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Abstract— In this paper, a deterministic nonlinear model, i.e., 
the TCP-RED feedback system is adopted to simulate a 
complex computer network. The phase-space reconstruction is 
applied to reveal the hidden information of rate which could be 
obtained from the Internet easily. In addition, the maximum 
Lyapunov exponent is applied to judge the stability of the 
TCP-RED feedback system. The research demonstrates those 
two different parameters affect the system’s stability. To avoid 
the system evolving into chaos state, the parameters of routers 
must be configured properly. 
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I.  INTRODUCTION 

Computer networks are complex systems. Traditionally, 
stochastic methods[1][2][3][4][5][6][7] are employed to 
analyze computer networks, however, there have been 
several papers which adopted deterministic nonlinear 
modeling in the analyses[8][9][10][11]. By virtue of 
nonlinearity, instability in the network may lead to 
oscillatory behavior. When oscillatory behavior occurs, the 
end-to-end jitter of the network increases, which may lead 
to degradation in network performance. Moreover, some 
networks require high quality of service (QoS) for certain 
applications, such as the data center network. In the data 
center network, the core is fully utilized. However, the 
longer it takes to return the instructions or data, the longer 
the application process remains idle, and the poorer the 
application performance. To avoid the delay caused by jitter, 
the data center network should optimally apply consistently 
low jitter. In this paper, we propose the model of simple 
computer network with Transmission Control Protocol 
(TCP) connections and Random Early Detection (RED) at 
the router end. The basic idea of TCP is to determine 
whether to activate the congestion control strategy and 
control the sender’s rate. When congestion occurs, RED 
tries to give feedback to the sender by dropping packets. 
The average queue length is the parameter which determines 
the probability of packet loss, and several papers have 
discussed the instability of the average queue length 
[8][12][13][14]. The rate of a link is easily measured in the 
real network. So we apply the maximum Lyapunov 
exponent to estimate the instability and analyze the effect of 
the system parameters. 

II. TCP-RED FEEDBACK SYSTEM MODELING BASED ON 

THE RATE 

In this paper, we consider a simple network of two links 
that are shared by many connections. As already mentioned, 
the network can be viewed as a network with a dominant 
bottleneck link and other links which are not bottlenecks. 
There are two routers r1 and r2 connected by a bottleneck 
link l, and the capacity of the link is c. Each flow at a router 

sends packets with the rate of i
inf . The sending rates of all n 

flows converge at the buffer of link l, which generates a 
queue of size q which is limited by its buffer size B. The 
controller at the router drops packets with a probability of p, 
which is the function of average size q. When the sender 
senses the dropping packets, it reduces the sending rate, and 
changes the queue size according to the controlling function, 
which helps to reduce the probability of packet loss. 

The aim of this system is to keep the cumulative 
throughput lower or equal to the link’s capacity c[15][16]: 
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Where T denotes Throughput of a TCP flow (in bits/sec), 
M denotes Maximum Segment Size or Packet Size, R 
denotes Round Trip Time, K is a constant which varies 
between 1 and 8 / 3  , and P denotes the probability of 
packet loss. 

To further simplify the system, we assume that all flows 
are identical in round trip time R, maximum segment or 
packet size M, and maximum congestion window size. 

To define this control system, we model the queue as the 
function of control variable q=G(p). 
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 denotes the maximum probability 

for which the system is fully utilized, and R0 denotes the 
round-trip propagation and transmission time. 

According to RED, the control model can be expressed 
as follows: 
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Where qmin and qmax denote the lowest and highest 
threshold values respectively, and pmax is the selected 

dropping probability when maxkq q . 

The average queue size is updated on the arrival of 
packets according to the exponential averaging equation: 

  1 11 ( , ) 1k kk k kq A q q w q w q          (2) 

Where w is the exponential averaging weight, which 
determines the time constant of the averaging mechanism 
and how fast the RED can react to time-varying load. On one 
hand, the averaging weight should be selected small enough 
so that transient, temporary congestion does not result in an 
oscillation of the packet dropping probability. On the other 
hand, the weight should be configured large enough so that 
the RED can react to changes in load in a timely manner. 
These are conflicting goals, and the selection of the 
parameters affects the interaction of the RED mechanism 
with adaptive sources, such as TCP. 

