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Abstract 
                                                         
In this paper, the confidence intervals for the generalized gamma distribution parameters are 
derived based on the Bayesian approach using the informative and non-informative priors and 
the classical approach, via the Asymptotic Maximum likelihood estimation, based on the 
generalized order statistics. For measuring the performance of the Bayesian approach 
comparing to the classical approach, the confidence intervals of the unknown parameters have 
been studied, via Monte Carlo simulations and some real data. The simulation results indicated 
that the confidence intervals based on the Bayesian approach compete and outperform those 
based on the classical approach.  
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1. Introduction 

 

   A random variable X is said to have generalized gamma distribution (GGD) if its 
probability density function (PDF) has the form: 
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)(  is the gamma function,  ,  and  are the shape, scale and index (or shape) 

parameters respectively. The corresponding cumulative distribution function (CDF) is 
given by: 
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1))/(,( , is the lower incomplete gamma 

function. 
Generalized gamma distribution has been proposed by Stacy (1962), as a flexible 
family, that includes some important lifetime models as special cases by setting the 

shape parameters to unity, such as, the exponential distribution )1(   , 

gamma distribution )1(  , Weibull distribution )1(   and lognormal 

distribution as  .    

      The inferential procedures for the GGD are difficult perhaps because of an 
additional shape parameter. However, the statistical analysis of its parameters based 
on complete as well as censored samples have been studied by many authors such as, 
Stacy and Mihram (1965),  Harter ( 1967), Hager and Bain (1970) , Prentice (1974), 
Lawless (1980, 1982), Di Ciccio (1987), Wingo (1987), Cohen and Whitten (1988), 
Maswadah (1989, 1991),  Hwang and Hu (1999), Hwang and Huang (2006), Gomes 
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et al. (2008), Geng and Yuhlong (2009). For Bayesian inference, one may refer to 
Dadpay et al. (2007) and Mukherjee et al. (2011). 
     Up to now, Bayesian and non-Bayesian estimation related to the GGD based on 
the generalized order statistics (GOS) were not addressed in the literature. Thus, in 
this paper, the Bayesian inference using the informative and non-informative priors 
are derived based on the GOS, that introduced by Kamps (1995) as a unified 
approach to several models of ordered random variables such as ordinary order 
statistics, type-II censored order statistics, type-II progressive censored order 
statistics, upper record values and sequential order statistics. For more details about 
the GOS, see among others Ahsanullah (1995, 2000). 

     Let ),~,,(,),,~,,1( kmnnXkmnX  , ( 1~,1  mk  is a real number) be 

n generalized order statistics from a continuous population with CDF )(xF and PDF 

)(xf
 
, thus  their joint PDF has the form 
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Particular cases from (2): 

1- Ordinary order statistics: for 1k  and  0~ m . 
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2- Type II right censored order statistics: for 1k  and 0
i

m  , 1,,2,1  ni  , 

rn
n

m  . 

3- Type II progressive censored order statistics: for 0
i

m , 1,,2,1  ni  ,  

1 k
n

m . 

4- Record values for 1k  and 1~ m . 

 
 

2. Main Results 
 

 2.1    Bayesian approach 
 
  2.1.1   Informative Prior on α and non-Informative Prior on β 
 

  Suppose that ),~,,(,),,~,,1( kmnnXkmnX  , are GOS from the generalized 

gamma distribution (1), thus the likelihood function is given by: 
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     Under the assumption that the shape parameter   has a conjugate gamma prior, it 

is assumed that the prior distribution of   has Gamma (a, b), with PDF  
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where, the hyper-parameters 0,0  ba .  
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By choosing the non-informative prior density for  which is defined as: 

        )0(,/1)(
2

  .                                                                                        

Thus, the joint prior density for   and   has the form: 

bea
a

abba /1
)(
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 ,          0,0  ba .           (4) 

 

Thus, using Bayes’ theorem, the joint posterior PDF of   and   can be written as: 

         x);,L(),|,(x)|,(  bag  .     (5) 

 
Substituting (3) and (4) in (5), we get 
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C  is the normalizing constant and is given by:  
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The marginal densities for   (or  ) can be derived by integrating with respect to 

  (or ) out of (6) respectively as: 
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2.1.2    Non-informative Prior on α and β  
   

