left\langle P_{\mu}, J_{k l}, G_{k}^{(2)}\right\rangle, A G_{1}^{(2)}(1,3)=\left\langle P_{\mu}, J_{k l}, G_{k}^{(2)}, D\right\rangle$ have the form:

$$
\begin{equation*}
P_{\mu}=\partial_{x_{\mu}}, \quad J_{k l}=x_{k} \partial_{x_{l}}-x_{l} \partial_{x_{k}}+S_{k l}, \tag{17}
\end{equation*}
$$

$$
\begin{align*}
& G_{k}^{2}=x_{k} \partial_{x_{0}}-\left(E^{k} E^{l}-H^{k} H^{l}\right) \partial_{E^{l}}-\left(E^{k} H^{l}+H^{k} E^{l}\right) \partial_{H^{l}} \tag{18}\\
& D=x_{0} \partial_{x_{0}}+2 x_{k} \partial_{x_{k}}+E^{k} \partial_{E^{k}}+H^{k} \partial_{H^{k}} \tag{19}
\end{align*}
$$

We see by direct verification that all represented operators satisfy the commutation relations of the algebras $A P(1,3), A C(1,3), A G(1,3)$.

3 Construction of nonlinear representations

In order to construct the nonlinear representations of Euclid-, Poincare-, and Galilei groups and their extensions the following idea was proposed in $[2,3]$: to use nonlinear equations invariant under these groups; it is necessary to find (point out, guess) the equations, which admit symmetry operators having a nonlinear structure. Such equation for the scalar field $u\left(x_{0}, x_{1}, x_{2}, x_{3}\right)$ is the eikonal equation

$$
\begin{equation*}
\frac{\partial u}{\partial x_{\mu}} \frac{\partial u}{\partial x^{\mu}}=0, \quad \mu=0,1,2,3 \tag{20}
\end{equation*}
$$

which is invariant under the conformal algebra $A C(1,3)$ with the nonlinear operator K_{μ} $[2,3]$.

The nonlinear Euler equation for an ideal fluid

$$
\begin{equation*}
\frac{\partial v_{k}}{\partial t}+v_{l} \frac{\partial v_{k}}{\partial x_{l}}=0, \quad k=1,2,3 \tag{21}
\end{equation*}
$$

which is invariant under nonlinear representation of the $A P(1,3)$ algebra, with basis elements

$$
\begin{align*}
& P_{\mu}=\partial_{x_{\mu}}, \quad J_{k l}=x_{k} \partial_{x_{l}}-x_{l} \partial_{x_{k}}+v_{k} \partial v_{l}-v_{l} \partial v_{k}, \tag{22}\\
& J_{0 k}=x_{k} \partial_{0}+x_{0} \partial_{x_{k}}+\partial_{v_{k}}-v_{k} v_{l} \partial_{v_{l}}, \tag{23}
\end{align*}
$$

was proposed in [3] to construct the nonlinear representation for the vector field. Note that equation (21) is also invariant with respect to the Galilei algebra $A G(1,3)$ with the basis elements

$$
\begin{equation*}
P_{\mu}=\partial_{x_{\mu}}, \quad J_{k l}=x_{k} \partial_{x_{l}}-x_{l} \partial x_{k}+v_{k} \partial_{v_{l}}-v_{l} \partial v_{k}, \quad G_{a}=x_{0} \partial_{x_{a}}+\partial_{v_{a}} \tag{24}
\end{equation*}
$$

As mentioned in $[2,3]$ both the Lorentz-Poincaré-Einstein and Galilean principles of relativity are valid for system (21). We use the following nonlinear system of equations [4]

$$
\begin{equation*}
\frac{\partial E^{k}}{\partial x_{0}}+H^{l} \frac{\partial E^{k}}{\partial x_{l}}=0, \quad \frac{\partial H^{k}}{\partial x_{0}}+E^{l} \frac{\partial H^{k}}{\partial x_{l}}=0 \tag{25}
\end{equation*}
$$

for constructing a nonlinear representation of the $A P(1,3)$ and $A G(1,3)$ algebras for the electromagnetic field. To construct the basis elements of the $A P(1,3)$ and $A G(1,3)$ algebras in explicit form we investigate the symmetry of system (25). We search for the symmetry operators of equations (25) in the form:

