An invariant p-adic q-integral associated with q-Euler numbers and polynomials

Ismail Naci CANGÜL ${ }^{a}$, Veli KURT ${ }^{b}$, Yilmaz SIMSEK ${ }^{b}$, Hong Kyung PAK ${ }^{c}$ and Seog-Hoon RIM ${ }^{d}$
${ }^{a}$ Department of Mathematics, Uludă University, Gorukle 16059 Bursa, Turkey E-mail: cangul@uludag.edu.tr
${ }^{b}$ Department of Mathematics, University of Akdeniz, 07058-Antalya, Turkey
E-mail: simsekyil63@yahoo.com
${ }^{c}$ Faculty of Information and Science, Daegu Haany University, Kyungsan 712-715, S. Korea
E-mail: hkpak@dhu.ac.kr
${ }^{d}$ Department of Mathematics Education, Kyungpook University, Taegu 702-701, S. Korea
E-mail: shrim@knu.ac.kr (Corresponding author)

Received January 18, 2006; Accepted in Revised Form July 8, 2006

Abstract

The purpose of this paper is to consider q-Euler numbers and polynomials which are q-extensions of ordinary Euler numbers and polynomials by the computations of the p-adic q-integrals due to T. Kim, cf. [1, 3, 6, 12], and to derive the "complete sums for q-Euler polynomials" which are evaluated by using multivariate p-adic q-integrals. These sums help us to study the relationships between p-adic q-integrals and nonarchimedean combinatorial analysis.

1 Introduction

Let p be a fixed odd prime, and let \mathbb{C}_{p} denote the p-adic completion of the algebraic closure of \mathbb{Q}_{p}. For d a fixed positive integer with $(p, d)=1$, let

$$
\begin{aligned}
& X=X_{d}=\underset{N}{\lim _{N}} \mathbb{Z} / d p^{N}, \quad X_{1}=\mathbb{Z}_{p} \\
& X^{*}=\bigcup_{(a, p)=1}^{0<a<d p} a+d p \mathbb{Z}_{p} \\
& a+d p^{N} \mathbb{Z}_{p}=\left\{x \in X \mid x \equiv a \quad\left(\bmod d p^{N}\right)\right\}
\end{aligned}
$$

where $a \in \mathbb{Z}$ lies in $0 \leq a<d p^{N}$, (cf. [1], [2], [14]).
The p-adic absolute value in \mathbb{C}_{p} is normalized so that $|p|_{p}=\frac{1}{p}$. Let q be variously considered as an indeterminate a complex number $q \in \mathbb{C}$, or a p-adic number $q \in \mathbb{C}_{p}$. If $q \in \mathbb{C}$, we always assume $|q|<1$. If $q \in \mathbb{C}_{p}$, we always assume $|q-1|_{p}<p^{-\frac{1}{p-1}}$, so that $q^{x}=\exp (x \log q)$ for $|x|_{p} \leq 1$. Throughout this paper, we use the following notation :

$$
[x]_{q}=[x: q]=\frac{1-q^{x}}{1-q} .
$$

We say that f is a uniformly differentiable function at a point $a \in \mathbb{Z}_{p^{-}}$and denote this property by $f \in U D\left(\mathbb{Z}_{p}\right)$ - if the difference quotients

$$
F_{f}(x, y)=\frac{f(x)-f(y)}{x-y}
$$

have a limit $l=f^{\prime}(a)$ as $(x, y) \rightarrow(a, a),[1,11,12]$. For $f \in U D\left(\mathbb{Z}_{p}\right)$, let us start with the expression

$$
\frac{1}{\left[p^{N}\right]_{q}} \sum_{0 \leq j<p^{N}} q^{j} f(j)=\sum_{0 \leq j<p^{N}} f(j) \mu_{q}\left(j+p^{N} \mathbb{Z}_{p}\right), \text { cf. [2, 4] },
$$

representing a q-analogue of Riemann sums for f.
The integral of f on \mathbb{Z}_{p} will be defined as limit $(n \rightarrow \infty)$ of these sums, when it exists. An invariant p-adic q-integral of a function $f \in \mathrm{UD}\left(\mathbb{Z}_{p}\right)$ on \mathbb{Z}_{p} is defined by

$$
\int_{\mathbb{Z}_{p}} f(x) d \mu_{q}(x)=\lim _{N \rightarrow \infty} \frac{1}{\left[p^{N}\right]_{q}} \sum_{0 \leq j<p^{N}} f(j) q^{j} .
$$