 When the parameters  and   are unknown, a conjugate family of a continuous 

joint prior density on  and   does not exist. In trying to solve this problem and 

simplify the Bayesian analysis, the arguments in Box and Tiao (1973) have been 

used, for deriving the non-informative joint prior density for and   , when   is 

known as:  
 

   /1),,(  .                                                           (9) 

Thus using (3) and (9) in (5), the joint posterior density of  and   can be written 

as:-   
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C is the normalizing constant and is given by:  
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The marginal densities of  and   are obtained respectively as: 
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2.2    Asymptotic maximum likelihood estimation 
 
     The MLE is a popular statistical method used for deriving the classical confidence 
intervals for the distribution parameters. It provides statistical studies for the 
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parameters and can be regarded as reference technique as in our study. For purpose of 
comparison, we obtain the confidence intervals for the parameters, thus the 
asymptotic variance- covariance matrix of the MLEs can be derived, which is the 
inversion of the Fisher information matrix whose elements are the negative of the 
expected values of the second order partial derivatives of the logarithm of the 
likelihood function. The log likelihood function based on the first n GOS from the 
GGD (1), can be derived as:   
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The maximum likelihood estimators ̂ and ̂  are the solutions to the system of 

equations obtained by equating to zero the first partial derivatives of the natural 

logarithm of the likelihood function with respect to  and   when   is known. 

Thus, the ML estimators ̂  and ̂  for  and   , respectively, can be obtained from 

the solution of the following normal equations: 
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in expression (15) and later expressions, we use for convenience the summation 
notation 
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Equations (15) and (16) can’t be solved analytically. Numerical technique such as the 
Newton  Raphson method can be used to solve these equations numerically. Thus, the 

Fisher information matrix ( )I   can be constructed by differentiating (14) with 

respect to  and   respectively when ̂ and ̂  are known.  
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     Thus, the elements of ( )I   have been evaluated from (17), (18) and (19), by 

substituting   ̂ and ̂  instead of  and  . Therefore, the asymptotic Fisher's 

information matrix can be written as  

           

)ˆ,ˆ(),( 
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In relation to the asymptotic variance-covariance matrix of the ML estimators of the 
parameters, it can be approximated numerically by inverting the above Fisher's 

information matrix F. The approximate )%1(100   two-sided confidence intervals 

for  and   can be, respectively, obtained as    

                        )ˆ(ˆˆ 2/  Z
 
and

      
)ˆ(ˆˆ

2/  Z , 

where 2/Z is the upper th)2/( percentile of a standard normal distribution, and 

)ˆ(ˆ  , )ˆ(ˆ  are, respectively, the standard deviations of the ML estimators of the 

parameters  and  . 

 
 

3. Simulation Study and Comparisons 
   

To assess the performance of the confidence intervals based on the Bayesian 
approach comparing to those based on the asymptotic maximum likelihood 

Published by Atlantis Press 
Copyright: the authors 

365



 
 

Bayesian Inference on the Generalized Gamma Distribution 

 

estimation approach, Monte Carlo simulations, are carried out in terms of the 
following criteria: 
i) Covering percentage (CP), which is defined as the fraction of times the 

confidence interval covers the true value of the parameter in repeated sampling.   
ii) The mean length of intervals (MLI). 
iii) The standard error of the covering percentage (SDE), which is  defined for the 

nominal level (1 )100%  by 
ˆ ˆ(1 )

ˆ( )SDE
M

  
 , where ˆ(1 )100%  

denote the corresponding Monte Carlo estimate and M is the number of Monte 
Carlo trials. Thus, for the nominal level 95% and 1000 simulation trails, say, the 
standard error of the covering percentage is 0.0049, which is approximately 

1% . Therefore, we say the procedure is adequate if the SDE is within 2%  

error for the nominal level 95%. 
The results, based on 1000 Monte Carlo simulations are given for samples of sizes n 

= 20 and  40,  which have been generated for the scale parameter  = 2, 3, shape 

parameter  =1, 2, 3 and 

  =1, 2, based on the complete, the type-II censored and the type-II progressive 

censored samples with binomial random removals at P=0.5 with uncensored levels r 
equal to [n/2] and [3n/4]. The corresponding hyper-parameters provided in the 
previous section are taking to be a=2.0 and b=2.0. From the simulation results, we 
summarized some of the interesting features in the following points:  
 

1. The results in Tables (1-4) indicated that, as the sample size increases, 
the two approaches have values of MLIs decrease and the values of CPs 
increase, while the values of SDEs decrease for all values of   based 

on the complete and censored samples. 
2. The mean length of intervals for the parameter   increase as the shape 

parameter increases as would be expected. On the contrary, for the 

parameter   the mean length of the intervals decrease as the shape 

parameter   increases based on the complete, type-II censored and 

type-II progressive censored samples. 