$$
\begin{equation*}
X=\xi^{\mu} \partial_{x_{\mu}}+\eta^{l} \partial_{E^{l}}+\beta^{l} \partial_{H^{l}}, \tag{26}
\end{equation*}
$$

where $\xi^{\mu}=\xi^{\mu}(x, \vec{E}, \vec{H}), \eta^{l}=\eta^{l}(x, \vec{E}, \vec{H}), \beta^{l}=\beta^{l}(x, \vec{E}, \vec{H})$.
Theorem 1 The maximal invariance algebra of system (25) in the class of operators (26) is the 20-dimensional algebra, whose basis elements are given by the formulas

$$
\begin{align*}
& P_{\mu}=\partial x_{\mu}, \tag{27}\\
& J_{k l}^{(1)}=x_{k} \partial_{x_{l}}-x_{l} \partial_{x_{k}}+E^{k} \partial_{E^{l}}-E^{l} \partial_{E^{k}}+H^{k} \partial_{H^{l}}-H^{l} \partial_{H^{k}}, \tag{28}\\
& J_{k l}^{(2)}=x_{k} \partial_{x_{l}}+x_{l} \partial_{x_{k}}+E^{k} \partial_{E^{l}}+E^{l} \partial_{E^{k}}+H^{k} \partial_{H^{l}}+H^{l} \partial_{H^{k}}, \tag{29}\\
& G_{a}^{(1)}=x_{0} \partial_{x_{a}}+\partial_{E^{a}}+\partial_{H^{a}}, \tag{30}\\
& G_{a}^{(2)}=x_{a} \partial_{x_{0}}-E^{a} E^{k} \partial_{E^{k}}-H^{a} H^{k} \partial_{H^{k}}, \tag{31}\\
& D_{o}=x_{0} \partial_{x_{0}}-E^{l} \partial_{E^{l}}-H^{l} \partial_{H^{l}}, \tag{32}\\
& D_{1}=x_{1} \partial_{x_{1}}+E^{1} \partial_{E^{1}}+H^{1} \partial_{H^{1}}, \tag{33}\\
& D_{2}=x_{2} \partial_{x_{2}}+E^{2} \partial_{E^{2}}+H^{2} \partial_{H^{2}}, \tag{34}\\
& D_{3}=x_{3} \partial_{x_{3}}+E^{3} \partial_{E^{3}}+H^{3} \partial_{H^{3}} . \tag{35}
\end{align*}
$$

Proof To prove theorem 1 we use Lie's algorithm. The condition of invariance of the system $L(\vec{E}, \vec{H})$, i.e. (25), with respect to operator X has the form

$$
\begin{equation*}
\left.\underset{1}{X} L\right|_{L=0}=0, \tag{36}
\end{equation*}
$$

where

$$
\begin{aligned}
& \underset{1}{X}=X+\left[D_{\alpha}\left(\eta^{l}\right)-E_{j}^{l} D_{\alpha}\left(\xi^{j}\right)\right] \partial_{E_{\alpha}^{l}}+\left[D_{\alpha}\left(\beta^{l}\right)-H_{j}^{l} D_{\alpha}\left(\xi^{j}\right)\right] \partial_{H_{\alpha}^{l}} \\
& E_{\alpha}^{l}=\frac{\partial E^{l}}{\partial x_{\alpha}}, \quad H_{\alpha}^{l}=\frac{\partial H^{l}}{\partial x_{\alpha}}, \quad l=1,2,3 ; \quad \alpha=0,1,2,3
\end{aligned}
$$

is the prolonged operator. From the invariance condition (36) we obtain the system of equations which determine the coefficient functions $\xi^{\mu}, \eta^{l}, \beta^{l}$ of the operator (26):

$$
\begin{align*}
& \eta_{k}^{l}=0, \quad \eta_{0}^{l}=0, \\
& \beta_{k}^{l}=0, \quad \beta_{0}^{l}=0, \quad \xi_{\alpha \nu}^{\mu}=0 \\
& \xi_{E^{a}}^{\mu}=0, \quad \xi_{H^{a}}^{\mu}=0 \\
& \eta^{k}=-E^{k} \xi_{0}^{0}+\xi_{0}^{k}+E^{a} \xi_{a}^{k}-E^{a} E^{k} \xi_{a}^{0} \tag{37}\\
& \beta^{k}=-H^{k} \xi_{0}^{0}+\xi_{0}^{k}+H^{a} \xi_{a}^{k}-H^{a} H^{k} \xi_{a}^{0},
\end{align*}
$$