Note that if $f_{n} \rightarrow f$ in $U D\left(Z_{p}\right)$; then

$$
\int_{\mathbb{Z}_{p}} f_{n}(x) d \mu_{q}(x) \rightarrow \int_{\mathbb{Z}_{p}} f(x) d \mu_{q}(x)
$$

It was well known that the ordinary Euler numbers are defined by

$$
F(t)=\frac{2}{e^{t}+1}=e^{E t}=\sum_{n=0}^{\infty} E_{n} \frac{t^{n}}{n!}
$$

where we use the technique method notation by replacing E^{m} by $E_{m}(m \geq 0)$, symbolically, cf. $[2,3,6,12]$. In this paper, we consider q-Euler numbers and polynomials which are q extensions of ordinary Euler numbers and polynomials by the computations of the p-adic q-integrals, and derive the" complete sums for q-Euler polynomials" which are evaluated by using multivariate p-adic q-integrals. These sums help us to study the relationships between p-adic q-integrals and non-archimedean combinatorial analysis.

$2 q$-Euler and Genocchi numbers associated with p-adic q integral

The Euler polynomials are defined by means of the following generating function: $\frac{2}{e^{t}-1} e^{x t}$ $=\sum_{n=0}^{\infty} E_{n}(x) \frac{t^{n}}{n!}$. Note that $E_{n}(0)=E_{n}$. From these Euler polynomials, we can evaluate the value of the following alternating sums of powers of consecutive integers [1, 2, 3, 11]:

$$
\begin{equation*}
-1^{m}+2^{m}-3^{m}+\cdots+(-1)^{m-1}(n-1)^{m}=\frac{1}{2}\left((-1)^{n+1} E_{m}(n)-E_{m}\right) \tag{2.1}
\end{equation*}
$$

In a fermionic sense, we now consider the following p-adic q-integrals:

$$
\begin{equation*}
\int_{X_{f}}[x]_{q}^{k} d \mu_{-q}(x)=\int_{\mathbb{Z}_{p}}[x]_{q}^{k} d \mu_{-q}(x)=E_{k, q} \quad \text { for } \quad k, f \in \mathbb{N} . \tag{2.2}
\end{equation*}
$$

From the computation of this p-adic q-integral, we derive the following Eq.(3):

$$
\begin{equation*}
E_{k, q}=[2]_{q}\left(\frac{1}{1-q}\right)^{k} \sum_{l=0}^{k}\binom{k}{l}(-1)^{l} \frac{1}{1+q^{l+1}} \tag{2.3}
\end{equation*}
$$

where $\binom{k}{i}$ is the binomial coefficient. Note that $\lim _{q \rightarrow 1} E_{k, q}=E_{k}$. Hence, $E_{k, q}$ is a q extension of Euler numbers which are called q-Euler numbers. Let $F_{q}(t)=\sum_{n=0}^{\infty} E_{n, q} \frac{t^{n}}{n!}$ be the generating function of these q-Euler numbers. Then we easily see that $[6,8,9,10]$

$$
\begin{equation*}
F_{q}(t)=e^{\frac{t}{1-q}} \sum_{n=0}^{\infty} \frac{[2]_{q}}{[2]_{q^{j+1}}}\left(\frac{1}{q-1}\right)^{j} \frac{t^{j}}{j!}=[2]_{q} \sum_{l=0}^{\infty}(-q)^{l} e^{[l]_{q} t} . \tag{2.4}
\end{equation*}
$$

