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We introduce a log-linear regression model based on the beta generalized half-normal distribution (Pescim et
al., 2010). We formulate and develop a log-linear model using a new distribution so-called the log-beta general-
ized half normal distribution. We derive expansions for the cumulative distribution and density functions which
do not depend on complicated functions. We obtain formal expressions for the moments and moment gener-
ating function. We characterize the proposed distribution using a simple relationship between two truncated
moments. An advantage of the new distribution is that it includes as special sub-models classical distributions
reported in the lifetime literature. We also show that the new regression model can be applied to censored data
since it represents a parametric family of models that includes as special cases several widely-known regression
models. It therefore can be used more effectively in the analysis of survival data. We investigate the maximum
likelihood estimates of the model parameters by considering censored data. We demonstrate that our extended
regression model is very useful to the analysis of real data and may give more realistic fits than other special
regression models.
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1. Introduction

The fatigue is a structural damage which occurs when a material is exposed to stress and tension
fluctuations. Statistical models allow to study the random variation of the failure time associated to
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materials exposed to fatigue as a result of different cyclical patterns and strengths. Some popular
models used to describe the lifetime process under fatigue are the half normal (HN) and Birnbaum-
Saunders (BS) distributions. When modeling monotone hazard rates, the HN and BS distributions
may be an initial choice because of its positively skewed density shapes. However, they do not pro-
vide a reasonable parametric fit for modeling phenomenon with non-monotone failure rates such
as the bathtub shaped and unimodal failure rates, which are common in reliability and biological
studies. Such bathtub hazard curves have nearly flat middle portions and the corresponding den-
sities have a positive anti-mode. A highly flexible lifetime model, which admits different degrees
of kurtosis and asymmetry, is the beta generalized half-normal (BGHN) distribution proposed by
Pescim et al. (2010).

In many medical problems, the lifetimes are affected by explanatory variables such as the
cholesterol level, blood pressure, weight and many others. Parametric models to estimate univariate
survival functions and for censored data regression problems are widely used. Different forms of
regression models have been proposed in survival analysis. Among them, the location-scale regres-
sion model (Lawless, 2003) is distinguished since it is frequently used in clinical trials. Recently,
the location-scale regression model has been used in several research areas such as engineering,
hydrology and survival analysis. Lawless (2003) discussed the generalized log-gamma regression
models with censored data, Barros et al. (2008) proposed a new class of lifetime regression mod-
els for which the errors follow the generalized BS distribution, Carrasco et al. (2008) introduced
a regression model considering the modified Weibull distribution, Silva et al. (2008) studied a
location-scale regression model using the Burr XII distribution and Silva et al. (2009) worked a
location-scale regression model suitable for fitting censored survival times with bathtub-shaped
hazard rates. Other applications, we have for example, Ortega et al. (2009) proposed a modified
generalized log-gamma regression model to allow the possibility that long-term survivors may be
presented in the data and Hashimoto et al. (2010) introduced the log-exponentiated Weibull regres-
sion model for interval-censored data. In this article, we propose a log-location regression model
with censored observations, based on the BGHN distribution (Pescim et al., 2010), referred to as
the log-beta generalized half-normal (LBGHN) regression model, which is a feasible alternative for
modeling the four existing types of failure rate functions. Also, some properties of the proposed
estimators useful for developing asymptotic inference are presented.

The article is organized as follows. In Section 2, we define the LBGHN distribution, present
some special cases and provide expansions for its distribution and density functions. Section 3
gives general expansions for the moments and the moment generating function (mgf). In Section
4, we characterize the BGHNG distribution. In Section 5, we propose a LBGHN regression model,
estimate the parameters by the method of maximum likelihood and derive the observed information
matrix. In Section 6, a real data set is analyzed which shows the flexibility, practical relevance and
applicability of our regression model. Section 7 ends with some concluding remarks.