where

$$
\eta_{k}^{l}=\frac{\partial \eta^{l}}{\partial x_{k}}, \quad \eta_{0}^{l}=\frac{\partial \eta^{l}}{\partial x_{0}}, \quad \xi_{E^{a}}^{\mu}=\frac{\partial \xi^{\mu}}{\partial E^{a}}, \quad \xi_{\alpha \nu}^{\mu}=\frac{\partial^{2} \xi^{\mu}}{\partial x_{\alpha} \partial x_{\nu}}
$$

Having found the general solution of system (37), we get the explicit form of all the linear independent symmetry operators of system (25), which have the structure (27) - (35). Operators of Lorentz rotations $J_{0 k}$ is given by the linear combination of the Galilean operators $G_{k}^{(1)}$ and $G_{k}^{(2)}$:

$$
\begin{equation*}
J_{0 k}=G_{k}^{(1)}+G_{k}^{(2)} \tag{38}
\end{equation*}
$$

All the following statements, given here without proofs, can be proved in analogy with the above-mentioned scheme.

4 The finite transformations and invariants

We present some finite transformations which are generated by the operators $J_{0 k}$:

$$
\begin{align*}
& J_{01}: \quad x_{0} \rightarrow x_{0}^{\prime}=x_{0} \operatorname{ch} \theta_{1}+x_{1} \operatorname{sh} \theta_{1}, \\
& x_{1} \rightarrow x_{1}^{\prime}=x_{1} \operatorname{ch} \theta_{1}+x_{0} \operatorname{sh} \theta_{1}, \tag{39}\\
& x_{2} \rightarrow x_{2}^{\prime}=x_{2}, \quad x_{3} \rightarrow x_{3}^{\prime}=x_{3}, \\
& E^{1} \rightarrow E^{1^{\prime}}= \frac{E^{1} \operatorname{ch} \theta_{1}+\operatorname{sh} \theta_{1}}{E^{1} \operatorname{sh} \theta_{1}+\operatorname{ch} \theta_{1}} \\
& H^{1} \rightarrow H^{1^{\prime}}= \frac{H^{1} \operatorname{ch} \theta_{1}+\operatorname{sh} \theta_{1}}{H^{1} \operatorname{sh} \theta_{1}+\operatorname{ch} \theta_{1}} \\
& E^{2} \rightarrow E^{2^{\prime}}= \frac{E^{2}}{E^{1} \operatorname{sh} \theta_{1}+\operatorname{ch} \theta_{1}} \tag{40}\\
& H^{2} \rightarrow H^{2^{\prime}}= \frac{H^{2}}{H^{1} \operatorname{sh} \theta_{1}+\operatorname{ch} \theta_{1}} \\
& E^{3} \rightarrow E^{3^{\prime}}= \frac{E^{3}}{E^{1} \operatorname{sh} \theta_{1}+\operatorname{ch} \theta_{1}} \\
& H^{3} \rightarrow H^{3^{\prime}}= \frac{H^{3}}{H^{1} \operatorname{sh} \theta_{1}+\operatorname{ch} \theta_{1}}
\end{align*}
$$

The operators J_{02}, J_{03} generate analogous transformations. θ_{1} is the real group parameter of the geometric Lorentz transformation. Operators $G_{k}^{(2)}$ generate the following transformations:

$$
\begin{aligned}
G_{1}^{(2)}: & x_{0} \rightarrow x_{0}^{\prime}=x_{0}+\theta_{1} x_{1}, \\
& x_{k} \rightarrow x_{k}^{\prime}=x_{k}, \\
& E^{k} \rightarrow E^{k^{\prime}}=\frac{E^{k}}{1+\theta_{1} E^{\mathrm{1}}}, \\
& H^{k} \rightarrow H^{k^{\prime}}=\frac{H^{k}}{1+\theta_{1} H^{\mathrm{T}}} .
\end{aligned}
$$