By using an invariant p-adic q-integral on \mathbb{Z}_{p}, we can also consider a q-extension of ordinary Euler polynomials which are called q-Euler polynomials $[3,8,12]$. For $x \in \mathbb{Z}_{p}$, we define q Euler polynomials as follows:

$$
\begin{equation*}
\int_{\mathbb{Z}_{p}}[x+y]_{q}^{k} d \mu_{-q}(y)=E_{k, q}(x) \tag{2.5}
\end{equation*}
$$

By (5), we easily see that

$$
E_{k, q}(x)=\sum_{n=0}^{k}\binom{k}{n}[x]_{q}^{k-n} q^{n x} E_{n, q}
$$

In Eq.(5), it is easy to see that

$$
E_{n, q}(x)=\int_{\mathbb{Z}_{p}}[x+y]_{q}^{n} d \mu_{-q}(y)=[2]_{q}\left(\frac{1}{1-q}\right)^{n} \sum_{k=0}^{n}\binom{n}{k}(-1)^{k} q^{x k} \frac{1}{1+q^{k+1}}
$$

By using the definition of Eq.(5), we will give the distribution of q-Euler polynomials. From the definition of a p-adic q-integral, we derive the below formula:

$$
\int_{X_{m}}[x+y]_{q}^{n} d \mu_{-q}(y)=\frac{[m]_{q}^{m}}{[m]_{-q}} \sum_{a=0}^{m-1}(-1)^{a} q^{a} \int_{\mathbb{Z}_{p}}\left[\frac{a+x}{m}+y\right]_{q^{m}}^{n} d \mu_{-q^{m}}(y), \quad \text { if } m \text { is odd. }
$$

Thus, if m is an odd integer, then we have

$$
E_{n, q}(x)=\frac{[m]_{q}^{n}}{[m]_{-q}} \sum_{a=0}^{m-1}(-1)^{a} q^{a} E_{n, q^{m}}\left(\frac{a+x}{m}\right) .
$$

From the definition of the q-Euler polynomials, we note that

$$
F_{q}(x, t)=\sum_{n=0}^{\infty} E_{n, q}(x) \frac{t^{n}}{n!}=[2]_{q} \sum_{n=0}^{\infty}(-1)^{n} q^{n} e^{[n+x]_{q} t} .
$$

As is well know, the Genocchi numbers are also defined by

$$
\frac{2 t}{e^{t}+1}=\sum_{n=0}^{\infty} G_{n} \frac{t^{n}}{n!} .
$$

Thus, we easily see that $G_{n}=\sum_{l=0}^{n-1}\binom{n}{l} 2^{l} B_{l}$, where B_{l} are ordinary Bernoulli numbers. We now define a q-extension of Genocchi number which are called q-Genocchi numbers as follows:

$$
\begin{equation*}
F_{q}^{*}(t)=[2]_{q} t \sum_{l=0}^{\infty}(-1)^{n} q^{n} e^{[n]_{q} t}=\sum_{n=0}^{\infty} G_{n, q} \frac{t^{n}}{n!}, \text { see }[8] . \tag{2.6}
\end{equation*}
$$

From Eq. (2.6), we can derive the following, see Refs. [8, 12]

$$
\begin{equation*}
G_{n, q}=n\left(\frac{1}{1-q}\right)^{n-1} \sum_{l=0}^{n-1}\binom{n-1}{l} \frac{(-1)^{l}}{[2]_{q^{l+1}}}, \text { when } m \text { is odd } . \tag{2.7}
\end{equation*}
$$

From Eq. (2.6), we can also recover the defining relation for the definition of q-Genocchi polynomials as follows:

$$
\begin{equation*}
F_{q}^{*}(x, t)=[2]_{q} t \sum_{n=0}^{\infty}(-1)^{n} q^{n+x} e^{[n+x]_{q} t}=\sum_{n=0}^{\infty} G_{n, q}(x) \frac{t^{n}}{n!}, \quad \text { when } n \text { is odd, (see [8]). } \tag{2.8}
\end{equation*}
$$