2. The log-beta generalized half-normal distribution

Most classes of generalized beta distributions have been proposed in reliability literature to provide
better fits to certain data sets. The BGHN distribution with four parameters α > 0, θ > 0, a > 0 and
b > 0, introduced and studied by Pescim et al. (2010), extends the generalized half-normal (GHN)
distribution (Cooray and Ananda, 2008) and provides good fits to various types of data. Its density
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function for t > 0 is given by
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where B(a,b) = Γ(a)Γ(b)/Γ(a+b) is the beta function. Note that
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1
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This class of generalized distributions has been receiving considerable attention over the last years,
in particular after the works of Eugene et al. (2002) and Jones (2004).

The BGHN distribution contains as special sub-models some well-known distributions. It sim-
plifies to the GHN distribution when a = b = 1. If α = 1, it reduces to the beta half normal (BHN)
distribution. If b = 1, it leads to the exponentiated generalized half normal (EGHN) distribution.
Further, if a = b = 1, in addition to α = 1, becomes the HN distribution.

The survival function is given by
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where Iy(a,b) = By(a,b)/B(a,b) is the incomplete beta function ratio and

By(a,b) =
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is the incomplete beta function. The hazard rate function corresponding to (2.1) becomes
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If T is a random variable with density function (2.1), we write T ∼BGHN(α,θ ,a,b). The BGHN
distribution is easily simulated as follows: if V has a beta distribution with parameters a and b, then

the solution of the nonlinear equation
(

T
θ

)α
= Φ−1

(
V+1

2

)
has the BGHN(α,θ ,a,b) distribution.

For other properties of the BGHN distribution, see, for example, Pescim et al. (2010).
Henceforth, T is a random variable following the BGHN density function (2.1) and Y is defined

by Y = log(T ). It is easy to verify that the density function of Y obtained by replacing µ = log(θ)
and σ =

√
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, −∞ < y < ∞, (2.4)
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where −∞ < µ <∞, σ > 0, a > 0 and b > 0. We refer to equation (2.4) as the new LBGHN distribu-
tion, say Y ∼ LBGHN(µ,σ ,a,b), where −∞ < µ < ∞ is the location parameter, σ > 0 is the scale
parameter and a > 0 and b > 0 are shape parameters. Thus, if T ∼ BGHN(α,θ ,a,b) then Y =

log(T ) ∼ LBGHN(µ,σ ,a,b). The LBGHN distribution contains well-known distributions as spe-
cial sub-models. It simplifies to the log-generalized half-normal (LGHN) distribution when a = b =

1. If σ =
√

2/2, it reduces to the log-beta half normal (LBHN) distribution. If b = 1, it leads to the
log-exponentiated generalized half normal (LEGHN) distribution. Further, if a = b = 1, in addition
to σ =

√
2/2, it reduces to the log-half-normal (LHN) distribution. Figures 1 and 2 plots this density

function for selected values of the parameters µ , σ , a and b showing that the LBGHN distribution
could be very flexible for modeling its kurtosis.
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Fig. 1. The LBGHN density curves: (a) For some values of µ increasing and a increasing with σ = 1, and b = 1. (b) For
some values of σ increasing and a decreasing with µ = 0, and b = 0.5.

The corresponding survival function is

S(y) = 1− I
2Φ
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The random variable Z = (Y −µ)/σ has density function given by
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We provide two simple formulae for the cumulative distribution function (cdf), probability den-
sity function (pdf) and survival function of the LBGHN distribution depending if the parameter
b > 0 is real non-integer or integer.
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Fig. 2. The LBGHN density curves: (a) For some values of µ increasing and b decreasing with a = 1, and σ = 1. (b) For
some values of σ increasing and b decreasing with µ = 0, and a = 0.5.

