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Abstract

The purpose of this paper is to consider q-Euler numbers and polynomials which are
q-extensions of ordinary Euler numbers and polynomials by the computations of the
p-adic q-integrals due to T. Kim, cf. [1, 3, 6, 12], and to derive the “complete sums
for q-Euler polynomials” which are evaluated by using multivariate p-adic q-integrals.
These sums help us to study the relationships between p-adic q-integrals and non-
archimedean combinatorial analysis.

1 Introduction

Let p be a fixed odd prime, and let Cp denote the p-adic completion of the algebraic closure
of Qp. For d a fixed positive integer with (p, d) = 1, let

X = Xd = lim
←−
N

Z/dpN , X1 = Zp,

X∗ =
⋃

0<a<dp
(a,p)=1a + dpZp,

a + dpNZp = {x ∈ X | x ≡ a (mod dpN )},
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where a ∈ Z lies in 0 ≤ a < dpN , (cf. [1], [2], [14]).

The p-adic absolute value in Cp is normalized so that |p|p = 1
p
. Let q be variously

considered as an indeterminate a complex number q ∈ C, or a p-adic number q ∈ Cp. If

q ∈ C, we always assume |q| < 1. If q ∈ Cp, we always assume |q − 1|p < p
− 1

p−1 , so that
qx = exp(x log q) for |x|p ≤ 1. Throughout this paper, we use the following notation :

[x]q = [x : q] =
1− qx

1− q
.

We say that f is a uniformly differentiable function at a point a ∈ Zp– and denote this
property by f ∈ UD(Zp)– if the difference quotients

Ff (x, y) =
f(x)− f(y)

x− y

have a limit l = f ′(a) as (x, y)→ (a, a), [1, 11, 12]. For f ∈ UD(Zp), let us start with the
expression

1

[pN ]q

∑

0≤j<pN

qjf(j) =
∑

0≤j<pN

f(j)µq(j + pNZp), cf. [2, 4],

representing a q-analogue of Riemann sums for f .

The integral of f on Zp will be defined as limit (n→∞) of these sums, when it exists.
An invariant p-adic q-integral of a function f ∈ UD(Zp) on Zp is defined by

∫

Zp

f(x)dµq(x) = lim
N→∞

1

[pN ]q

∑

0≤j<pN

f(j)qj .

Note that if fn → f in UD(Zp); then

∫

Zp

fn(x)dµq(x)→

∫

Zp

f(x)dµq(x).

It was well known that the ordinary Euler numbers are defined by

F (t) =
2

et + 1
= eEt =

∞∑

n=0

En
tn

n!
,

where we use the technique method notation by replacing Em by Em (m ≥ 0), symbolically,
cf.[2, 3, 6, 12]. In this paper, we consider q-Euler numbers and polynomials which are q-
extensions of ordinary Euler numbers and polynomials by the computations of the p-adic
q-integrals, and derive the“ complete sums for q-Euler polynomials” which are evaluated
by using multivariate p-adic q-integrals. These sums help us to study the relationships
between p-adic q-integrals and non-archimedean combinatorial analysis.
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2 q-Euler and Genocchi numbers associated with p-adic q-

integral

The Euler polynomials are defined by means of the following generating function: 2
et−1ext

=
∑∞

n=0 En(x) tn

n! . Note that En(0) = En. From these Euler polynomials, we can evaluate
the value of the following alternating sums of powers of consecutive integers [1, 2, 3, 11]:

−1m + 2m − 3m + · · ·+ (−1)m−1(n− 1)m =
1

2

(
(−1)n+1Em(n)− Em

)
. (2.1)

In a fermionic sense, we now consider the following p-adic q-integrals:
∫

Xf

[x]kqdµ−q(x) =

∫

Zp

[x]kqdµ−q(x) = Ek,q for k, f ∈ N. (2.2)

From the computation of this p-adic q-integral, we derive the following Eq.(3):

Ek,q = [2]q

(
1

1− q

)k k∑

l=0

(
k

l

)

(−1)l 1

1 + ql+1
, (2.3)

where
(
k
i

)
is the binomial coefficient. Note that limq→1 Ek,q = Ek. Hence, Ek,q is a q-

extension of Euler numbers which are called q-Euler numbers. Let Fq(t) =
∑∞

n=0 En,q
tn

n!
be the generating function of these q-Euler numbers. Then we easily see that [6, 8, 9, 10]