Let $a_{1}, a_{2}, \cdots, a_{k}$ be positive integers. For $w \in \mathbb{Z}_{p}$, we define multiple Daehee q-Euler polynomials by using the invariant p-adic q-integrals as follows, cf. [7, 8, 12]:

$$
\begin{equation*}
E_{n}^{(k)}\left(w, q \mid a_{1}, a_{2}, \cdots, a_{k}\right)=\int_{\mathbb{Z}_{p}^{k}}\left[w+\sum_{j=1}^{k} a_{j} x_{j}\right]^{n} d \mu_{-q}(x), \tag{2.9}
\end{equation*}
$$

and

$$
E_{n}^{(k)}\left(q \mid a_{1}, \cdots, a_{k}\right)=\int_{\mathbb{Z}_{p}^{k}}\left[\sum_{j=1}^{k} a_{j} x_{j}\right]^{n} d \mu_{-q}(x),
$$

where

$$
\int_{\mathbb{Z}_{p}^{k}} f(x) d \mu_{-q}(x)=\underbrace{\int_{\mathbb{Z}_{p}} \int_{\mathbb{Z}_{p}} \cdots \int_{\mathbb{Z}_{p}}}_{k \text { times }} f(x) d \mu_{-q}\left(x_{1}\right) \cdots d \mu_{-q}\left(x_{r}\right)
$$

From Eq. (2.9), we can derive the following theorem:

Theorem 1. Let $a_{1}, a_{2}, \cdots, a_{k}$ be positive integers. Then we have

$$
\begin{equation*}
E_{n}^{(k)}\left(w, q \mid a_{1}, \cdots, a_{k}\right)=\frac{[2]_{q}^{k}}{(1-q)^{n}} \sum_{r=0}^{n}\binom{n}{r}\left(-q^{w}\right)^{r} \prod_{j=1}^{k}\left(\frac{1}{[2]_{q^{1+r a_{j}}}}\right) . \tag{2.10}
\end{equation*}
$$

Given elements $\alpha_{1}, \cdots, \alpha_{m} \in \mathbb{C}_{p}$ and positive integers N_{1}, \cdots, N_{m}, n, it is easy to see that $[1,6]$

$$
\begin{align*}
& {\left[N_{1}\left(x_{1}+\alpha_{1}\right)+\cdots+N_{m}\left(x_{m}+\alpha_{m}\right)\right]^{n}} \tag{2.11}\\
& =\sum_{i_{1}, \cdots, i_{m} \geq 0_{i}+\cdots+i_{m}=n} \sum_{k_{1}=0}^{n-i_{1}} \sum_{k_{2}=0}^{n-i_{1}-i_{2}} \cdots \sum_{k_{m-1}=0}^{n-i_{1}-\ldots-i_{m-1}} \tag{2.12}\\
& \times\binom{ n}{i_{1}, \cdots, i_{m}}\binom{n-i_{1}}{k_{1}}\binom{n-i_{1}-i_{2}}{k_{2}} \cdots\binom{n-i_{1}-i_{2}-\cdots-i_{m-1}}{k_{m-1}} \tag{2.13}\\
& \times(q-1)^{k_{1}+\cdots+k_{m-1}\left[N_{1}\right]^{i_{1}+k_{1}} \cdots\left[N_{m-1}\right]^{i_{m-1}+k_{m-1}}\left[N_{m}\right]^{i_{m}}} \tag{2.14}\\
& \times\left[x_{1}+\alpha_{1}: q^{N_{1}}\right]^{k_{1}+i_{1}} \cdots\left[x_{m-1}+\alpha_{m-1}: q^{N_{m-1}}\right]^{k_{m-1}+i_{m-1}}\left[x_{m}+\alpha_{m}: q^{N_{m}}\right]^{i_{m}}, \tag{2.15}
\end{align*}
$$

