
A matching algorithm based on the depth first search for the general graph

Chengcheng Yu
Department of Network Engineering,

 Hainan College of Software Technology,
Qionghai, 571400, Hainan, China

1670836831@qq.com

Sheng Zhonge
College of Information Science and Technology,

Hainan University,
Haikou, 570228, Hainan, China

shzhong@hainu.edu.cn

Abstract—In this paper, a matching algorithm of general graph
based on depth-first traversal is proposed. The algorithm does
not need to shrink and expand treatment when a flower is
searched. This algorithm’s time complexity of search an
augmenting path is equal to corresponding graph’s depth-first
traversal algorithm’s time complexity, it is one of the most
efficient algorithm. Experiments show that this algorithm can
correctly handle the associated practical problems, and have
the correct conclusion.

Keywords Graph matching; Matching algorithm; Priority
traversal; Flowering algorithm;

I. INTRODUCTION

The research on the matching theories and the matching
algorithms are one of the core content in the area of graph
theory and application research. It has a strong application
background. The research results are widely used in process
arrangement, personnel assignment, information transfer,
and transportation problem etc.

The algorithm about matching problem is proposed first
by Kuhn [1] and Hall [2] for search the perfect matching in a
bipartite graph, it is a linear programming algorithm. In
1965, the flower algorithm is proposed by Edmonds to look
for the perfect matching in a non-bipartite graph, it is a
effective algorithm [3, 4]. The better implementation
algorithms [5, 6], the effective implementation algorithm of
Edmonds method is proposed by Gabow [7]. Some other
effective label method similar to Gabow algorithm [8, 9, 10],
the algorithm’s time complexity to .

In this paper, a matching algorithm of general graph
based on depth-first traversal is proposed. The algorithm
does not need to shrink and expand treatment when a flower
is searched.

II. RELATED CONCEPTS ABOUT THE EDGE

MATCHING OF THE GENERAL GRAPH

Definition 1 G = (V, E), G is a graph where V is a vertex
set and E is a edge of the graph G. M ⊆ E is called a match
of the graph G if satisfy that any two edge in M have not the
same end point.

The matching problem is to look for maximum matching
M (the maximum number of edges). |M| = , M is
called a perfect matching. Obviously, the perfect matching
must be a maximum matching.

Definition 2 Suppose M is a matching of the graph G =
(V, E), e E, u V, v V, the edge e M is called a

matching edge. The edge e M is called a free edge. The u
and v each other is called a consort if M. The u is
called a covering point if that u is the end point of the edge in
M. The u is called an uncovering point if that u is not the end
point of the edge in M. p = () is a path in the
G, the p is called an alternating path if all adjacent edge

 are not free edges or matching
edges at the same time. The alternating path is called an
augmenting path if are an uncovering point. The
vertex are called the exterior point and the is
called the interior point if the is a free edge and the

 is a matching edge.
Lemma 1 p=(), p is an augmenting path

about matching M of the graph G, P is a set of all edge of the
p, then the M' = P - M is a matching that it contains |M| + 1
edges.

Theorem 1 The matching M of the graph G is a
maximum matching if and only if there is not exist an
augmenting path about matching M in the G.

Definition 3 The circle is called odd circle if the number
of edges is odd in the circle. The odd circle is called a flower
if just one consort of vertexes in the circle is not in the circle.
The vertex in the flower is called a flower stalks if the
consort of the vertex is not in the circle. Two vertex in the
flower are called petal if they adjoin to flower stalks.

The flower is found possible when the matching
algorithm to search augmenting path. Then, here are some
theorem can help us to deal the flowers

Theorem 2 The flower b is found when the matching
algorithm to search augmenting path about the matching M
from the uncovering point u start in the graph G. Then any
point v in the flower b exist an alternating path from u to v in
the graph G, and last one edge must is matching edge in the
alternating path

Definition 4} Suppose b is a flower about matching M in
the graph G. A new graph G/b is called the flower b
contraction graph. Where G/b = (V/b, E/b), V/b = V - +

, the is a set of vertexes in the flower b, the is a
new vertex, the E/b is a set of edges, is a set of the
edges which do away with all vertexes in the b, the is a
set of the edges, = , and , let

, E/b = + .
The is an exterior point, augmenting path searching

can from this point to continue.