Analogous transformations are generated by the operators $G_{2}^{(2)}, G_{3}^{(2)}$. Operators $G_{k}^{(1)}$ generate the following transformations:

$$
\begin{aligned}
G_{1}^{(1)}: & x_{0} \rightarrow x_{0}^{\prime}=x_{0}, \quad x_{1} \rightarrow x_{1}^{\prime}=x_{1}+x_{0} \theta_{1}, \\
& x_{2} \rightarrow x_{2}^{\prime}=x_{2}, \quad x_{3} \rightarrow x_{3}^{\prime}=x_{3}, \\
& E^{1} \rightarrow E^{1^{\prime}}=E^{1}+\theta_{1}, \\
& H^{1} \rightarrow H^{1^{\prime}}=H^{1}+\theta_{1}, \\
& E^{2} \rightarrow E^{2^{\prime}}=E^{2}, \quad E^{3} \rightarrow E^{3^{\prime}}=E^{3}, \\
& H^{2} \rightarrow H^{2^{\prime}}=H^{2}, \quad H^{3} \rightarrow H^{3^{\prime}}=H^{3} .
\end{aligned}
$$

The operators $G_{2}^{(1)}, G_{3}^{(1)}$ generate analogous transformations.
It is easy to verify that

$$
\begin{equation*}
I_{1}=\frac{(1-\vec{E} \vec{H})^{2}}{\left(1-\vec{E}^{2}\right)\left(1-\vec{H}^{2}\right)}, \quad \vec{E}^{2} \neq 1, \quad \vec{H}^{2} \neq 1 \tag{41}
\end{equation*}
$$

is invariant with respect to the nonlinear transformations of the Poincaré group which are generated by representations (28), (38).

The invariant of the Galilei group which is generated by representations (28), (31) has the form:

$$
\begin{equation*}
I_{2}=\frac{\vec{E}^{2} \vec{H}^{2}}{(\vec{E} \vec{H})^{2}}, \tag{42}
\end{equation*}
$$

whereas the Galilei group which is generated by representations (28), (30) has the invariant

$$
\begin{equation*}
I_{3}=(\vec{E}-\vec{H})^{2} . \tag{43}
\end{equation*}
$$

5 Complex Euler equation for the electromagnetic field

Let us consider the system of equations

$$
\begin{equation*}
\frac{\partial \Sigma^{k}}{\partial x_{0}}+\Sigma^{l} \frac{\partial \Sigma^{k}}{\partial x_{l}}=0, \quad \Sigma^{k}=E^{k}+i H^{k} \tag{44}
\end{equation*}
$$

The complex system (44) is equivalent to the real system of equations for \vec{E} and \vec{H}

$$
\begin{align*}
& \frac{\partial E^{k}}{\partial x_{0}}+E^{l} \frac{\partial E^{k}}{\partial x_{l}}-H^{l} \frac{\partial H^{k}}{\partial x_{l}}=0 \\
& \frac{\partial H^{k}}{\partial x_{0}}+H^{l} \frac{\partial E^{k}}{\partial x_{l}}+E^{l} \frac{\partial H^{k}}{\partial x_{l}}=0 . \tag{45}
\end{align*}
$$

The following statement has been proved with the help of Lie's algorithm.
Theorem 2 The maximal invariance algebra of the system (45) is the 24-dimensional Lie algebra whose basis elements are given by the formulas

$$
\begin{align*}
& P_{\mu}=\partial_{x_{\mu}} \\
& J_{k l}^{(1)}=x_{k} \partial_{x_{l}}-x_{l} \partial_{x_{k}}+E^{k} \partial_{E^{l}}-E^{l} \partial_{E^{k}}+H^{k} \partial_{H^{l}}-H^{l} \partial_{H^{k}}, \\
& J_{k l}^{(2)}=x_{k} \partial_{x_{l}}+x_{l} \partial_{x_{k}}+E^{k} \partial_{E^{l}}+E^{l} \partial_{E^{k}}+H^{k} \partial_{H^{l}}+H^{l} \partial_{H^{k}}, \\
& G_{a}^{(1)}=x_{0} \partial_{x_{a}}+\partial_{E^{a}} \\
& G_{a}^{(2)}=x_{a} \partial_{x_{0}-\left(E^{a} E^{k}-H^{a} H^{k}\right) \partial_{E^{a}}-\left(E^{a} H^{k}+H^{a} E^{k}\right) \partial_{H^{k}},}^{D_{0}=x_{0} \partial_{x_{0}-E^{k} \partial_{E^{k}}-H^{k} \partial_{H^{k}},}^{D_{a}=x_{a} \partial_{x_{a}}+E^{a} \partial_{E^{a}}+H^{a} \partial_{H^{a}} \quad(\text { no sum over } a),}} \begin{array}{r}
K_{0}=x_{0}^{2} \partial_{x_{0}}+x_{0} x_{k} \partial_{x_{k}}+\left(x_{k}-x_{0} E^{k}\right) \partial_{E^{k}-x_{0} H^{k} \partial_{H^{k}},}^{K_{a}=x_{0} x_{a} \partial_{x_{0}}+x_{a} x_{k} \partial x_{k}+\left[x_{k} E^{a}-x_{0}\left(E^{a} E^{k}-H^{a} H^{k}\right)\right] \partial_{E^{k}}+} \\
\quad\left[x_{k} H^{a}-x_{0}\left(H^{a} E^{k}+E^{a} H^{k}\right)\right] \partial_{H^{k}} .
\end{array}
\end{align*}
$$