In this paper, we derive the TCP-RED feedback dynamic 
equation while the average queue length is the state variable: 
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Figure 1.  Relationship between the probability of packet loss and the 

average queue length 

 
Figure 2.  RED dividing the queue into three parts 

In this paper, we assume that the buffer of the router is a 
queue, as shown in Fig.2. The equation concerning the 
relationship between the instantaneous queue length and the 
flows can be derived as: 

                      *t t
in out t t tf f t q q       (4) 

In this paper, t t
t in outf f f  . 

According to (4) and (5), the difference between the 
flows and the average queue length can be derived as: 
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III. PHASE-SPACE RECONSTRUCTION AND THE MAXIMUM 

LYAPUNOV EXPONENT 

A. Phase-space reconstruction 

Phase-space reconstruction was first proposed by Yuie in 
the field of Statistics in 1927. The dynamic system has been 
reported in [17][18][19]. Phase-space reconstruction involves 
reconstructing time series from one dimension to m-
dimension, and retrieving the hidden information. 

Delay-coordinate reconstruction has been extensively 
used. On the basis of Takens’ theory, one-dimension phase 
space  
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n = N0, N0+1, …, N, where xn is the phase point for n, 
referred to as m-dimension phase space of the state. m is the 
embedding dimension, τ is the time delay. 

Therefore, it is vital to confirm the appropriate time delay 
and embedding dimension for phase space reconstruction, in 
order to fully reproduce the characteristics of the system. 

B. Time delay 

On the basis of Takens’ theory, the time delay is selected 
on a random basis, under the circumstance of infinite time 
series and free of noise, but the opposite is the case in actual 
system. The basic idea of selecting the time delay is that xn 
and xn+τ are independent to some degree, so it is practical to 
treat them as independent coordinates. 

The average mutual information method [20][21] takes 
into account the nonlinear relation of time series, and the 
average mutual information I(t) of time series  
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time n and n+t can be calculated as follows: 
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The time τ corresponds to the first local minimum of 
average mutual information I(t), which is the time delay. 

C. Embedding dimension 

The embedding dimension m is the minimum dimension 
which can completely contains the attractor composed by the 
state transition. We use the CAO method [22] to seek the 
important embedding dimension. 

We define Rm as the distance between xi and xj, by using 
norms L∞: 
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We also define that 

                      
 
 1

1E m
E m

E m


   (7) 

In this paper, we calculate E1(m) as m starts to increase 
from 1. When m=m0 and E1(m) doesn’t change, we choose 
m0+1 as the embedding dimension. 

D. The maximum Lyapunov exponent 

The Lyapunov exponent [23] reveals the level of 
convergence and divergence in the phase space neighbor 
track in the long term. The maximum Lyapunov exponent 
reflects the speed of divergence. If the maximum Lyapunov 
exponent is positive, the system is in an unstable state. In 
contrast, the system is stable if the maximum Lyapunov 
exponent is negative. In this paper, we use Wolf method to 
compute the maximum Lyapunov exponent. 

We take x0 as the initial point, whose nearest neighbor 
point is x0

’, and the distance between them is defined as L(t0) 
at moment t0. At moment t1, x0 turns into x1, and x0

’ turns to 
be xt1

’, and the distance is L’(t1). Then we search the neighbor 
point x1

’ of x1, and calculate the distance L(t1) between them. 
We repeat the above procedure until it traverses the entire 
time series. The process is as shown in Fig.3. 

The equation of the maximum Lyapunov exponent is as 
follows: 
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Figure 3.  Procedure for calculating the maximum Lyapunov exponent 

IV. NUMERICAL RESULTS AND ANALYSES 

A. Parameters of phase-space reconstruction 

In this section, we use MATLAB to simulate the TCP-
RED feedback system and analyze the instability and the 
effect of system parameters. Phase-space reconstruction is an 
important step to retrieve the hidden information so we 
should choose the parameters carefully. We calculate the 
time delay with the average mutual information method, as 
shown in Fig.4, in which the time delay is τ=3. In addition, 
we use CAO method to obtain the embedding dimension. 
Fig.5 indicates that E reaches saturation state when the 
embedding dimension is equal to 3. According to the CAO 
method, we choose 4 as the embedding dimension. 