Hence, we have

$$
\begin{align*}
& \underbrace{\int_{\mathbb{Z}_{p}} \cdots \int_{\mathbb{Z}_{p}}}_{m \text { times }}\left[N_{1}\left(x_{1}+\alpha_{1}\right)+\cdots+N_{m}\left(x_{m}+\alpha_{m}\right)\right]^{n} d \mu_{-q^{N_{1}}}\left(x_{1}\right) \cdots d \mu_{-q^{N_{m}}}\left(x_{m}\right) \tag{2.16}\\
& =\sum_{i_{1}, \cdots, i_{m} \geq 0} \sum_{i_{1}+\cdots+i_{m}=n}^{n-i_{1}} \sum_{k_{1}=0}^{n-i_{1}-i_{2}} \cdots \sum_{k_{2}=0}^{n-i_{1}-\cdots-i_{m-1}} \cdots \sum_{k_{m-1}=0} \tag{2.17}\\
& \times\binom{ n}{i_{1}, \cdots, i_{m}}\binom{n-i_{1}}{k_{1}}\binom{n-i_{1}-i_{2}}{k_{2}} \cdots\binom{n-i_{1}-i_{2}-\cdots-i_{m-1}}{k_{m-1}} \tag{2.18}\\
& \times(q-1)^{k_{1}+\cdots+k_{m-1}}\left[N_{1}\right]_{1}^{i_{1}+k_{1}} \cdots\left[N_{m-1}\right]^{i_{m-1}+k_{m-1}}\left[N_{m}\right]^{i_{m}} \tag{2.19}\\
& \times E_{k_{1}+i_{1}}\left(\alpha_{1}, q^{N_{1}}\right) \cdots E_{k_{m-1}+i_{m-1}}\left(\alpha_{m-1}, q^{N_{m-1}}\right) E_{i_{m}}\left(\alpha_{m}, q^{N_{m}}\right) . \tag{2.20}
\end{align*}
$$

From (2.9), (2.10), (2.11) and (2.16), we can derive the following theorem:
Theorem 2. (Complete sum for multiple Daehee q-Euler polynomials)
Given elements $\alpha_{1}, \cdots, \alpha_{m} \in \mathbb{C}_{p}$ and positive integers N_{1}, \cdots, N_{m}, n,

$$
\begin{aligned}
& \sum_{\substack{i_{1}, \cdots, i_{m} \geq 0 \\
i_{1}+\cdots+i_{m}=n}} \sum_{k_{1}=0}^{n-i_{1}} \sum_{k_{2}=0}^{n-i_{1}-i_{2}} \cdots \sum_{k_{m-1}=0}^{n-i_{1}-\cdots-i_{m-1}} \\
& \times\binom{ n}{i_{1}, \cdots, i_{m}}\binom{n-i_{1}}{k_{1}}\binom{n-i_{1}-i_{2}}{k_{2}} \cdots\binom{n-i_{1}-i_{2}-\cdots-i_{m-1}}{k_{m-1}} \\
& \times(q-1)^{k_{1}+\cdots+k_{m-1}}\left[N_{1}\right]^{i_{1}+k_{1}} \cdots\left[N_{m-1}\right]^{i_{m-1}+k_{m-1}}\left[N_{m}\right]^{i_{m}} \\
& \times E_{k_{1}+i_{1}}\left(\alpha_{1}, q^{N_{1}}\right) \cdots E_{k_{m-1}+i_{m-1}}\left(\alpha_{m-1}, q^{N_{m-1}}\right) E_{i_{m}}\left(\alpha_{m}, q^{N_{m}}\right) \\
& =E_{n}^{(m)}\left(N_{1} \alpha_{1}+\cdots+N_{m} \alpha_{m}, q \mid N_{1}, \cdots, N_{m}\right) .
\end{aligned}
$$