3.   As the true value   increases the MLIs decrease, and the CPs mostly 

increase and the SDEs decrease based on the complete, type-II censored 
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and type-II progressive censored samples for the parameter   and  , 

for both approaches. 
4.    As the uncensored level increases the length of intervals decrease for the 

parameter   and   for both approaches. 

5.   For the parameter   , as the true value of   increases, the values of  

CPs and SDEs are fixed, based on the Classical approach. 
6.  The Bayesian approach is conservative for estimating the parameters   

and    because the covering percentages are much greater than the 

nominal level than those  based on the Classical inference for all sample 
sizes. On the contrary, the classical approach is anti-conservative for 

estimating   and almost conservative for estimating  when the 

sample size is greater than 20. 
7.   It is worthwhile to note that, the values of MLIs and SDEs based on the 

type-II progressive censored samples are less than those based on type-
II censored samples. Moreover, the CPs for type-II progressive censored 
samples are greater than those based on type-II censored samples.  

8.   Both the two approaches are adequate because the values of SDEs are 

less than  2 for the nominal level 95%. 
9.   Finally, in general, we can conclude that the length of intervals for   

and   based on the informative  prior are less than those based on the 

non-informative prior, and the CPs based on the informative prior are 
greater than those based on the non- informative prior as expected. 

 
 
 

4. An illustrative Example 
 
Consider the results of tests, the endurance of deep groove ball bearings. The data are 
quoted from Lawless (1982) consist of a complete sample of size n=23, that represent 
the results of the test, in millions of revolutions before failures are:  
17.88, 28.92, 33.00, 41.52, 41.12, 45.60, 48.48, 51.84, 51.96, 54.12, 55.56, 67.80, 
68.64, 68.64, 68.88, 84.12, 93.12, 98.64, 105.12, 105.84, 127.92, 128.04, 173.40.  
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Thus, for the purpose of comparison, we derived the confidence intervals of the 

unknown parameters   and  based on these data for complete, type-II censored 

and type-II progressively censored samples with binomial removals at P=0.5 and 

uncensored levels are equal  to [n/2] and [3n/4] at  =1, 2, we set the hyper-

parameters for the informative prior as  a=2.0 and b=2.0.  From the result in Tables 5, 
we conclude the following points: 
 
1. The length of intervals based on the informative prior, and the non-informative 

are smaller than those based on the classical approach for the parameter   and 

  , based on complete, type-II censored and type-II progressive censored 

samples. 
2.  As the uncensored level increases the length of intervals decrease for the 

parameter   and   for both approaches. 

3.  As the true value increases, the length of intervals for the parameter   and 

   decrease based on the two approaches. 

4.  It is worthwhile to note that, the length of intervals for   and   based on the 

type-II progressive censored samples are less than those based on type-II 
censored sample based on the two approaches. 

5. The length of intervals based on the informative prior are less than those  based 
on the non- informative prior as expected. 
We conclude that the results based on the real data ensure the simulation results. 
 

5. Conclusions 

In this paper, the confidence intervals for the unknown parameters of the GGD have 
been constructed based on the Bayesian approach using the informative and the non-
informative priors, and the Asymptotic maximum likelihood method based on the 
complete, the type-II censored and the type-II progressive censored samples. We 
compared the performance of the two approaches, via Monte Carlo simulations and 
some real data. From the simulation results, it is observed that the Bayesian 
confidence intervals based on the informative, and the non-informative priors 
outperform the confidence intervals based on the Asymptotic maximum likelihood 
method.  
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Table 1. The (MLIs), (CPs) and (SDEs) for the Bayesian and the classical approaches when the nominal level 
is 95% for the parameter   with (     ) based on the type-II progressive censored samples with 

uncensored levels (50% and 75%).  
Approaches Inform Prior Non Inform Prior Classical 

n r     MLI CP SE MLI CP SDE MLI CP SDE 

20 10 1 1 1.1025    0.925    0.0083 1.1371    0.941 0.0075 1.1495 0.940 0.0075    
   2 2.0042    0.951 0.0068 2.0519    0.960 0.0062 2.2990   
   3 2.1304    0.983 0.0041 2.2371    0.974 0.0050 3.4485   
             
