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Abstract—This article proposes the modified age replacement 
policy for a multi-state system composed of multi-state elements. 
The degradation of the multi-state element is assumed to follow 
the non-homogeneous continuous time Markov process which is a 
continuous time and discrete state process. A recursive approach 
is presented to efficiently compute the time-dependent state 
probability distribution of the multi-state element. The state and 
performance distribution of the entire multi-state system are 
evaluated via the combination of the stochastic process and the 
Lz-transform method. The concept of user-centered reliability 
measure is developed based on the system performance and the 
user demand. We develop the age replacement policy for an aging 
multi-state system subject to imperfect maintenance in a failure 
state. The optimum replacement schedule which minimizes the 
mean cost rate is derived analytically and discussed numerically. 

Keywords-multi-state system; non-homogeneous continuous 
time Markov process; maintenance; optimization; reliability 

I.  INTRODUCTION 
To maintain a system in a working state, avoidance of 

system failure during operation is important for reliability 
engineers. Various kinds of systems suffer deterioration due to 
age and use, it is reasonable to conduct maintenance activities 
at periodic times or after a certain age of the system. Age 
replacement policy (ARP) is a well-known preventive 
replacement policy: an operating system is replaced at age T  
or at failure, whichever occurs first [1]. However, when a 
system experiences failures, it is either scrapped or minimally 
repaired in many practical situations. Brown and Proschan [2] 
considered a model in which, upon failure, the system is 
replaced with probability p and is minimally repaired with 
probability q (=1-p), and this activity can be called as imperfect 
maintenance with ( , )p q  rule [3]. A large amount of literature 
models and extends the imperfect maintenance activity 
described above for traditional binary state systems, and some 
recent applications can be found in such as [4]－[5]. In this 
paper, we will develop the modified age replacement policy for 
a multi-state system (MSS) consisting of multi-state elements 
and incorporating imperfect maintenance quality. 

In multi-state reliability modeling, the system may have 
more than two states of working efficiency, and the MSS 
should be considered thus. The MSS concerned in the present 
paper is defined as a system that has a finite number of discrete 

performance rates, from perfectly functioning to complete 
failure, resulting from the degradation or/and failure of some 
elements in the system [6]. Such a MSS is usually viewed as in 
a failure state once its performance rate falls below the user 
demand (required performance level). Therefore, the MSS 
reliability can be measured as the probability that the system 
has not reached any of the states with the performance rate less 
than the specified demand  [7]－[8]. 

Many real-world systems are composed of multi-state 
elements (MSEs), which have different performance levels and 
several failure modes with various effects on the system’s 
entire performance [9]. To describe the degradation process of 
individual elements, Lisnianski and Levitin [6] employ the 
homogeneous continuous time Markov model which assumes 
that the element’s transition intensity to the next state only 
depends on the current state. However, it is more realistic to 
consider the case that an element’s deterioration process is not 
only related to the current state, but also to the age effect of the 
element [10]. Taking this concept into account, the non-
homogeneous continuous time Markov process (NHCTMP) is 
utilized in this paper to derive the stochastic process of 
individual elements by means of considering the time-
dependent increasing state transition intensity. 

In this paper, we treat the modified age replacement policy 
for an aging MSS composed of MSEs. The degradation of 
multi-state element (MSE) is assumed to follow the NHCTMP, 
and a recursive approach is presented to efficiently compute the 
time-dependent state probability distribution of MSE. The Lz-
transform method proposed in [11] and the concept of user 
demand are employed to facilitate the reliability assessment of 
series-parallel MSS consisting of MSEs. We concern with 
modeling the MSS and undergo imperfect maintenance with 
( , )p q  rule when the performance of MSS degrades to a failure 
state. The optimum replacement time T* for the maintenance 
policy can be determined by minimizing the expected cost per 
unit time. 