Theorem 1: If Y ∼ LBGHN(µ,σ ,a,b), then we have the following approximations:

1.1 For a > 0 and b > 0 real non-integers,
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1.3 The survival function can be written as

S(y) = 1−
∞

∑
j,k=0

v jk(a,b)S∗(y)k,

where v j,k(a,b) =
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Γ(a)Γ(b− j) j!(a+ j)Γ(a+ j+1−k)k! and S∗(y) is the survival function of the
LGHN distribution.
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Proof 1.1:
First, if |z|< 1 and b > 0 is real non-integer, it follows that
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Using the representation (2.9), the LBGHN cumulative function for b > 0 real non-integer can
be expanded from (2.5) as
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Proof 1.2:
Differentiating F(y) given in Theorem 1.1, we obtain
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Further, using the binomial expansion and the erf(.) function in (2.11), we obtain after some algebra
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Proof 1.3:
Note that the Theorem 1.1 can be written in terms of the survival function S∗(y) of the LGHN

distribution. We have

F(y) =
∞

∑
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Using the representation (2.9) in equation (2.12) for a¿0 real non-integer, it can be expanded as
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Finally, we obtain
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.�

3. Properties of the log-beta generalized half-normal distribution

We hardly need to emphasize the necessity and importance of the moments in any statistical analysis
especially in applied work. Some of the most important features and characteristics of a distribution
can be studied through moments (e.g., tendency, dispersion, skewness and kurtosis).

The moments of a random variable Y following the LBGHN density function (2.4) can be
expressed parameterized in terms of µ,σ ,a and b. We have the theorem.

Theorem 2: If Y ∼ LBGHN(µ,σ ,a,b), then the sth moment is given by
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where w j,k,r(a,b) is just defined after (2.8) and

Γ(q)
(

m1 + . . .+mr +
r+1

2

)
=

∂ qΓ(m1 + . . .+mr +
r+1

2 )

∂ (m1 + . . .+mr +
r+1

2 )q
.

Proof:
The sth moment of the LBGHN distribution is µ ′

s =

∫ ∞

−∞
ys f (y)dy. Using the Theorem 1.2, we

obtain
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The skewness and kurtosis measures can now be calculated from the ordinary moments using
well-known relationships. Plots of the skewness and kurtosis for some choices of the parameter b
as function of a, and for some choices of the parameter a as function of b, for µ = 0.01 and σ = 90,
are shown in Figures 3 and 4, respectively. These figures immediately reveal that the skewness and
kurtosis curves increase (decrease) with b (a) for fixed a (b).
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Fig. 3. Skewness of the LBGHN distribution. (a) Function of a for some values of b. (b) Function of b for some values of
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a..

4. Characterization results

The problem of characterizing a distribution is an important problem which has recently attracted
the attention of many researchers. Thus, various characterizations have been established in many
different directions. In practice, an investigator will be vitally interested to know if their model fits
the requirements of their proposed distribution. To this end, the investigator relies on the charac-
terizations of the distribution which provide conditions under which the underlying distribution is
indeed the proposed distribution.
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Here, we present, without loss of generality, characterizations of the LBGHN (0,1,a,b) distri-
bution ,with pdf given by (6) , in terms of: (i) a simple relationship between two truncated moments;
(ii) truncated moment of certain functions of the nth order statistic.

Due to the format of cdf of LBGHN (0,1,a,b) , we believe characterizations in other directions
may not be possible or if possible will be quite complicated.

4.1. Characterizations of LBGHN(0,1,a,b) based on the ratio of two truncated moments

Our first set of characterizations will employ an interesting result due to Glänzel (1987) (Theorem
3 below).