The algebra, engendered by the operators (46), include the Galilei algebras $A G^{(1)}(1,3), \quad A G^{(2)}(1,3)$ and Poincaré algebra $A P(1,3)$, and conformal algebra $A C(1,3)$ as subalgebras. Operators $G_{a}^{(2)}$ generate the linear geometrical transformations in $R(1,3)$

$$
\begin{align*}
& x_{0} \rightarrow x_{0}^{\prime}=x_{0}+\theta_{a} x_{a} \quad(\text { no sum over } a), \\
& x_{l} \rightarrow x_{l}^{\prime} \tag{47}
\end{align*}
$$

as well as the nonlinear transformations of the fields

$$
\begin{align*}
& E^{l}+i H^{l} \rightarrow E^{l^{\prime}}+i H^{l^{\prime}}=\frac{E^{l}+i H^{l}}{1+\theta_{a}\left(E^{a}+i H^{a}\right)} \quad(\text { no sum over } a), \\
& E^{l}-i H^{l} \rightarrow E^{l^{\prime}}-i H^{l^{\prime}}=\frac{E^{l}-i H^{l}}{1+\theta_{a}\left(E^{a}-i H^{a}\right)} . \tag{48}
\end{align*}
$$

The invariant of the group $G^{(2)}(1,3)$ is

$$
\begin{equation*}
I_{4}=\frac{\left(\vec{E}^{2}-\vec{H}^{2}\right)+4(\vec{E} \vec{H})^{2}}{\left(\vec{E}^{2}+\vec{H}^{2}\right)^{2}} \tag{49}
\end{equation*}
$$

Operators $J_{0 k}$ generate the linear transformations in $R(1,3)$

$$
\begin{align*}
& x_{0} \rightarrow x_{0}^{\prime}=x_{0} \operatorname{ch} \theta_{k}+x_{0} \operatorname{sh} \theta_{k}, \\
& x_{k} \rightarrow x_{k}^{\prime}=x_{k} \operatorname{ch} \theta_{k}+x_{0} \operatorname{sh} \theta_{k} \quad(\text { no sum over } k), \tag{50}
\end{align*}
$$

if $l \neq k \quad x_{l} \rightarrow x_{l}^{\prime}=x_{l}$,
as well as the nonlinear transformations of the fields

$$
\begin{align*}
& E^{k}+i H^{k} \rightarrow E^{k^{\prime}}+i H^{k^{\prime}}=\frac{\left(E^{k}+i H^{k}\right) \operatorname{ch} \theta_{k}+\operatorname{sh} \theta_{k}}{\left(E^{k}+i H^{k}\right) \operatorname{sh} \theta_{k}+\operatorname{ch} \theta_{k}} \\
& E^{k}-i H^{k} \rightarrow E^{k^{\prime}}-i H^{k^{\prime}}=\frac{\left(E^{k}-i H^{k}\right) \operatorname{ch} \theta_{k}+\operatorname{sh} \theta_{k}}{\left(E^{k}-i H^{k}\right) \operatorname{sh} \theta_{k}+\operatorname{ch} \theta_{k}} \tag{51}
\end{align*}
$$