II. MSS DESCRIPTION AND RELIABILITY MEASURES 

A. System Description  
Suppose that a multi-state system (MSS) consists of n 

independent multi-state elements (MSEs). Element k   in MSS 
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can have 1km +  different states corresponding to the 

performance rates, represented by the set ,0 ,1 ,{ , , , }
kk k k mG G G , 

where ,k jG  is the performance rate in the state j , 

{0,1, , }kj m∈  . Let ( )k tΦ  and ( )kG t  be the state and 
performance rate of element k  at time t , respectively, where 

( ) {0,1, , }k kt mΦ ∈   and ,0 ,1 ,( ) { , , , }
kk k k k mG t G G G∈  . The 

degradation of element k  from the best state (perfect 
functioning) (0)k kmΦ =  to lower states ( ) { 1,k kt mΦ ∈ −  

2, , 0}km −   is modeled using a general stochastic process 
known as a non-homogeneous continuous time Markov process 
(NHCTMP), where state 0 is the worst state (complete failure). 
We also assume that the process of element k  can be degraded 
directly to any lower state from state i  to state j  for all j i<  
and , { , 1, , 0}k ki j m m∈ −  . 

For element k , the instantaneous transition rate of from 
state i  to state j  at time t  can be written as 
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A typical state-space diagram of a MSE k  is illustrated in 
Figure1. 
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Figure 1.  MSS structure and state-space diagrams for the system’s elements. 

Let { }, ( ) Pr ( )k j kP t t j≡ Φ =  be the element state 

probability in state j  at time t , and , ,( ) d ( ) dk j k jP t P t t′ ≡ , 

where { , 1, , 0}k kj m m∈ −  . The state probabilities satisfy the 

condition ,0
( ) 1km

k jj
P t

=
=∑ , because at any instant t , element 

k  can always be in one and only one of 1km +  states. 

The Chapman-Kolmogorov (C-K) forward equations for 
element k  in MSS following a NHCTMP can be written in the 
matrix form  
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and 
1

, ,0
( ) ( )

ik k

i i i jj
t tλ λ

−

=
= −∑ . To determine the state probability 

, ( )k jP t  , the C-K equations (2) can be recursively solved to 
obtain 
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under the initial conditions , (0) 1
kk mP =  and , (0) 0k jP =  for 

1, 2, , 0k kj m m= − −  . 

B. MSS Reliability Measures  
The universal generating function (UGF) is a z-transform-

based approach first proposed by Ushakov [12] and has been 
widely applied to MSS reliability analysis. A new Lz-transform 
method presented by Lisnianski [11] can be applied to aging 
MSS. Lz-transform is similar to UGF and is proven that there 
are existence and uniqueness for such a case where transition 
intensities are continuous functions of time. 

By means of Lz-transform, the entire MSS may have 1M +  
different states corresponding to the cumulative performance 
rates, which is unambiguously determined by the system 
configuration and performance rates of elements. Possible 
performance rates are represented by the set 0 1{ , , , }MG G G , 

where jG  is the performance rate in the state {0,1, , }j M∈  . 
Let ( )tΦ  and ( )G t  be the state and performance rate of the 
system at time t , respectively. The probability associated with 
the individual system state in state j  at time t  is denoted by 

( )jP t  ( { } { }Pr ( ) Pr ( )
j

t j G t G≡ Φ = = = ), {0,1, , }j M∈  . 

The traditional reliability measure for a binary state system 
only focuses on the time to failure. When applied to the MSS, 
reliability can be considered to be a measure of the ability of a 
system to meet user demand [13]. The user of the system sets a 
minimum expected performance rate from the system, called 
the user demand, represented as w . During each operation 
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cycle, as the system’s output performance ( )G t  at time t  
drops below w , the system is interpreted to have failed from 
the user’s perspective even though the system might not have 
physically failed in reality. Therefore, the general definition of 
MSS reliability can be given by ( , )R t w ≡  { }Pr ( )G t w≥ . 

Furthermore, we define { }inf :w jS j G w≡ ≥ , then the entire 
set of possible states can be divided into two disjoint subsets 
corresponding to acceptable states { , 1, , }w wS S M+   and 

unacceptable (or failure) states {0,1, , 1}wS − . The reliability 
function can be rewritten as 

 { }( , ) ( , ) Pr ( ) ( )
w

M

w w j
j S

R t w R t S t S P t
=

≡ ≡ Φ ≥ = ∑ . (5) 

Based on the same manner as in the traditional binary state 
system, let X  be the life time of a MSS, then the distribution 
function ( , )wF t S , the probability density function ( , )wf t S , 

and the failure rate ( , )wr t S  of X  can be also obtained 
according to  the reliability function. 

III. AGE REPLACEMENT MODEL 
A modified age replacement policy for a MSS in which 

maintenances take place according to the following scheme. 