 15  1 0.9024    0.935 0.0078 0.8955 0.963 0.0060 0.8865 0.959 0.0063    
   2 1.7065    0.957 0.0064 1.7298    0.967 0.0056 1.7725   
   3 1.8920    0.988 0.0034 1.9559    0.984 0.0040 2.6594   
             
 10 2 1 0.9703    0.952 0.0068 0.9825    0.969 0.0055 1.1073 0.951 0.0068    
   2 1.5764    0.994 0.0024 1.6585    0.989 0.0033 2.2145   
   3 2.0937    0.993 0.0026 2.2004    0.989 0.0033 3.3218   
             
 15  1 0.7934    0.948    0.0070 0.8541    0.961 0.0061 0.8482 0.952 0.0068    
   2 1.3995    0.979 0.0045 1.4440    0.981 0.0043 1.6965   
   3 1.8571    0.992 0.0028 1.9188    0.990 0.0031 2.5447   
             

40 20 1 1 0.7484    0.939 0.0076 0.7550    0.952 0.0068 0.7396 0.949 0.0070    
   2 1.3048    0.968    0.0056 1.4917    0.954 0.0066 1.4792   
   3 1.7406    0.990 0.0031 1.7835 0.983 0.0041 2.2188   
             
 30  1 0.6138    0.932 0.0099 0.6114    0.945 0.0072 0.5915 0.944 0.0073    
   2 1.2142    0.940 0.0075 1.2200    0.945 0.0072 1.1831   
   3 1.5320    0.974 0.0050 1.5562    0.976 0.0048 1.7746   
             
 20 2 1 0.6871    0.940 0.0075 0.6906    0.957 0.0064 0.7087 0.939 0.0076    
   2 1.2650    0.963 0.0060 1.2920    0.966 0.0057 1.4174   
   3 1.6912    0.981 0.0043 1.7316    0.975 0.0049 2.1261   
             
 30  1 0.5690    0.936    0.0077 0.5875    0.942 0.0074 0.5668 0.935 0.0078    
   2 1.0957    0.948 0.0070 1.1083    0.946 0.0071 1.1336   
   3 1.4893    0.967 0.0056 1.5119    0.963 0.0060 1.7004   
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Table 2. The (MLIs), (CPs) and (SDEs) for the Bayesian and the classical approaches when the nominal level 
is 95% for the parameter   with (     ) based on the complete and type-II censored samples with 

uncensored levels ( 50% and 75%).  
Approaches Inform Prior Non Inform Prior Classical 

n     r  MLI CP SDE MLI CP SDE MLI CP SDE 

20 1 2 10 1 1.3204   0.941 0.0075 1.3339   0.955 0.0066 1.3914 0.960 0.0062 
    2 2.6137   0.950 0.0069 2.6722   0.954 0.0066 2.7828   
    3 3.6015   0.970 0.0054 3.8193   0.957 0.0064 4.1742   
   15 1 1.0022   0.931 0.0080 0.9856   0.957 0.0064 0.9890 0.958 0.0063 
    2 1.9285   0.951 0.0068 1.9495   0.956 0.0065 1.9780   
    3 2.7010   0.960 0.0062 2.8010   0.957 0.0064 2.9669   
   20 1 0.7348   0.941 0.0075 0.7362   0.958 0.0063 0.7415 0.958 0.0063 
    2 1.4499   0.951 0.0068 1.4672   0.956 0.0065 1.4831   
    3 2.1457   0.961 0.0061 2.1983   0.956 0.0065 2.2246   
 2 2 10 1 1.2791   0.938 0.0076 1.2573   0.959 0.0063 1.2913 0.961 0.0061 
    2 2.2393   0.962 0.0060 2.2878   0.961 0.0061 2.5826   
    3 2.7468   0.974 0.0050 2.8652   0.966 0.0057 3.8738   
   15 1 0.9434   0.922 0.0085 0.9308   0.950 0.0069 0.9356 0.947 0.0071 
    2 1.7218 0.948 0.0070 1.7507   0.951 0.0068 1.8712   
    3 2.0187   0.979 0.0045 2.0909   0.975 0.0049 2.8067   
   20 1 0.7039   0.927 0.0082 0.7087   0.937 0.0077 0.7118 0.931 0.0080 
    2 1.3926   0.935 0.0078 1.4121   0.938 0.0076 1.4236   
    3 2.0661   0.939 0.0076 2.1155   0.939 0.0076 2.1354   