Theorem 3. Let (Ω,F,P) be a given probability space and let H = [a,b] be an interval for
some a < b (a =−∞ , b = ∞ might as well be allowed). Let X : Ω → H be a continuous random
variable with the distribution function F and let g and h be two real functions defined on H such
that

E [g(X) | X ≥ x] = E [h(X) | X ≥ x] η (x) , x ∈ H,

is defined with some real function η . Assume that g , h ∈ C1 (H), η ∈ C2 (H) and F is twice
continuously differentiable and strictly monotone function on the set H. Finally, assume that the
equation hη = g has no real solution in the interior of H. Then, F is uniquely determined by the
functions q, h and η , particularly

F (x) =C
∫ x

a

∣∣∣∣ η ′ (u)
η (u)h(u)−g(u)

∣∣∣∣exp [−s(u)] du,

where the function s is a solution of the differential equation s′ = η ′ h
η h − g and C is a constant

chosen to make
∫

H dF = 1.
We like to mention that this kind of characterization based on the ratio of truncated moments is

stable in the sense of weak convergence, in particular, let us assume that there is a sequence {Xn}
of random variables with distribution functions {Fn} such that the functions gn , hn and ηn (n ∈ N)
satisfy the conditions of Theorem 3 and let gn → g , hn → h for some continuously differentiable
real functions g and h. Let X be a random variable with distribution F . Under the condition that
gn(X) and hn(X) are uniformly integrable and that the family is relatively compact, the sequence Xn

converges to X in distribution if and only if ηn converges to η , where

η (x) =
E [g(X) | X ≥ x]
E [h(X) | X ≥ x]

.

This stability theorem makes sure that the convergence of distribution functions is reflected by
corresponding convergence of the functions g , h and η , respectively. It guarantees, for instance, the
“convergence” of characterization of the Wald distribution to that of the Lévy-Smirnov distribution
if α → ∞.

A further consequence of the stability property of Theorem 3 is the application of this theorem
to special tasks in statistical practice such as the estimation of the parameters of discrete distribu-
tions. For such purpose, the functions g , h and, specially, η should be as simple as possible. Since
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the function triplet is not uniquely determined it is often possible to choose η as a linear func-
tion. Therefore, it is worth analyzing some special cases which helps to find new characterizations
reflecting the relationship between individual continuous univariate distributions and appropriate in
other areas of statistics.

Remark 1. (a) In Theorem 3, the interval H need not be closed. (b) The goal is to have the
function η as simple as possible. For a more detailed discussion on the choice of η , we refer the
reader to Glänzel and Hamedani (2001) and Hamedani (2006 and 2010).

Proposition 1. Let X : Ω → R be a continuous random variable and let

h(x) =
{

2Φ
[
exp

(
x
√

2/2
)]

−1
}1−a

and g(x) = h(x)
{

1−Φ
[
exp

(
x
√

2/2
)]}

for x ∈ R. The pdf of X is (6) if and only if the function η defined in Theorem 3 has the form

η (x) =
b

b+1

{
1−Φ

[
exp

(
x
√

2/2
)]}

, x ∈ R.

Proof:
Let X have pdf (6). Then,

[1−F (x)] E [h(X) | X ≥ x] =
1

b2−bB(a,b)

{
1−Φ

[
exp

(
x
√

2/2
)]}b

,

and

[1−F (x)] E [g(X) | X ≥ x] =
1

(b+1)2−bB(a,b)

{
1−Φ

[
exp

(
x
√

2/2
)]}b+1

,

where F is the cdf corresponding to the pdf f .
Finally,

η (x)h(x)−g(x) =− 1
b+1

{
1−Φ

[
exp

(
x
√

2/2
)]}{

2Φ
[
exp

(
x
√

2/2
)]

−1
}1−a

< 0 .