3 Further Remarks and Observations

In this section, we assume that $q \in \mathbb{C}$ with $|q|<1$. Let $\Gamma(s)$ be the ordinary gamma function given by $\Gamma(s)=\int_{0}^{\infty} e^{-t} t^{s-1} d t, s \in \mathbb{C}$. From (8) and complex integration, we can derive the following formula:

$$
\begin{equation*}
\frac{1}{\Gamma(s)} \int_{0}^{\infty} t^{s-2} F_{q}^{*}(x,-t) d t=[2]_{q} \sum_{n=0}^{\infty} \frac{(-1)^{n+1} q^{n+x}}{[n+x]_{q}}, \quad \text { for } s \in \mathbb{C} . \tag{3.1}
\end{equation*}
$$

For $s \in \mathbb{C}$, we define the (Hurwitz's type) q-Genocchi zeta function as follows $[3,12]$:

$$
\begin{equation*}
\zeta_{q, G}(s, x)=[2]_{q} \sum_{n=0}^{\infty} \frac{(-1)^{n+1} q^{x+n}}{[n+x]_{q}^{s}}, \text { where } x \in \mathbb{R} \text { with } 0<x<1 . \tag{3.2}
\end{equation*}
$$

By (2.8), (3.1) and (3.2), we can see that

$$
\begin{equation*}
\zeta_{q, G}(s, x)=\frac{1}{\Gamma(s)} \int_{0}^{\infty} t^{s-2} F_{q}^{*}(x,-t) d t=\sum_{n=0}^{\infty} \frac{G_{n, q}(x)}{n!}\left(\frac{1}{\Gamma(s)} \int_{0}^{\infty} t^{n+s-2} d t\right) . \tag{3.3}
\end{equation*}
$$

By using Laurent series in Eq. (3.3), we easily see that (see Refs. [3, 12, 13])

$$
\zeta_{q, G}(1-n, x)=\frac{(-1)^{n-1}}{n} G_{n, q}(x), n \in \mathbb{N} .
$$

Acknowledgments. The second and third authors were supported by the Scientific Research Project Adminitraction Akdeniz University. The first author was supported by the Scientific Research Project Adminitraction Uludag University

References

[1] Kim T, q-Volkenborn integration, Russ. J. Math. Phys. 9 (2002), 288-299.
[2] Kim T, On a q-analogue of the p-adic log gamma functions and related integrals, J. Number Theory 76 (1999), 320-329.
[3] Kim T, q-Euler numbers and polynomials associated with p-adic q-integrals and basic q-zeta function, Trends Math. 9 (2006), 7-12.
[4] Kim T, Power series and asymptotic series associated with the q-analog of the two-variable p-adic L-function, Russ. J. Math. Phys. 12 (2005), 189-196.
[5] Kim T, Non-Arichimedean q-integrals associated with multiple Changhee q-Bernoulli polynomials, Russ. J. Math. Phys. 10 (2003), 91-98.
[6] Kim T, p-adic q-integral associated with the Changhee-Barnes' q-Bernoulli polynomials, Integral Transforms Spec. Funct. 15 (2004), 415-420.
[7] Kim T, An invariant p-adic integral associated with Daehee numbers, Integral Transforms and special functions 13 (2002), 65-69.
[8] Kim T, A note on q-Volkenborn integration, Proc. Jangjeon Math. Soc. 8 (2005), 13-17.
[9] Kim T and Rim S H, On Changhee-Barnes' q-Euler numbers and polynomials, Advan. Stud. Contemp. Math. 9 (2004), 81-86.
[10] Kim T, A note on q-zeta functions, in Proceedings of the 15 th international conference of the Jangjeon Mathematical Society, Jangjeon Math. Soc., Hapcheon, 2004, 110-114.
[11] Kim T, Sums powers of consecutive q-integers, Advan. Stud. Contemp. Math. 9 (2004), 15-18.
[12] Kim T, q-Euler numbers and polynomials associated with p-adic q-integrals, J. Nonlinear Math. Phys. 14 (2007), 15-27.
[13] Kim T, Multiple p-adic L-function, Russian J. Math. Phys. 13 (2006), 151-157.
[14] Kim T, Exploring the q-Riemann zeta function and q-Bernoulli polynomials, Discrete Dynamics in Nature and Society 2005(2) (2005), 171-178.