B. Effect of the system parameters 

1) Effect of exponential averaging weight w 
The following parameters are common to the next 

simulation. 

 
Figure 4.  Time delay 

 
Figure 5.  Embedding dimension 

 
Figure 6.  The maximum Lyapunov exponent of the averaging weight w 
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Figure 7.  The maximum Lyapunov exponent of RED control parameter 

Fig.6 shows that the exponent is negative at the 
beginning of simulation. It increases to zero and then 
decreases straight away while averaging weight continues to 
increase. Then it becomes a positive value after increasing 
more than a fixed point. A positive Lyapunov exponent 
confirms the presence of chaotic behavior. Fig.6 implies that 
we should set the averaging weight less than the fixed point 
when we configure the routers, otherwise it will lead to 
chaos state. 

2) Effect of RED control parameter qmax 
The following parameters are common to the next 

simulation. 
In this sub-section, we discuss the effect of RED control 

parameter qmax. Unlike the averaging weight, it remains 
positive at the beginning of simulation. The maximum 
Lyapunov exponent decreases while qmax increases. When 
qmax is almost equal to 100, the maximum Lyapunov 

exponent turns to negative. Then it stays negative while qmax 
further increases. Fig.7 demonstrates that the system turns to 
be stable as qmax increases. The case is almost the opposite to 
the averaging weight, so we can conclude that there exist two 
different effects among the system parameters. Therefore, it 
is necessary to compute the maximum Lyapunov exponent 
for the rest of the system parameters. 

3) Effect of system parameters on stability 
To understand the effects of other system parameters on 

system stability, we plot the Lyapunov diagram. Other 
simulation parameters for this Lyapunov diagram are as 
follows: 

As shown in Fig.8, the maximum Lyapunov exponent 
remains negative before the fixed point and it keeps the 
system stable. After the fixed point, the system becomes 
unstable. Therefore, when choosing the system parameters, 
we should set them less than the fixed point in order to keep 
the system stable. 

V. CONCLUSION 

In this paper, we use the maximum Lyapunov exponent 
to analyze the TCP-RED feedback system based on the rate, 
which is most easily achieved on the Internet. We simulate 
the maximum Lyapunov exponent of different system 
parameters in order to find out how these parameters affect 
the system stability. There are two different effects. In some 
cases, the system stability decreases while the parameter 
value increases, such as the averaging weight w. 

    
(a) The maximum Lyapunov exponent of link capacity   (b) The maximum Lyapunov exponent of pmax 

    
(c) The maximum Lyapunov exponent of qmin   (d) The maximum Lyapunov exponent of R0 

Figure 8.  The maximum Lyapunov exponent of other system parameters 
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There is a fixed point to distinguish the stability and 
instability of system. In other cases, the system stability 
increases while the parameter value increases, such as the 
RED control parameter qmax. There is also an apparent fixed 
point. Once we know the effects, when configuring the 
routers, we can choose the system parameters appropriately 
to avoid inducing system instability. 

ACKNOWLEDGMENT 

This work was supported by the National Science and 
Technology Major Project of China (2011ZX05031-001-
007HZ ). 

 

REFERENCES 

 
[1] Hollot C, Misra V, Towsley D, et al. A Control Theoretic Analysis of 

RED.Proceedings of  Twentieth Annual Joint Conference of the IEEE 
Computer and Communications Societies: April 22-
26,2001,Alaska,USA. 

[2] Bonald T,May M,Bolot J-C.Analytic Evaluation of RED 
Perfoemance. Proceedings of  19th Annual Joint Conference of the 
IEEE Computer and Communications Societies:March 26-30,2000, 
Tei-Aviv,Israel. 

[3] Chen X, Wong S-C and Tse C K. Adding Randomness to Modeling 
Internet TCP-RED Systems With Interactive Gateways[J]. IEEE 
transactions on circuits and systems—ii: express briefs, vol. 57, no. 4, 
April 2010. 

[4] Wong S-C., Tse C K and Lau F C M. Dynamics of Oscillatory Queue 
Length in TCP-RED Gateway.Proceedings of 2005 International 
Symposium on Intelligent Signal Processing and Communication 
Systems: December 13-16, 2005,Hong Kong ,China. 