Fq(t) = e
t

1−q

∞∑

n=0

[2]q
[2]qj+1

(
1

q − 1

)j tj

j!
= [2]q

∞∑

l=0

(−q)le[l]qt. (2.4)

By using an invariant p-adic q-integral on Zp, we can also consider a q-extension of ordinary
Euler polynomials which are called q-Euler polynomials[3,8,12]. For x ∈ Zp, we define q-
Euler polynomials as follows:

∫

Zp

[x + y]kqdµ−q(y) = Ek,q(x). (2.5)

By (5), we easily see that

Ek,q(x) =
k∑

n=0

(
k

n

)

[x]k−n
q qnxEn,q.

In Eq.(5), it is easy to see that

En,q(x) =

∫

Zp

[x + y]nq dµ−q(y) = [2]q

(
1

1− q

)n n∑

k=0

(
n

k

)

(−1)kqxk 1

1 + qk+1
.

By using the definition of Eq.(5), we will give the distribution of q-Euler polynomials.
From the definition of a p-adic q-integral , we derive the below formula:

∫

Xm

[x + y]nq dµ−q(y) =
[m]mq
[m]−q

m−1∑

a=0

(−1)aqa

∫

Zp

[
a + x

m
+ y]nqmdµ−qm(y), if m is odd.



An invariant p-adic q-integral on Zp 11

Thus, if m is an odd integer, then we have

En,q(x) =
[m]nq
[m]−q

m−1∑

a=0

(−1)aqaEn,qm(
a + x

m
).

From the definition of the q-Euler polynomials, we note that

Fq(x, t) =
∞∑

n=0

En,q(x)
tn

n!
= [2]q

∞∑

n=0

(−1)nqne[n+x]qt.

As is well know, the Genocchi numbers are also defined by

2t

et + 1
=

∞∑

n=0

Gn
tn

n!
.

Thus, we easily see that Gn =
∑n−1

l=0

(
n
l

)
2lBl, where Bl are ordinary Bernoulli numbers.

We now define a q-extension of Genocchi number which are called q-Genocchi numbers as
follows:

F ∗
q (t) = [2]qt

∞∑

l=0

(−1)nqne[n]qt =
∞∑

n=0

Gn,q
tn

n!
, see [8]. (2.6)

From Eq. (2.6), we can derive the following, see Refs. [8, 12]

Gn,q = n

(
1

1− q

)n−1 n−1∑

l=0

(
n− 1

l

)
(−1)l

[2]ql+1

, when m is odd . (2.7)

From Eq. (2.6), we can also recover the defining relation for the definition of q-Genocchi
polynomials as follows:

F ∗
q (x, t) = [2]qt

∞∑

n=0

(−1)nqn+xe[n+x]qt =
∞∑

n=0

Gn,q(x)
tn

n!
, when n is odd, (see [8]).

(2.8)

Let a1, a2, · · · , ak be positive integers . For w ∈ Zp, we define multiple Daehee q-Euler
polynomials by using the invariant p-adic q-integrals as follows, cf. [7, 8, 12]:

E(k)
n (w, q|a1, a2, · · · , ak) =

∫

Zk
p

[w +

k∑

j=1

ajxj ]
ndµ−q(x), (2.9)

and

E(k)
n (q|a1, · · · , ak) =

∫

Zk
p

[
k∑

j=1

ajxj ]
ndµ−q(x),

where
∫

Zk
p

f(x)dµ−q(x) =

∫

Zp

∫

Zp

· · ·

∫

Zp
︸ ︷︷ ︸

k times

f(x)dµ−q(x1) · · · dµ−q(xr).