If $l \neq k$, then

$$
\begin{aligned}
& E^{l}+i H^{l} \rightarrow E^{l^{\prime}}+i H^{l^{\prime}}=\frac{E^{l}+i H^{l}}{\left(E^{k}+i H^{k}\right) \operatorname{sh} \theta_{k}+\operatorname{ch} \theta_{k}}, \\
& E^{l}-i H^{l} \rightarrow E^{l^{\prime}}-i H^{l^{\prime}}=\frac{E^{l}-i H^{l}}{\left(E^{k}-i H^{k}\right) \operatorname{sh} \theta_{k}+\operatorname{ch} \theta_{k}}
\end{aligned}
$$

(no sum over k).
The invariant of group $P(1,3)$ is

$$
\begin{equation*}
I_{5}=\frac{1-2\left[\left(\vec{E}^{2}-\vec{H}^{2}\right)-\frac{1}{2}\left(\vec{E}^{2}-\vec{H}^{2}\right)^{2}-2(\vec{E} \vec{H})^{2}\right]}{\left[1-\left(\vec{E}^{2}+\vec{H}^{2}\right)\right]^{2}}, \quad \vec{E}^{2}+\vec{H}^{2} \neq 1 \tag{52}
\end{equation*}
$$

The operator K_{0} generates the following nonlinear transformations in $R(1,3)$ and linear transformations of the fields
$x_{\mu} \rightarrow x_{\mu}^{\prime}=\frac{x_{\mu}}{1-\theta_{0} x_{0}}$,
$E^{k} \rightarrow E^{k^{\prime}}=E^{k}+\theta_{0}\left(x_{k}-x_{0} E^{k}\right)$,
$H^{k} \rightarrow H^{k^{\prime}}=H^{k}\left(1-\theta_{0} x_{0}\right)$.
The operators K_{a} generate nonlinear transformations in both $R(1,3)$ and of the fields

$$
\begin{aligned}
& x_{0} \rightarrow x_{0}^{\prime}=\frac{x_{0}}{1-x_{a} \theta_{a}}, \\
& x_{a} \rightarrow x_{a}^{\prime}=\frac{x_{a}}{1-x_{a} \theta_{a}} .
\end{aligned}
$$

If $k \neq a$, then

$$
\begin{aligned}
& x_{k} \rightarrow x_{k}^{\prime}=\frac{x_{k}}{1-x_{a} \theta_{a}}, \\
& E^{a}+i H^{a} \rightarrow E^{a^{\prime}}+i H^{a^{\prime}}=\frac{E^{a}+i H^{a}}{1+\theta_{a}\left[x_{0}\left(E^{a}+i H^{a}\right)-x_{a}\right]}, \\
& E^{a}-i H^{a} \rightarrow E^{a^{\prime}}-i H^{a^{\prime}}=\frac{E^{a}-i H^{a}}{1+\theta_{a}\left[x_{0}\left(E^{a}-i H^{a}\right)-x_{a}\right]} .
\end{aligned}
$$

If $k \neq a$, then

$$
\begin{align*}
& E^{k}+i H^{k} \rightarrow E^{k^{\prime}}+i H^{k^{\prime}}=\frac{E^{k}+i H^{k}+\theta_{a}\left(E^{a}+i H^{a}\right) x_{k}}{1+\theta_{a}\left[x_{0}\left(E^{a}+i H^{a}\right)-x_{a}\right]} \tag{54}\\
& E^{k}-i H^{k} \rightarrow E^{k^{\prime}}-i H^{k^{\prime}}=\frac{E^{k}-i H^{k}+\theta_{a}\left(E^{a}-i H^{a}\right) x_{k}}{1+\theta_{a}\left[x_{0}\left(E^{a}-i H^{a}\right)-x_{a}\right]} \quad(\text { no sum over } a) .
\end{align*}
$$

Note 1 Setting $\vec{\sum}=a \vec{E}+i b \vec{H}$, where a, b are arbitrary functions of the invariants \vec{E}^{2}, $\vec{H}^{2}, \vec{E} \vec{H}$, we obtain more general form of the equation (44). The equation

$$
\frac{\partial \Sigma^{k}}{\partial x_{0}}+\Sigma^{l} \frac{\partial \Sigma^{k}}{\partial x_{l}}=F\left(\vec{E} \vec{H}, \vec{E}^{2}, \vec{H}^{2}\right) \Sigma^{k}
$$

is invariant only under some subalgebras of algebra (46) depending on the choice of function F.
Note 2 If we analyse the symmetry of the following equations