Conversely, if η is given as above, then

s′ (x) =
η ′ (x) h(x)

η (x) h(x)−g(x)
= b

{
d
dx

Φ
[
exp

(
x
√

2/2
)]}{

1−Φ
[
exp

(
x
√

2/2
)]}−1

,

and hence s(x) = log
{

1−Φ
[
exp

(
x
√

2/2
)]}−b

, x ∈ R. Now, in view of Theorem 3 (with C
chosen appropriately), X has corresponding pd f (6) .�

Remark 2. Clearly, there are other triplets (h,g,η) satisfying the conditions of Proposition 1.
Corollary 1.Let X : Ω → R be a continuous random variable and let

h(x) =
{

2Φ
[
exp

(
x
√

2/2
)]

−1
}1−a

for x ∈ R. The pdf of X is (6) if and only if there exist functions g and η defined in Theorem 3
satisfying the differential equation
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η ′ (x)
{

2Φ
[
exp

(
x
√

2/2
)]

−1
}1−a

η (x)
{

2Φ
[
exp

(
x
√

2/2
)]

−1
}1−a

−g(x)

=
b

2
√

π
exp

{
1
2

[
−exp

(
x
√

2
)
+ x

√
2
]}{

1−Φ
[
exp

(
x
√

2/2
)]}−1

, x ∈ R.

Remark 3. The general solution of the differential equation given in Corollary 1 is

η (x) =
{

1−Φ
[
exp

(
x
√

2/2
)]}−1

×−
∫

g(x) b
(b+1)

√
π exp

{
1
2

[
−exp

(
x
√

2
)
+ x

√
2
]}

×{
2Φ

[
exp

(
x
√

2/2
)]

−1
}a−1

dx+D

 ,

for x ∈ R, where D is a constant. One set of appropriate functions is given in Proposition 1 with
D = 0.

4.2. Characterization of LBGHN(0,1,a,b) based on truncated moment of certain
functions of the nth order statistic

Let X1:n ≤ X2:n ≤ ... ≤ Xn:n be n order statistics from a continuous cd f F. We state here a
characterization result based on certain functions of the nth order statistic. Our characterization of
LBGHN (0,1,a,b) here will be a consequence of the following proposition, which is similar to the
one appeared in our previous work (Hamedani 2010).

Proposition 2. Let X : Ω → (0,∞) be a continuous random variable with cd f F . Let
ψ (x) and q(x) be two differentiable functions on (0,∞) such that lim x→0 ψ (x) [F (x)]n = 0 and∫ ∞

0
q ′(t)

[ψ(t)−q(t)]dt = ∞.

Then

E [ψ (Xn:n) | Xn:n < t] = q(t) , t > 0 , (4.1)

implies

F (x) = exp
{
−
∫ ∞

x

q′ (t)
n [ψ (t)−q(t)]

dt
}
, x ≥ 0. (4.2)

Remarks 4. (c) Taking, e.g., ψ (x) =
(

I
2Φ

[
( x

θ )
α]−1

(a,b)
)n

and q(x) = 1
2 ψ (x) in Proposition

2, (4.2) will reduce to the cd f F corresponding to the pd f (6) . (d) For b = 1, we may take

ψ (x) =
(

2Φ
[( x

θ
)α

]
−1

)n
and q(x) = 1

2 ψ (x) .

5. The log-beta generalized half-normal regression model

In many practical applications, the lifetimes are affected by explanatory variables such as the choles-
terol level, blood pressure, weight and many others. Parametric models to estimate univariate sur-
vival functions and for censored data regression problems are widely used. A parametric model
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that provides a good fit to lifetime data tends to yield more precise estimates of the quantities of
interest. Based on the LBGHN density, we propose a linear location-scale regression model or
log-linear regression model linking the response variable yi and the explanatory variable vector
xT

i = (xi1, . . . ,xip) as follows

yi = xT
i β +σzi, i = 1, . . . ,n, (5.1)

where the random error zi has density function (2.6), β = (β1, . . . ,βp)
T , σ > 0, a > 0 and b > 0 are

unknown parameters. The parameter µi = xT
i β is the location of yi. The location parameter vector

µ = (µ1, . . . ,µn)
T is represented by a linear model µ = Xβ , where X = (x1, . . . ,xn)

T is a known
model matrix. The LBGHN model (5.1) opens new possibilities for fitting many different types of
data. This model is referred to as the LBGHN regression model for censored data. It is an extension
of an accelerated failure time model using the BGHN distribution for censored data.