[5] Pei L, Zhang L, Wang R. Co-dimension 1 bifurcations of the delayed 
Internet TCP-RED model.2010 International Conference on 
Multimedia Information Networking and Security: November 4-
6,2010,Nanjing,China. 

[6] Zhang K, Cheng P F, Man Z, et al. Queue Dynamics Analysis of TCP 
Veno with RED. Proceedings of Wireless Communications and 
Networking Conference: March 11-15,2007,Hong Kong,China. 

[7] Baiocchi A and Vacirca F. TCP fluid modeling with a variable 
capacity bottleneck link. Proceedings of  26th Annual Joint 
Conference of the IEEE Computer and Communications Societies: 
May 6-12 2007,Alaska,USA. 

[8] Firoiu V and Borden M. A Study of Active Queue Management for 
Congestion Control.Proceedings of  19th Annual Joint Conference of 
the IEEE Computer and Communications Societies: March 26-
30,2000, Tei-Aviv,Israel. 

[9] Misra V, Gong W and Towsley D.A Study of Active Queue 
Management For Congestion Control. Proceedings of  19th Annual 
Joint Conference of the IEEE Computer and Communications 
Societies: March 26-30,2000,Stockholm,Sweden. 

[10] Kuusela P, Lassila P and Virtamo J. Stability of TCP-RED 
Congestion Control. Submitted for publication, available at 
http://www.tct.hut..fi/tutkimus/com2/publ/,2000. 

[11] Veres A and Boda M. The Chaotic Nature of TCP Congestion 
Control. Proceedings of  19th Annual Joint Conference of the IEEE 
Computer and Communications Societies: March 26-30,2000, Tei-
Aviv,Israel. 

[12] Ranjan P, Abed E.H. and La R.J. Nonlinear instabilities in TCP-RED. 
Proceedings of  21st Annual Joint Conference of the IEEE Computer 
and Communications Societies: June 23-27,2002,New York,USA. 

[13] Chen W, Li Y, Yang S-H. An Average Queue Weight 
Parameterization in a Network Supporting TCP Flows with 

RED.Proceedings of the 2007 IEEE International Conference on 
Networking, Sensing and Control: April 15-17 2007,London,UK. 

[14] Haider A, Sirisena H, Sreeram V, et al. Stability Conditions For 
Scalable TCP-RED Based AQM.Proceedings of the 2007 IEEE 
International Conference on Mechatronics and Automation: August 
5-8,2007,Harbin,China. 

[15] Mathis M, Semke J, Mahdavi J,et al. The Macroscopic Behavior of 
the TCP Congestion Avoidance Algorithm. Computer 
Communication Review, Vol 27,no.3,1997. 

[16] Padhye J, Firoiu V, Towsley D, et al.Modeling TCP Reno 
performance: a simple model and its empirical validation.IEEE/ACM 
Trans.Networking, vol.8, pp.133-145, Apr.2000. 

[17] Packard N H, Griuthfield J P, Farmer J D, et al. Geometry from a 
time series. Physical Review Letters, 1980, 45(9): 712~716. 

[18] Takens F. On the numerical determination of the dimension of an 
attractor. In Rand D, Young L S editors. Dynamical Systems and 
Turbulence. Warwick, 1980, Lecture Notes in Mathematics, Springer-
Verlag, 1981, 898: 366~381. 

[19] Mane R. On the dimension of the compact invariant sets of certain 
nonlinear maps. In Rand D, Young L S editors. Dynamical Systems 
and Turbulence. Warwick, 1980, Lecture Notes in Mathematics, 
Springer-Verlag, 1981, 898: 230. 

[20] Fraser A M, Swinney H. Independent coordinates for strange 
attractors from mutual information. Physical Review A, 1986 , 33(2): 
1134~1140. 

[21] Fraser A M. Information and entroy in strange attractors. IEEE Trans. 
on Information Theory, 1989 , 35(2): 245~262. 

[22] Cao L Y. Practical method for determining the minimum embedding 
dimension of a scalar time series. Physica D, 1997, 110(1-2): 43~50. 

[23] Wolf A, Swift J B, Swinney H L et al. Determining Lyapunov 
exponents from a time series. Physica D, 1985, 16: 285~317. 

28