From Eq. (2.9), we can derive the following theorem:
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Theorem 1. Let a1, a2, · · · , ak be positive integers. Then we have

E(k)
n (w, q|a1, · · · , ak) =

[2]kq
(1− q)n

n∑

r=0

(
n

r

)

(−qw)r

k∏

j=1

(

1

[2]
q
1+raj

)

. (2.10)

Given elements α1, · · · , αm ∈ Cp and positive integers N1, · · · , Nm, n, it is easy to see
that [1, 6]

[N1(x1 + α1) + · · ·+ Nm(xm + αm)]n (2.11)

=
∑

i1,··· ,im≥0
→ i1+···+im=n

n−i1∑

k1=0

n−i1−i2∑

k2=0

· · ·

n−i1−···−im−1∑

km−1=0

(2.12)

×

(
n

i1, · · · , im

)(
n− i1

k1

)(
n− i1 − i2

k2

)

· · ·

(
n− i1 − i2 − · · · − im−1

km−1

)

(2.13)

×(q − 1)k1+···+km−1 [N1]
i1+k1 · · · [Nm−1]

im−1+km−1 [Nm]im (2.14)

×[x1 + α1 : qN1 ]k1+i1 · · · [xm−1 + αm−1 : qNm−1 ]km−1+im−1 [xm + αm : qNm ]im , (2.15)

Hence, we have

∫

Zp

· · ·

∫

Zp
︸ ︷︷ ︸

m times

[N1(x1 + α1) + · · ·+ Nm(xm + αm)]ndµ−qN1 (x1) · · · dµ−qNm (xm) (2.16)

=
∑

i1,··· ,im≥0
→ i1+···+im=n

n−i1∑

k1=0

n−i1−i2∑

k2=0

· · ·

n−i1−···−im−1∑

km−1=0

(2.17)

×

(
n

i1, · · · , im

)(
n− i1

k1

)(
n− i1 − i2

k2

)

· · ·

(
n− i1 − i2 − · · · − im−1

km−1

)

(2.18)

×(q − 1)k1+···+km−1 [N1]
i1+k1 · · · [Nm−1]

im−1+km−1 [Nm]im (2.19)

×Ek1+i1(α1, q
N1) · · ·Ekm−1+im−1

(αm−1, q
Nm−1)Eim(αm, qNm). (2.20)

From (2.9), (2.10), (2.11) and (2.16), we can derive the following theorem:

Theorem 2. (Complete sum for multiple Daehee q-Euler polynomials)
Given elements α1,· · · ,αm∈ Cp and positive integers N1, · · · , Nm, n,

∑

i1,··· ,im≥0
→ i1+···+im=n

n−i1∑

k1=0

n−i1−i2∑

k2=0

· · ·

n−i1−···−im−1∑

km−1=0

×

(
n

i1, · · · , im

)(
n− i1

k1

)(
n− i1 − i2

k2

)

· · ·

(
n− i1 − i2 − · · · − im−1

km−1

)

×(q − 1)k1+···+km−1 [N1]
i1+k1 · · · [Nm−1]

im−1+km−1 [Nm]im

×Ek1+i1(α1, q
N1) · · ·Ekm−1+im−1

(αm−1, q
Nm−1)Eim(αm, qNm)

= E(m)
n (N1α1 + · · ·+ Nmαm, q|N1, · · · , Nm).
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3 Further Remarks and Observations

In this section, we assume that q ∈ C with |q| < 1. Let Γ(s) be the ordinary gamma
function given by Γ(s) =

∫∞

0 e−tts−1dt, s ∈ C. From (8) and complex integration, we can
derive the following formula:

1

Γ(s)

∫ ∞

0
ts−2F ∗

q (x,−t)dt = [2]q

∞∑

n=0

(−1)n+1qn+x

[n + x]q
, for s ∈ C. (3.1)

For s ∈ C, we define the (Hurwitz’s type ) q-Genocchi zeta function as follows [3, 12]:

ζq,G(s, x) = [2]q

∞∑

n=0

(−1)n+1qx+n

[n + x]sq
, where x ∈ R with 0 < x < 1. (3.2)

By (2.8), (3.1) and (3.2), we can see that

ζq,G(s, x) =
1

Γ(s)

∫ ∞

0
ts−2F ∗

q (x,−t)dt =
∞∑

n=0

Gn,q(x)

n!

(
1

Γ(s)

∫ ∞

0
tn+s−2dt

)

. (3.3)

By using Laurent series in Eq. (3.3), we easily see that (see Refs. [3, 12, 13])

ζq,G(1− n, x) =
(−1)n−1

n
Gn,q(x), n ∈ N .
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