A new MSS with survival, failure time distribution, and 
failure rate  under the user demand w  described in Section II is 
installed at time 0. A planned replacement is carried out 
whenever the system reaches age T . It is assumed that the 
MSS failures at age t  can experience two types: a type-I 
failure (minor) occurs with probability q  and is corrected by 
minimal repair, whereas a type-II failure (catastrophic) occurs 
with probability  ( 1 )p q= −  and requires an unplanned 
replacement. In summary, the MSS is replaced at age T  or at 
any type-II failure, whichever occurs first. A renewal cycle is 
defined as the time interval between two consecutive 
replacements. 

The mean cost rate of a replacement cycle can be derived as  

0

0

( , ) ( , ) ( , ) ( , )d
( , )

( , )d

T

T p w Y p w M p w w
w T

p w

C F T S C F T S c F t S qr t S t
J T S

F t S t

+ +
≡ ∫

∫
, (6) 

where ( , )p wF t S  is the survival function of time to first type-II 

failure, YC  and TC  are the unplanned and planned  

replacement costs. To determine the optimal *T  that minimizes 
( , )wJ T S , we see that d ( , ) d 0wJ T S T =  if and only if 

0 0
( , ) ( , )d ( ) ( , ) ( , ) ( , )d ,

T T

w p w Y T p w M p w w TT S F t S t C C F T S c F t S qr t S t Cϕ − − + = 
 ∫ ∫  (6) 

where ( , ) ( ) ( , ) ( , )w Y T w M wT S C C pr T S c qr T Sϕ ≡ − + . If 

( , )wT Sϕ  is increasing in T  and lim ( , )w
T

T Sϕ
→∞

= ∞ , then there 

exists a finite and unique *T  which satisfies (6) and the 
optimal mean cost rate is * *( , ) ( , )w wJ T S T Sϕ= . 

IV. NUMERICAL EXAMPLE 
Consider a flow transmission MSS that is shown in Figure 

1 consisting of three aging MSE [14]. The water or oil flow is 
transmitted from left to right. 
 

1 0

Element 1

1 0

Element 2 1 0

Element 3

2

 
Figure 2.  MSS structure and state-space diagrams for the system’s elements. 

Suppose that the degradation of element k  ( 1, 2, 3k = ) 
follows NHCTMP with instantaneous transition rates of a 
Weibull process as 3 4

, ( ) 2 ( )k

i j t t i jλ = −  for i j> , and the 
age-related transition intensities are given in Table I. 

TABLE I.  PARAMETERS FOR EACH ELEMENT  
Element 

(#) 
State Performance rates 

(tons/min) 
Transition intensities 

(year-1) 
State probabilities and 

initial condition 
1 1 1,1G =1.5 1 3

1,0 ( ) 2t tλ =  1,1( )P t , 1,1(0) 1P =  

 0 1,0G =0.0  1,0 ( )P t , 1,0 ( ) 0P t =  

2 1 2,1G =2.0 2 3
1,0 ( ) 2t tλ =  2,1( )P t , 2,1(0) 1P =  

 0 2,0G =0.0  2,0 ( )P t , 2,0 ( ) 0P t =  

3 2 3,2G =4.0 3 3
2,1( ) 2t tλ =  3,2 ( )P t , 3,2 (0) 1P =  

 1 3,1G =1.8 3 3
2,0 ( ) 0.125t tλ =  3,1( )P t , 3,1(0) 0P =  

 0 3,0G =0.0 3 3
1,0 ( ) 2t tλ =  3,0 ( )P t , 3,0 (0) 0P =  

 
. 

Further, the state probability of each element can be 
recursively solved corresponding C-K equation (2) and directly 
determined by using equations (3) and (4) as below. 

• For element 1, 
4

1,1

0.5( ) tP t e−=  and 
45

1,0

0.( ) 1 teP t −= − . 

• For element 2, 
4

2,1

0.5( ) tP t e−=  and 
45

2,0

0.( ) 1 teP t −= − . 

• For element 3,  
40.7391

3,2 ( ) teP t −= , 
4 40.5 0.739

3,1

1( ) 16 16t te eP t − −= − , and              
4 40.5 0.7391

3,0 ( ) 1 16 15t tP t e e− −= − + . 

