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Abstract—In this paper, a matching algorithm of general graph 
based on depth-first traversal is proposed. The algorithm does 
not need to shrink and expand treatment when a flower is 
searched. This algorithm’s time complexity of search an 
augmenting path is equal to corresponding graph’s depth-first 
traversal algorithm’s time complexity, it is one of the most 
efficient algorithm. Experiments show that this algorithm can 
correctly handle the associated practical problems, and have 
the correct conclusion. 
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I.  INTRODUCTION 

The research on the matching theories and the matching 
algorithms are one of the core content in the area of graph 
theory and application research. It has a strong application 
background. The research results are widely used in process 
arrangement, personnel assignment, information transfer, 
and transportation problem etc. 

The algorithm about matching problem is proposed first 
by Kuhn [1] and Hall [2] for search the perfect matching in a 
bipartite graph, it is a linear programming algorithm. In 
1965, the flower algorithm is proposed by Edmonds to look 
for the perfect matching in a non-bipartite graph, it is a 
effective algorithm [3, 4]. The better implementation 
algorithms [5, 6], the effective implementation algorithm of 
Edmonds method is proposed by Gabow [7]. Some other 
effective label method similar to Gabow algorithm [8, 9, 10], 
the algorithm’s time complexity to . 

In this paper, a matching algorithm of general graph 
based on depth-first traversal is proposed. The algorithm 
does not need to shrink and expand treatment when a flower 
is searched. 

II. RELATED CONCEPTS ABOUT THE EDGE 

MATCHING OF THE GENERAL GRAPH 

Definition 1 G = (V, E), G is a graph where V is a vertex 
set and E is a edge of the graph G. M ⊆ E is called a match 
of the graph G if satisfy that any two edge in M have not the  
same end point. 

The matching problem is to look for maximum matching 
M (the maximum number of edges). |M| = , M is 
called a perfect matching.  Obviously, the perfect matching 
must be a maximum matching. 

Definition 2 Suppose M is a matching of the graph G = 
(V, E), e  E, u  V, v  V, the edge e  M is called a 

matching edge. The edge e  M is called a free edge. The u 
and v each other is called a consort if   M. The u is 
called a covering point if that u is the end point of the edge in 
M. The u is called an uncovering point if that u is not the end 
point of the edge in M. p = ( ) is a path in the 
G, the p is called an alternating path if all adjacent edge 

 are not free edges or matching 
edges at the same time. The alternating path is called an 
augmenting path if  are an uncovering point. The 
vertex  are called the exterior point and the  is 
called the interior point if the  is a free edge and the 

 is a matching edge. 
Lemma 1 p=( ), p is an augmenting path 

about matching M of the graph G, P is a set of all edge of the 
p, then the M' = P - M is a matching that it contains |M| + 1 
edges. 

Theorem 1 The matching M of the graph G is a 
maximum matching if and only if there is not exist an 
augmenting path about matching M in the G. 

Definition 3 The circle is called odd circle if the number 
of edges is odd in the circle. The odd circle is called a flower 
if just one consort of vertexes in the circle is not in the circle. 
The vertex in the flower is called a flower stalks if the 
consort of the vertex is not in the circle. Two vertex in the 
flower are called petal if they adjoin to flower stalks. 

The flower is found possible when the matching 
algorithm to search augmenting path. Then, here are some 
theorem can help us to deal the flowers 

Theorem 2 The flower b is found when the matching 
algorithm to search augmenting path about the matching M 
from the uncovering point u start in the graph G. Then any 
point v in the flower b exist an alternating path from u to v in 
the graph G, and last one edge must is matching edge in the 
alternating path 

Definition 4} Suppose b is a flower about matching M in 
the graph G. A new graph G/b is called the flower b 
contraction graph. Where G/b = (V/b, E/b), V/b = V -  + 

, the  is a set of vertexes in the flower b, the  is a 
new vertex, the E/b is a set of edges,  is a set of the 
edges which do away with all vertexes in the b, the  is a 
set of the edges,  = ,  and , let 

, E/b =  + . 
The  is an exterior point, augmenting path searching 

can from this point to continue. 
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Theorem 3 The flower b is found when the matching 
algorithm to search augmenting path about the matching M 
from the uncovering point u start in the graph G. Then there 
is an augmenting path about the matching M from the 
covering point u start if only if exist an augmenting path 
about the matching M in the graph G/b. 

This theorem tell us that it will not affect the existence of 
the augmented path about M in a graph G after the flower 
shrinkage, 

Theorem 4 If there is exist an augmented path about the 
matching M from the uncovering point u start in the graph G, 
let p is an augmented path, then there is exist an augmented 
path about the matching P - M from the uncovering point u 
start in the graph G, the P is a set of edges in the p. 