2nd International Conference on Information, Electronics and Computer (ICIEAC 2014)

© 2014. The authors - Published by Atlantis Press 59

Theorem 3 The flower b is found when the matching
algorithm to search augmenting path about the matching M
from the uncovering point u start in the graph G. Then there
is an augmenting path about the matching M from the
covering point u start if only if exist an augmenting path
about the matching M in the graph G/b.

This theorem tell us that it will not affect the existence of
the augmented path about M in a graph G after the flower
shrinkage,

Theorem 4 If there is exist an augmented path about the
matching M from the uncovering point u start in the graph G,
let p is an augmented path, then there is exist an augmented
path about the matching P - M from the uncovering point u
start in the graph G, the P is a set of edges in the p.

III. THE ALGORITHM IDEA

Let M= is a matching. is an uncovering point
set. is a flag set of the vertex p. is a set of all
adjacency point of the vertex p, (p=), n is the
number of vertices of the graph G. is a function return
the consort of the vertex p. p.pointer is a pointer of the vertex
p, it points to the pioneer in the searching path. Stack is a
stack, initialized to an empty, stack.push(x) push x into the
stack, stack.pop() pop an element from the stack,
stack.read() read the stack top element. The "COVER" is the
covering point flag. The "UNCOVER" is the uncovering
point flag. The "INTERIOR" is the interior point flag. The
"EXTERIOR" is the exterior point flag.

Using the algorithm of the depth-first traversal to traverse
the graph G. In the process of traversal, suppose p is the
current search vertex. = {UNCOVER}, the vertex p
marked as the uncovering point, and = {p}, the p
merge into , and stack.pop() if and all points in

 are visited, else, let is going to visit next time,
= {COVER}, the vertex p marked as the covering
point, = {COVER}, the vertex q marked as the
covering point, M = M , the edge append into M,
p = q, the vertex q to act as the current searching point, and
stack.push(p) if . After the completion of the
traversal, get the initial matching M. The M is maximum
matching if , then the algorithm end.

While to do searching an augmenting path as
follows procedure:

1. (= -{INTERIOR, EXTERIOR}, , Clear
all interior point flag and exterior point flag.

2. Choose an uncovering point as the starting
point of the augmented path, and =
{EXTERIOR}, stack.push(p), and = - {p}.
EXTERIOR flag append to the flag set of the vertex
p, p push into the stack, delete p from the uncovering
point set.

3. Search the that satisfy if any exist, at
this time, the algorithm found an augmenting path.

 = {COVER}-{UNCOVER} and to do M =
M , , M = M , p =
p.pointer, until UNCOVER , =

{COVER}-{UNCOVER}. Go to repeat start to
searching next augmenting path.

4. Search the that satisfy INTERIOR and
EXTERIOR if any exist, at this time, to do
stack.push(q), = {INTERIOR}, ,
stack.push(q), = {EXTERIOR}, q.pointer =
p, p=q. Go to 3. A covering point q, that it is not
visited, is found, The q and its consort push into the
stack, INTERIOR flag append to the flag set of the
vertex q, EXTERIOR flag append to the flag set of
the consort of the vertex q, the pointer of the consort
of the vertex q point to the vertex p, the consort of
the vertex q regard as the current searching point.

5. Search the that satisfy EXTERIOR ,
INTERIOR where the is the consort
of the p, EXTERIOR and EXTERIOR
where the is the consort of the q if any
exist, at this time, an alternating path is found, to do
r.pointer = q, = {COVER}-{UNCOVER}, q
= r, p = p.pointer, , until EXTERIOR ,
go to 7.

6. Search the that satisfy EXTERIOR and
INTERIOR where the is the consort
of the p, EXTERIOR , and is not exist or
INTERIOR where the is the consort of the
q, if any exist, at this time, a flower is found, let s =
q, to do r.pointer = q, = {COVER}-
{UNCOVER}, q = r, p = p.pointer, , until p
= s.