It contains as special sub-models the following well-known regression models:

• Log-beta half normal (LBHN) regression model (new)
For σ =

√
2/2, the survival function is

S(y|x) = 1− I
2Φ
[

exp
(

y−xT β
)]

−1
(a,b).

Note that the LBHN regression model is a new model. If a= b= 1 in addition to σ =
√

2/2,
it reduces to the new log-half normal (LHN) regression model.

• Log-exponentiated generalized half-normal (LEGHN) regression model (new)
For b = 1, the survival function is

S(y|x) = 1− 1
a

{
2Φ

[
exp

{(
y−xT β

σ

)√
2

2

}]
−1

}a

,

which is the new LEGHN regression model.
• Log-generalized half-normal (LGHN) distribution (new)

For a = b = 1, the survival function becomes

S(y|x) = 2−2Φ
{

exp
[(

y−xT β
σ

)√
2

2

]}
,

which is the new LGHN regression model.

Consider a sample (y1,x1), . . . ,(yn,xn) of n independent observations, where each random
response is defined by yi = min{log(ti), log(ci)}. We assume non-informative censoring such that
the observed lifetimes and censoring times are independent. Let F and C be the sets of individu-
als for which yi is the log-lifetime or log-censoring, respectively. Conventional likelihood estima-
tion techniques can be applied here. The log-likelihood function for the vector of parameters γ =

(a,b,σ ,β T )T from model (5.1) has the form l(γ) = ∑
i∈F

li(γ)+ ∑
i∈C

l(c)i (γ), where li(γ) = log[ f (yi|xi)],

l(c)i (γ) = log[S(yi|xi)], f (yi|xi) is the density (2.4) and S(yi|xi) is the survival function (2.5) of Yi.
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The total log-likelihood function for γ reduces to

l(γ) = r log
[

2b−1

σ
√

πB(a,b)

]
− 1

2 ∑
i∈F

exp
(
zi
√

2
)
+

√
2

2 ∑
i∈F

zi

+(a−1)∑
i∈F

log
{

2Φ
[

exp
(

zi
√

2
2

)]
−1

}
+(b−1)∑

i∈F
log

{
1−Φ

[
exp

(
zi
√

2
2

)]}
+∑

i∈C
log

[
1− IG(yi|xi)(a,b)

]
, (5.2)

where G(yi|xi) = 2Φ
[

exp
(
zi
√

2/2
)]

− 1, zi = (yi − xT
i β )/σ and r is the number of uncensored

observations (failures). The maximum likelihood estimate (MLE) γ̂ of the vector of unknown
parameters can be calculated by maximizing the log-likelihood (5.2). We use the subroutine
NLMixed in SAS to calculate the estimate γ̂ . Initial values for β and σ are taken from the fit of
the LGHN regression model with a = b = 1. The fit of the LBGHN model produces the estimated
survival function for yi (ẑi = (yi −xT

i β̂ )/σ̂ ) given by

S(yi; â, b̂, σ̂ , β̂
T
) = 1− IĜ(yi|xi)

(â, b̂), (5.3)

where

Ĝ(yi|xi) = 2Φ

{
exp

[(
yi −xT

i β̂
σ̂

)√
2

2

]}
−1.

Similarly, using the invariance property of the MLEs, we have

S(ti; â, b̂, α̂, θ̂) = 1− I
2Φ

[
( ti

θ̂ )
α̂]−1

(â, b̂), (5.4)

where α̂ =
√

2
2σ̂ and θ̂ = exp(−xT β̂ ).