III. THE ALGORITHM IDEA 

Let M=  is a matching.  is an uncovering point 
set.  is a flag set of the vertex p.  is a set of all 
adjacency point of the vertex p, (p= ), n is the 
number of vertices of the graph G.  is a function return 
the consort of the vertex p. p.pointer is a pointer of the vertex 
p, it points to the pioneer in the searching path. Stack is a 
stack, initialized to an empty, stack.push(x) push x into the 
stack, stack.pop() pop an element from the stack, 
stack.read() read the stack top element. The "COVER" is the 
covering point flag. The "UNCOVER" is the uncovering 
point flag. The "INTERIOR" is the interior point flag. The 
"EXTERIOR" is the exterior point flag. 

Using the algorithm of the depth-first traversal to traverse 
the graph G. In the process of traversal, suppose p is the 
current search vertex.  =   {UNCOVER}, the vertex p 
marked as the uncovering point, and  =   {p}, the p 
merge into , and stack.pop() if  and all points in 

 are visited, else, let  is going to visit next time,  
=   {COVER}, the vertex p marked as the covering 
point,  =   {COVER}, the vertex q marked as the 
covering point, M = M  , the edge  append into M, 
p = q, the vertex q to act as the current searching point, and 
stack.push(p) if . After the completion of the 
traversal, get the initial matching M. The M is maximum 
matching if , then the algorithm end. 

While  to do searching an augmenting path as 
follows procedure: 

1. (  = -{INTERIOR, EXTERIOR}, , Clear 
all interior point flag and exterior point flag. 

2. Choose an uncovering point  as the starting 
point of the augmented path, and  =   
{EXTERIOR}, stack.push(p), and  =  - {p}. 
EXTERIOR flag append to the flag set of the vertex 
p, p push into the stack, delete p from the uncovering 
point set. 

3. Search the  that satisfy  if any exist, at 
this time, the algorithm found an augmenting path. 

 =   {COVER}-{UNCOVER} and to do M = 
M  , , M = M  , p = 
p.pointer, until UNCOVER ,  =   

{COVER}-{UNCOVER}. Go to repeat start to 
searching next augmenting path. 

4. Search the  that satisfy INTERIOR  and 
EXTERIOR  if any exist, at this time, to do 
stack.push(q),  =   {INTERIOR}, , 
stack.push(q),  =   {EXTERIOR}, q.pointer = 
p, p=q. Go to 3. A covering point q, that it is not 
visited, is found, The q and its consort push into the 
stack, INTERIOR flag append to the flag set of the 
vertex q, EXTERIOR flag append to the flag set of 
the consort of the vertex q, the pointer of the consort 
of the vertex q point to the vertex p, the consort of 
the vertex q regard as the current searching point. 

5. Search the  that satisfy EXTERIOR , 
INTERIOR where the  is the consort 
of the p, EXTERIOR  and EXTERIOR  
where the  is the consort of the q if any 
exist, at this time, an alternating path is found, to do 
r.pointer = q,  =   {COVER}-{UNCOVER}, q 
= r, p = p.pointer, , until EXTERIOR , 
go to 7. 

6. Search the  that satisfy EXTERIOR  and 
INTERIOR  where the  is the consort 
of the p, EXTERIOR , and  is not exist or 
INTERIOR where the  is the consort of the 
q, if any exist, at this time, a flower is found, let s = 
q, to do r.pointer = q,  =   {COVER}-
{UNCOVER}, q = r, p = p.pointer, , until p 
= s. 

7. stack.pop(), go to repeat start to searching next 
augmenting path if the stack is empty. P = 
stack.read(), stack.pop() if INTERIOR , else, go 
to 3. 

The algorithm description as follows: 
1:  Matching DFSGM(G) 
2: M = ϕ;  = ϕ; ∀(p  V )  = ϕ; Set the stack is empty; 
3:  start by finding any p  V; stack.push(p); 
4:  while the stack is not empty do 
5: p = stack.read(); 
6: if ∃(q  )  = ϕ then 
7:     stack.push(q); 
8:     if  = ϕ then 
9:           =  ∪ {COV ER};   =  ∪ {COV ER}; 
10:         M = M ∪ { }; 
11:     end if 
12:     p = q; 
13: else 
14:     if  = ϕ then 
15:           =  ∪ {UNCOVER};  =  ∪ {p}; 
16:     end if 
17:     stack.pop(); 
18: end if 
19:  end while 
20:  if  = ϕ then  
21: return  M ;  
22: end if 
23: while   ϕ do 
24: ∀(p  V )   =  − {INTERIOR, EXTERIOR}; 
25: start by finding any p  ; 
26:  =  ∪{EXTERIOR}; stack.push(p);  =  −{p}; 
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27: if ∃(q  ) q   then 
28:       =   ∪ {COVER} − {UNCOVER}; 