The system output performance rate is defined as the 
maximum flow that can be transmitted. According to the 
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system structure φ  and performance rate combination property, 
the output performance rate of the entire MSS is defined as 

( ) { }1 2 3 1 2 3( ) ( ), ( ), ( ) min ( ) ( ), ( )G t G t G t G t G t G t G tφ= = + . Then 
the Lz-transform of the entire MSS is  

( )1, 2, 3,1 2 3

1 2 3

1 2 3

1 1 2 4
min( , )

1, 2, 3,
0 0 0 0

{ ( )} ( ) ( ) ( ) ( ) ,j j j jG G G G
z j j j j

j j j j
L G t P t P t P t z P t z+

= = = =

= =∑ ∑ ∑ ∑

where jG  and ( )jP t  as shown in Table II 

TABLE II.  PERFORMANCE RATES AND STATE PROBABILITIES OF MSS  
State Performance rates 

(tons/min) 
State probabilities 

4 4G =3.5 4 1,1 2,1 3,2( ) ( ) ( ) ( )P t P t P t P t=  

3 3G =2.0 3 1,0 2,1 3,2( ) ( ) ( ) ( )P t P t P t P t=  

2 2G =1.8 2 2,1 3,1( ) ( ) ( )P t P t P t=  

1 1G =1.5 1 1,1 2,0 3,1 3,2( ) ( ) ( )[ ( ) ( )]P t P t P t P t P t= +  

0 0G =0.0 0 1,0 2,0 1,1 3,0 1,0 2,1 3,0( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )P t P t P t P t P t P t P t P t= + +  

 . 

Assuming the user demand 1.8w = (tons/min), then 

1.8wS S= =2, the acceptable states are { }2, 3, 4 , and failure 

states are { }0,1 . Therefore, the reliability function ( , )wR t S   

under the user demand 1.8w =  is equal to 2 3 4( ) ( ) ( )P t P t P t+ + . 

We consider a repair limit replacement policy where, in a 
failure state, one replaces the system or repairs it depending on 
the random cost C  with density function ( )l u . A system 

undergoes a corrective replacement if C cδ
∞

>  and is 

minimally repaired if C cδ
∞

≤ , where c
∞

 is the constant cost 
of replacement at failure and δ  ( 0 1δ≤ ≤ ) can be interpreted 
as a fraction of the constant cost c

∞
. Hence, δ  satisfies 

0
( )d

c
q l u u

δ ∞

= ∫ , and the expected minimal repair cost mc  can 

be given by 
0

( )d
c

mc ul u u q
δ ∞

= ∫ . The parameter q  is varied 
to determine its influence on the optimal policy and its mean 
cost. The optimal age replacement times and related minimum 
mean cost rates for the MSS with imperfect maintenance are 
reported in Tables III. 

TABLE III.  OPTIMAL  POLICY AND MEAN COST RATE  FOR A MSS 
21000, 1500, 1000, ~ (300, 75 ), 1.5,1.8T YC C c C N w

∞
= = = =  

q 
Case 1. w =1.5  Case 2. w =1.8 

*T  *
1.5( , )J T S   *T  *

1.8( , )J T S  
1.0 1.1320 1052.3598  1.0998 1168.3735 
0.9 1.1283 1059.6843  1.0966 1182.4403 
0.8 1.1213 1069.2934  1.0895 1200.5788 
0.7 1.1131 1080.3719  1.0806 1219.7508 
0.6 1.1040 1091.3448  1.0706 1239.5490 
0.5 1.0995 1127.8942  1.0599 1259.9358 
0.4 1.0846 1114.5013  1.0487 1280.7967 
0.3 1.0744 1125.8154  1.0370 1301.6417 
0.2 1.0641 1137.9952  1.0248 1322.4599 
0.1 1.0533 1149.6630  1.0121 1344.1460 
0.0 1.0415 1163.0153  0.9978 1367.3369 

 
 

From the numerical results, we have the following 
observations: 

• When the probability of minimal repair increases, we 
should extend the replacement schedule in order to 
reduce the minimum mean cost rates. 

• By comparing Case 1 and Case 2, if the user demand 
decreases, it is observable that the replacement 
schedule should be extended via the improved 
operating cost rate. 

• We see that some improvement can be made in the 
minimum mean cost rate if one allows for minimal 
repair at minor failure. 
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