$$
\begin{align*}
& \left(\frac{\partial}{\partial x_{0}}+E^{l} \frac{\partial}{\partial x_{l}}+H^{l} \frac{\partial}{\partial x_{l}}\right) E^{k}=0, \\
& \left(\frac{\partial}{\partial x_{0}}+E^{l} \frac{\partial}{\partial x_{l}}+H^{l} \frac{\partial}{\partial x_{l}}\right) H^{k}=0 \tag{*}
\end{align*}
$$

or

$$
\begin{align*}
& \frac{\partial E^{k}}{\partial x_{0}}= \pm\left(E^{l} \frac{\partial}{\partial x_{l}}+H^{l} \frac{\partial}{\partial x_{l}}\right) H^{k} \\
& \frac{\partial H^{k}}{\partial x_{0}}= \pm\left(E^{l} \frac{\partial}{\partial x_{l}}+H^{l} \frac{\partial}{\partial x_{l}}\right) E^{k} \tag{**}
\end{align*}
$$

we obtain concrete examples of nonlinear representations for the Poincaré and Galilei algebras. This problem will be considered in a future paper.

6 Symmetry of the continuity equation and the Poynting vector

Let us consider the continuity equation for the electromagnetic field

$$
\begin{equation*}
L(\vec{E}, \vec{H}) \equiv \frac{\partial \rho}{\partial x_{0}}+\operatorname{div} \rho \vec{v}=0 \tag{55}
\end{equation*}
$$

According to the Poynting definition ρ and ρv^{k} have the forms

$$
\begin{equation*}
\rho=\frac{1}{2}\left(\vec{E}^{2}+\vec{H}^{2}\right), \quad \rho v^{k}=\varepsilon_{k l n} E^{l} H^{n} \tag{56}
\end{equation*}
$$

Theorem 3 The nonlinear system (55), (56) is not invariant under the Lorentz algebra, with basis elements:

$$
\begin{align*}
& J_{k l}=x_{k} \partial_{x_{l}}-x_{l} \partial_{x_{k}}+E^{k} \partial_{E^{l}}-E^{l} \partial_{E^{k}}+H^{k} \partial_{H^{l}}-H^{l} \partial_{H^{k}} \\
& J_{0 k}=x_{k} \partial_{x_{0}}+x_{0} \partial_{x_{k}}+\varepsilon_{k l n}\left(E^{l} \partial_{H^{n}}-H^{l} \partial_{E^{n}}\right), \quad k, l, n=1,2,3 \tag{57}
\end{align*}
$$

To prove theorem 3 it is necessary to substitute ρ and ρv^{k}, from formulas (56), to equation (55) and to apply Lie's algorithm, i.e., it is necessary to verify that the invariance condition

$$
\begin{equation*}
\left.{\underset{1}{1}}_{J_{\mu \nu}}(L(\vec{E}, \vec{H}))\right|_{L=0} \equiv 0 \tag{58}
\end{equation*}
$$

is not satisfied, where J_{1} is the first prolongation of the operator $J_{\mu \nu}$.
Theorem 4 The continuity equation (55), (56) is conditionally invariant with respect to the operators $J_{\mu \nu}$, given in (57) if and only if \vec{E}, \vec{H} satisfy the Maxwell equation (4), (5).

Thus the continuity equation, which is the mathematical expression of the conservation law of the electromagnetic field energy and impulse is not Lorentz-invariant if \vec{E}, \vec{H} does not satisfy the Maxwell equation. A more detailed discussion on conditional symmetris can be found in $[1,2]$.

The following statement can be proved in the case when

$$
\begin{equation*}
\rho=F^{0}(\vec{E}, \vec{H}) \text { and } \rho v^{k}=F^{k}(\vec{E}, \vec{H}) \tag{59}
\end{equation*}
$$

where F^{0}, F^{k} are arbitrary smooth functions $F^{0} \not \equiv 0, F^{k} \not \equiv 0$.