29:     while UNCOVER   do 
30:         M = M ∪ { }; q = ; 
31:         M = M − { }; p = p.pointer; 
32:     end while 
33:    M = M − { }; 
34:      =  ∪ {COVER} − {UNCOVER}; go to 23; 
35: end if 
36: if ∃(q  ) (INTERIOR   and EXTERIOR  ) then 
37:     stack.push(q);   =  ∪ {INTERIOR}; q = ; 
38:     stack.push(q);   =  ∪ {EXTERIOR}; 
39:     q.pointer = p; p = q; go to 27; 
40: end if 
41: if ∃(q  ) EXTERIOR    then 
42:     r = ; t = ; 
43:     if INTERIOR   and EXTERIOR    then 

44:         while EXTERIOR   do 
45:             r.pointer = q; 
46:              =  ∪ {COVER} − {UNCOVER}; 
47:             q = r; p = p.pointer; r = ; 
48:         end while 
49:         go to 60; 
50:     end if 
51:     if INTERIOR  and (t is not exist or INTERIOR ) then 
52:         s = q; 
53:         repeat 
54:             r.pointer = q; 
55:             =  ∪ {COVER} − {UNCOVER}; 
56:             q = r; p = p.pointer; r = ; 
57:         until p = s 
58:     end if 
59: end if 
60: stack.pop(); 
61: if the stack is empty then 
62:     go to 23; 
63: end if 
64: p = stack.read(); 
65: while INTERIOR    and the stack is not empty do 
66:     stack.pop(); p = stack.read(); 
67: end while 
68: if the stack is not empty then 
69:     go to 27; 
70: end if 
71:  end while 
72: return  M ; 

IV. THE EXAMPLE OF THE ALGORITHM 

Using the algorithm of the depth-first traversal to traverse 
the graph G, to get the initial matching M, as shown in the 
Fig. 1. (a). From the uncovering point  start to search an 
augmenting path. When searching to the vertex , the 
flower  is found, the  is flower stalks of 
the flower, as shown in the Fig. 1. (b). For all interior point 
vertex in the flower to add a pointer, at this time, all vertex in 
the flower can arrive go by the alternating path  or 

, therefore, change all interior point to exterior 
point. After processing the flowers, to pop a point from the 
stack, start by the stack top element to continue to search an 
augmenting path, as shown in the Fig. 1. (c). When searching 
to the vertex , the flower  is 
found, the  is flower stalks of the flower, as shown in the 
Fig. 1. (d). Processing mode ditto, you can see the result in 
Fig. 1. (e). 

When the current searching point is the vertex , find 
the vertex  and its consort  is all exterior point, as 
shown in the Fig. 1. (f), at this time, the alternating path of 
that arrive to the  come over from a vertex of the same 
flower with vertex , else, from a point in the flower that 
have been search start, can search to the . In such cases, 
merely modifying the interior point in the path  
that is not in the flower, as shown in the Fig. 1. (g).  

When the stack popping back to , the flower 
 is found, the  is flower 

stalks of the flower, as shown in the Fig. 1. (g). You can see 
the processing result in Fig. 1. (h). When the stack popping 
back to , the uncovering point is found, Finally, the 
augmenting path  
is found, as shown in the Fig. 1. (i). 

 

 
(a) 

 
(b) 

 
(c) 
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(e) 

 
(f) 

 
(g) 

 

 
(h) 

 
(i) 

 

 
Fig. 1.   The example of the algorithm 

V. ALGORITHM ANALYSIS 

Theorem 5 The DFSGM algorithm is correct. 
Prove In algorithm DFSGM searching process, only in 

the dispose of flower is different with the bipartite graph 
search. The algorithm DFSGM let all vertex of the flower 
will become the exterior point, such, in the backtracking 
courses of the stack out, each vertex in the flower can as start 
point  to search, it is equivalence with the flower contract to 
a vertex. The algorithm deals the flower is equivalence with 
Edmonds algorithm. Prove algorithm is correct. 

The DFSGM algorithm to avoid the shrinkage, expansion 
of flower. After finding maximum matching, when the 
vertex or edge of the graph to add or delete operation, using 
DFSGM algorithm can quickly calculate the new maximum 
matching. 
• Append a vertex. The appended vertex as start point to 

searching an augmenting path. 
• Delete a vertex. Change the consort point of the deleted 

vertex to uncovering point, and as start point to 
searching an augmenting path. 

• Append a edge. Append the edge into matching M if 
two end point of the edge are uncovering point, or the 
uncovering point as start point to searching an 
augmenting path if an end point of the edge is covering 
point and the other one of the edge is uncovering point, 
or the tow covering point as start point to searching two 
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alternating path of non-intersect and uncovering point 
as end points, if any exist, an augmenting path is found. 

• Delete a edge. Make no difference if the deleted edge is 
freely edge, and the two point of the deleted edge as 
start point to searching an augmenting path. 

VI. CONCLUSION 

A matching algorithm base on DFS is the simpler. The 
time efficiency of the algorithm is the same order of 
magnitude with the graph traverse. The worst is O(|V||E|). 
When the point or the edge of the graph dynamic increase or 
decrease, the algorithm can quickly adjust the maximum 
matching. 
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