7. stack.pop(), go to repeat start to searching next
augmenting path if the stack is empty. P =
stack.read(), stack.pop() if INTERIOR , else, go
to 3.

The algorithm description as follows:
1: Matching DFSGM(G)
2: M = ϕ; = ϕ; ∀(p V) = ϕ; Set the stack is empty;
3: start by finding any p V; stack.push(p);
4: while the stack is not empty do
5: p = stack.read();
6: if ∃(q) = ϕ then
7: stack.push(q);
8: if = ϕ then
9: = ∪ {COV ER}; = ∪ {COV ER};
10: M = M ∪ { };
11: end if
12: p = q;
13: else
14: if = ϕ then
15: = ∪ {UNCOVER}; = ∪ {p};
16: end if
17: stack.pop();
18: end if
19: end while
20: if = ϕ then
21: return M ;
22: end if
23: while ϕ do
24: ∀(p V) = − {INTERIOR, EXTERIOR};
25: start by finding any p ;
26: = ∪{EXTERIOR}; stack.push(p); = −{p};

60

27: if ∃(q) q then
28: = ∪ {COVER} − {UNCOVER};

29: while UNCOVER do
30: M = M ∪ { }; q = ;
31: M = M − { }; p = p.pointer;
32: end while
33: M = M − { };
34: = ∪ {COVER} − {UNCOVER}; go to 23;
35: end if
36: if ∃(q) (INTERIOR and EXTERIOR) then
37: stack.push(q); = ∪ {INTERIOR}; q = ;
38: stack.push(q); = ∪ {EXTERIOR};
39: q.pointer = p; p = q; go to 27;
40: end if
41: if ∃(q) EXTERIOR then
42: r = ; t = ;
43: if INTERIOR and EXTERIOR then

44: while EXTERIOR do
45: r.pointer = q;
46: = ∪ {COVER} − {UNCOVER};
47: q = r; p = p.pointer; r = ;
48: end while
49: go to 60;
50: end if
51: if INTERIOR and (t is not exist or INTERIOR) then
52: s = q;
53: repeat
54: r.pointer = q;
55: = ∪ {COVER} − {UNCOVER};
56: q = r; p = p.pointer; r = ;
57: until p = s
58: end if
59: end if
60: stack.pop();
61: if the stack is empty then
62: go to 23;
63: end if
64: p = stack.read();
65: while INTERIOR and the stack is not empty do
66: stack.pop(); p = stack.read();
67: end while
68: if the stack is not empty then
69: go to 27;
70: end if
71: end while
72: return M ;

IV. THE EXAMPLE OF THE ALGORITHM

Using the algorithm of the depth-first traversal to traverse
the graph G, to get the initial matching M, as shown in the
Fig. 1. (a). From the uncovering point start to search an
augmenting path. When searching to the vertex , the
flower is found, the is flower stalks of
the flower, as shown in the Fig. 1. (b). For all interior point
vertex in the flower to add a pointer, at this time, all vertex in
the flower can arrive go by the alternating path or

, therefore, change all interior point to exterior
point. After processing the flowers, to pop a point from the
stack, start by the stack top element to continue to search an
augmenting path, as shown in the Fig. 1. (c). When searching
to the vertex , the flower is
found, the is flower stalks of the flower, as shown in the
Fig. 1. (d). Processing mode ditto, you can see the result in
Fig. 1. (e).

When the current searching point is the vertex , find
the vertex and its consort is all exterior point, as
shown in the Fig. 1. (f), at this time, the alternating path of
that arrive to the come over from a vertex of the same
flower with vertex , else, from a point in the flower that
have been search start, can search to the . In such cases,
merely modifying the interior point in the path
that is not in the flower, as shown in the Fig. 1. (g).