Under conditions that are fulfilled for the parameter vector γ in the interior of the parameter
space but not on the boundary, the asymptotic distribution of

√
n(γ̂ − γ) is multivariate normal

Np+3(0,K(γ)−1), where K(γ) is the information matrix. The asymptotic covariance matrix K(γ)−1

of γ̂ can be approximated by the inverse of the (p + 3)× (p + 3) observed information matrix
−L̈(γ). The elements of the observed information matrix −L̈(γ), are are calculated numerically. The
approximate multivariate normal distribution Np+3(0,−L̈(γ)−1) for γ̂ can be used in the classical
way to construct approximate confidence regions for some parameters in γ .

We can use the likelihood ratio (LR) statistic for comparing some special sub-models with
the LBGHN model. We consider the partition γ = (γT

1 ,γT
2 )

T , where γ1 is a subset of parameters
of interest and γ2 is a subset of the remaining parameters. The LR statistic for testing the null
hypothesis H0 : γ1 = γ(0)1 versus the alternative hypothesis H1 : γ1 ̸= γ(0)1 is given by w = 2{ℓ(γ̂)−
ℓ(γ̃)}, where γ̃ and γ̂ are the estimates under the null and alternative hypotheses, respectively. The
statistic w is asymptotically (as n → ∞) distributed as χ2

k , where k is the dimension of the subset of
parameters γ1 of interest.

6. Application- Voltage data

In this section, we illustrate the usefulness of the BGHN and LBGHN distributions with one applica-
tion. Lawless (2003) reports an experiment in which specimens of solid epoxy electrical-insulation
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were studied in an accelerated voltage life test. The sample size is n = 60, the percentage of cen-
sored observations was 10% and are considered three levels of voltage 52.5,55.0 and 57.5. The
variables involved in the study are: ti - failure times for epoxy insulation specimens (in min); censi

- censoring indicator (0=censoring, 1=lifetime observed); xi1 - voltage (kV).
We started the analysis of data considering only failure (ti) and censoring (censi) data. An appro-

priate model for fitting such data could be the BGHN distribution. Table 1 gives the MLEs (and the
corresponding standard errors in parentheses) of the model parameters and the values of the fol-
lowing statistics for some models: AIC (Akaike Information Criterion), BIC (Bayesian Information
Criterion) and CAIC (Consistent Akaike Information Criterion). The computations were done using
the subroutine NLMixed in SAS. These results indicate that the BGHN model has the lowest AIC,
BIC and CAIC values among those values of the fitted models, and therefore it could be chosen as
the best model. Note that α1 and γ are the parameters of the Weibull distribution.

Table 1. Estimates of the model parameters for the voltage data, the corresponding SEs (given in parentheses) and the
statistics AIC, CAIC and BIC.

Model α θ a b AIC CAIC BIC
BGHN 0.099 1020.98 59.443 30.219 839.1 839.8 847.5

(0.0097) (289.73) (1.406) (0.077)
GHN 0.622 1030.0 1 1 861.3 861.5 865.5

(0.066) (151.07) (-) (-)
HN 1 1776.36 1 1 870.0 870.1 872.1

(-) (175.04) (-) (-)
α1 γ

Weibull 1132.0 0.947 873.3 873.5 877.5
(167.83) (0.094)

Formal tests for other sub-models of the BGHN distribution are conducted using LR statistics
as described before. Applying these statistics to the voltage data, the results are given in Table 2.
Clearly, we reject the null hypotheses for the three LR tests in favor of the BGHN distribution.

Table 2. LR tests.

Voltage Hypotheses Statistic w p-value
BGHN vs GHN H0 : a = b = 1 vs H1 : H0 is false 26.20 < 0.0001
BGHN vs HN H0 : a = b = α = 1 vs H1 : H0 is false 36.90 <0.0001

In order to assess if the model is appropriate, Figure 5a plots the empirical survival function and
the estimated survival function of the BGHN distribution which shows a good fit to these data.