Theorem 5 The continuity equation (55), (59) is invariant with respect to the classic geometrical Lorentz transformatons if and only if

$$
\begin{equation*}
r(B)=4 \tag{60}
\end{equation*}
$$

where $r(B)$ is the rank of the Jacobi matrix of functions F^{μ}.
In conclusion we present some statements about the symmetry of the following systems:

$$
\begin{align*}
& \frac{\partial \vec{E}}{\partial x_{0}}=\operatorname{rot} \vec{H}+\vec{F}_{1}(\vec{E}, \vec{H}), \quad \frac{\partial \vec{H}}{\partial x_{0}} \quad=\quad-\operatorname{rot} \vec{E}+\vec{F}_{2}(\vec{E}, \vec{H}), \\
& \operatorname{div} \vec{E}=R_{1}(\vec{E}, \vec{H}), \quad \operatorname{div} \vec{H}=R_{2}(\vec{E}, \vec{H}), \tag{61}
\end{align*}
$$

$$
\begin{align*}
\frac{\partial(R \vec{E})}{\partial x_{0}} & =\operatorname{rot}(R \vec{H}), & \frac{\partial N \vec{H}}{\partial x_{0}} & =-\operatorname{rot}(N \vec{E}) \\
\operatorname{div}(R \vec{E}) & =0, & \operatorname{div}(N \vec{H}) & =0 \tag{62}
\end{align*}
$$

Here

$$
\begin{array}{ll}
R=R\left(W_{1}, W_{2}\right), & N=N\left(W_{1}, W_{2}\right), \\
W_{1}=\vec{E}^{2}-\vec{H}^{2}, & W_{2}=\vec{E} \vec{H} . \\
\operatorname{div}(R \vec{E}+N \vec{H})=0 . & \tag{63}
\end{array}
$$

Theorem 6 The system of equations (61) is invariant under the Lorentz algebra with the basis elements (57) if and only if

$$
\vec{F}_{1} \equiv \vec{F}_{2} \equiv 0, \quad R_{1} \equiv R_{2} \equiv 0
$$

Theorem 7 The system of equations (62) is invariant under the Lorentz algebra (57) if R and N are arbitrary functions of the invariants $W_{1}=\vec{E}^{2}-\vec{H}^{2}, W_{2}=\vec{E} \vec{H}$.

Theorem 8 The equation (63) is invariant under the Lorentz algebra with the basis elements (57) if and only if \vec{E}, \vec{H} satisfy the system of equations

$$
\frac{\partial(R \vec{E}+N \vec{H})}{\partial x_{0}}=\operatorname{rot}(R \vec{H}-N \vec{E})
$$

Thus it is established that, besides the generally recognized linear representation of the Lorentz group discovered by Henry Poincare in 1905 [5], there exists the nonlinear representation constructed by using the nonlinear equations of hydrodynamical type [4]. It is obvious that for instance the linear superposition principle does not hold for a non-Maxwell electrodynamic theory based on the equation (25) or (45).

The nonlinear representations for the algebras $A G(1,3), A \tilde{P}(1,2), A \tilde{P}(2,2), A C(1,2)$, $A C(2,2)$ for a scalar field have been considered in $[6], A P(1,1)$ in [7], and $A P(1,2)$ in [8].

References

[1] Fushchych W. and Nikitin A., Symmetries of Maxwell's Equations, Dordrecht, Reidel Publ. Comp., 1987.
[2] Fushchych W., Shtelen W. and Serov N., Symmetry Analysis and Exact Solutions of Equations of Nonlinear Mathematical Physics, Dordrecht, Kluwer Publishers, 1993.
[3] Fushchych W., On symmetry and exact solutions of the multidimensional equations of mathematical Physic in Algebraic-Theoretical Studies in Mathematical Physics Problems, Institute of Mathematics, Ukrainian Acad. Sci., Kiev, 1983, 4-23.
[4] Fushchych W., New nonlinear equations for electromagnetic field having the velocity different from C., Dopovidi of the Ukrainian Academy of Sciences, 1982, N 4, 24-28.
[5] Poincare H., On the dynamics of the electron, Comptes Rendus, 1905, V.140, 1504-1510.
[6] Fushchych W., Zhdanov R., Lahno V., On nonlinear representation of the conformal algebra $A C(2,2)$, Dopovidi of the Ukrainian Academy of Sciences, 1993, N 9, 44-47.
[7] Rideau G., Winternitz P., Nonlinear equations invariant under the Poincare, similitude and conformal groups in two-dimensional space-time, Journ. Math. Phys., 1990, 31, 1095-1105.
[8] Yehorchenko I., Nonlinear representation of the Poincare algebra and invariant equations, in: "Symmetry Analysis of Equations of Mathematical Physics", Kiev, Inst. of Math., 1992, 62-66.