When the stack popping back to , the flower
 is found, the is flower

stalks of the flower, as shown in the Fig. 1. (g). You can see
the processing result in Fig. 1. (h). When the stack popping
back to , the uncovering point is found, Finally, the
augmenting path
is found, as shown in the Fig. 1. (i).

(a)

(b)

(c)

61

(d)

(e)

(f)

(g)

(h)

(i)

Fig. 1. The example of the algorithm

V. ALGORITHM ANALYSIS

Theorem 5 The DFSGM algorithm is correct.
Prove In algorithm DFSGM searching process, only in

the dispose of flower is different with the bipartite graph
search. The algorithm DFSGM let all vertex of the flower
will become the exterior point, such, in the backtracking
courses of the stack out, each vertex in the flower can as start
point to search, it is equivalence with the flower contract to
a vertex. The algorithm deals the flower is equivalence with
Edmonds algorithm. Prove algorithm is correct.

The DFSGM algorithm to avoid the shrinkage, expansion
of flower. After finding maximum matching, when the
vertex or edge of the graph to add or delete operation, using
DFSGM algorithm can quickly calculate the new maximum
matching.
• Append a vertex. The appended vertex as start point to

searching an augmenting path.
• Delete a vertex. Change the consort point of the deleted

vertex to uncovering point, and as start point to
searching an augmenting path.

• Append a edge. Append the edge into matching M if
two end point of the edge are uncovering point, or the
uncovering point as start point to searching an
augmenting path if an end point of the edge is covering
point and the other one of the edge is uncovering point,
or the tow covering point as start point to searching two

62

alternating path of non-intersect and uncovering point
as end points, if any exist, an augmenting path is found.

• Delete a edge. Make no difference if the deleted edge is
freely edge, and the two point of the deleted edge as
start point to searching an augmenting path.

VI. CONCLUSION

A matching algorithm base on DFS is the simpler. The
time efficiency of the algorithm is the same order of
magnitude with the graph traverse. The worst is O(|V||E|).
When the point or the edge of the graph dynamic increase or
decrease, the algorithm can quickly adjust the maximum
matching.

ACKNOWLEDGMENT
Projects: Hainan university research start fund,

No.Kyqd1229. Hainan province natural science foundation,
No. 61353.

Corresponding author: Sheng Zhong

REFERENCES
[1] H. W. Kuhn, “The Hungarian method foe the assignment problem”,

Naval Res. Logist. Quart. 2(1955), pp.83-97.

[2] M. Hall, “An algorithm for distinct representatives”, Amer. Math.
Monthly, 1956, pp. 716-717.

[3] J.Edmonds, “Maximum matching and a polyhedron with(0,1)
vertices”, J.Res. Nat. Bur. Standards Seet. B 69B(1965), pp.125-130.

[4] J. Edmonds, Paths, “Trees and Flowers”, Canadian J. Math.,
17(1965), pp.449-467.

[5] S. Micali, V.Vazirani, “An O(m) algorithm for finding maximum
matchings in general graphs”, In Proe. 21st. Symp. Foundations of
Computing, 1980, pp. 17-27.

[6] P. Vaidya, “Geometry helps in matching”, In Proe. 20th ACM Symp.
Theory of Computing, (1988), pp. 422-425.

[7] H. N. Gabow, “An Efficient Implementation of Edmonds’ Algorithm
for Maximum Matching on Graphs”, J.ACM, 1976,V0l.23, pp. 22l-
234.

[8] M. L. Bajinski, “Labelling to Obtain a Maximum Matching in
Combina- torial Mathematics and Its Applications”, (R. C. Bose and
T. A. Dowling, Eds.), Univ. North Carolina Press, Chappel Hill, N.
C., 1967, pp. 585-602.

[9] D. Witzgall and C. T. Zahn, Jr., “Modification of Edmonds’
Algorithm for Maximum Matching of Graphs” J. Res. Nat. Bur. std.,
1965,Vol. 69B, pp.91-98.

[10] T. Kameda and I. munro, “A O(|V| × |E|) Algorithm for
MaximumMatching of Graph Computing”, 1974,V0l. 12, pp. 91-98

63