Now, we present results by fitting the model

yi = β0 +β1xi1 +σzi,

where the random variable Yi follows the LBGHN distribution (2.4) for i = 1, . . . ,60. The MLEs of
the model parameters are calculated using the procedure NLMixed in SAS. Iterative maximization
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of the logarithm of the likelihood function (5.2) starts with initial values for β and σ which are
taken from the fit of the LGHN regression model with a = b = 1.

Table 3. MLEs of the parameters from the LBGHN regression model fitted to the voltage data set, the corresponding SEs
(given in parentheses), p-value in [.] and the statistics AIC, CAIC and BIC.

Model σ β0 β1 a b AIC CAIC BIC
LBGHN 5.306 10.632 -0.201 102.14 1.564 167.1 168.2 177.5

(0.666) (3.304) (0.056) (3.989) (0.672)
[0.0021] [0.0007]

LGHN 0.778 23.637 -0.301 1 1 178.8 179.2 185.1
(0.089) (2.928) (0.053) (-) (-)

[< 0.001] [< 0.001]
LHN

√
2/2 24.0607 -0.3079 1 1 177.6 177.8 181.7
(-) (2.6276) (0.0478) (-) (-)

[< 0.001] [< 0.001]
Log-Weibull 0.8454 22.032 -0.275 173.4 173.8 179.7

(0.090) (3.046) (0.055)
[< 0.001] [< 0.001]

We note from the fitted LBGHN regression model that x1 is significant at 1% and that there is a
significant difference between the voltages 52.5, 55.0 and 57.5 for the survival times.

Formal tests for other sub-models of the LBGHN distribution are conducted using LR statistics
as described before. Applying these statistics to the voltage data, the results are given in Table 4.
Clearly, we reject the null hypotheses for the three LR tests in favor of the LBGHN distribution.

Table 4. LR tests.

Voltage Hypotheses Statistic w p-value
LBGHN vs LGHN H0 : a = b = 1 vs H1 : H0 is false 15.70 0.0004
LBGHN vs LHN H0 : a = b = 1 and σ =

√
2/2 vs H1 : H0 is false 16.10 <0.0011

In order to assess if the model is appropriate, Figure 5b plots the empirical survival function
and the estimated survival function given by (5.4) from the fitted LBGHN regression model. We
conclude that the LBGHN regression model provides a good fit to these data.

7. Concluding Remarks

We introduce the so-called log-beta generalized half-normal (LBGHN) distribution whose hazard
rate function accommodates four types of shape forms, namely increasing, decreasing, bathtub and
unimodal. We derive expansions for the moments and moment generating function. Some important
properties are addressed. Based on this new distribution, we propose a LBGHN regression model
which is very suitable for modeling censored and uncensored lifetime data. The new regression
model allows testing the goodness of fit of some known regression models as special sub-models.
Hence, the proposed regression model serves as a good alternative for lifetime data analysis. Further,

Published by Atlantis Press 
Copyright: the authors 

345



The Log-Beta Generalized Half-Normal Regression Model

(a) (b)

0 1000 2000 3000 4000 5000 6000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

t

S
(t)

Kaplan−Meier
BGHN
GHN
Weibull

0 1000 2000 3000 4000 5000 6000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

t

S
(t|

x)

Kaplan−Meier
BGHN (x=52.5)
BGHN (x=55)
BGHN (x=57.5)
Weibull (x=52.5)
Weibull (x=55)
Weibull (x=57.5)
GHN (x=52.5)
GHN (x=55)
GHN (x=57.5)

Fig. 5. (a) Estimated survival functions and the empirical survival for voltage data. (b) Estimated survival functions for
the BGHN distribution and some of its sub-models and the empirical survival for stress level data.

the new regression model is much more flexible than the generalized half normal, exponentiated
generalized half normal and half normal sub-models. We use the procedure NLMixed (SAS) to
obtain the maximum likelihood estimates and perform asymptotic tests for the parameters based on
the asymptotic distribution of these estimates. We demonstrate in one application to real data that
the LBGHN model can produce better fit than its sub-models.
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