40 1 2 20 1 0.8861   0.938 0.0076 0.8961   0.947 0.0071 0.8964 0.950 0.0069 
    2 1.7832 0.938 0.0076 1.7961   0.948 0.0070 1.7928   
    3 2.4983   0.948 0.0070 2.5747   0.949 0.0070 2.6892   
   30 1 0.6773   0.943 0.0073 0.6711   0.955 0.0066 0.6608 0.953 0.0067 
    2 1.3359   0.951 0.0068 1.3404   0.956 0.0065 1.3217   
    3 1.8515   0.956 0.0065 1.8781   0.953 0.0067 1.9825   
   40 1 0.5009   0.948 0.0070 0.5050   0.959 0.0063 0.5032 0.955 0.0066 
    2 0.9957   0.953 0.0067 1.0043   0.959 0.0063 1.0063   
    3 1.4843   0.958 0.0063 1.5037   0.959 0.0063 1.5095   
 2 2 20 1 0.8582   0.929 0.0081 0.8482   0.950 0.0069 0.8453 0.951 0.0068 
    2 1.6467   0.941 0.0075 1.6619   0.950 0.0069 1.6905   
    3 1.9835   0.966 0.0057 2.0389   0.967 0.0056 2.5358   
   30 1 0.6207   0.950 0.0069 0.6393   0.948 0.0070 0.6282 0.949 0.0070 
    3 1.4837   0.961 0.0061 1.6128   0.954 0.0066 1.8845   
   40 1 0.4807   0.934 0.0079 0.4859   0.944 0.0073 0.4832 0.939 0.0076 
    3 1.4275   0.943 0.0073 1.4462   0.944 0.0073 1.4497   
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Table 3. The (MLIs), (CPs) and (SDEs) for the Bayesian and the classical approaches when the nominal level 
is 95% for the parameter   based on complete and type-II censored samples  with uncensored levels ( 

50% and 75%).  
Approaches Inform Prior Non Inform Prior Classical 

n   r     MLI CP SDE MLI CP SDE MLI CP SDE 

20 1 10 2 1 4.7710   0.959 0.0063 7.0842 0.966 0.0057 2.5376 0.797 0.0127 
    2 2.0640   0.963 0.0060 2.4179    0.964 0.0059 1.2487 0.827 0.0120 
    3 1.4995   0.962 0.0060 1.6988 0.960 0.0062 0.8336 0.833 0.0118 
   3 1 6.9905 0.959 0.0063 10.3907   0.966 0.0057 3.8064 0.797 0.0127 
    2 3.0881   0.963 0.0060 3.6106    0.964 0.0059 1.8730 0.827 0.0120 
    3 2.2467   0.962 0.0060 2.5433    0.960 0.0062 1.2505 0.833 0.0118 
  15 2 1 2.5309   0.955 0.0066 2.8220 0.966 0.0057 1.8998 0.893 0.0098   
    2 1.2033 0.960 0.0062 1.2884 0.967 0.0056 0.9473 0.908 0.0091   
    3 0.9424 0.981 0.0043 0.9740 0.982 0.0042 0.6331 0.913 0.0089   
   3 1 3.7892   0.955 0.0066 4.2217    0.966 0.0057   2.8497 0.893 0.0098   
    2 1.8042 0.960 0.0062 1.9316 0.967 0.0056 1.4209 0.908 0.0091   
    3 1.4135 0.981 0.0043 1.4608 0.982 0.0042 0.9497 0.913 0.0089   
  20 2 1 2.0274 0.951 0.0068 2.0951    0.958 0.0063 1.7691 0.925 0.0083 
    2 0.9984 0.958 0.0063 1.0260    0.961 0.0061 0.8816 0.925 0.0083 
    3 0.7458 0.984 0.0040 0.7563    0.984 0.0040 0.5888 0.925 0.0083 
   3 1 3.0395   0.951 0.0068 3.1407    0.958 0.0063 2.6537 0.925 0.0083 
    2 1.4975   0.958 0.0063 1.5389    0.961 0.0061 1.3223 0.925 0.0083 
    3 1.1186   0.984 0.0040 1.1343    0.984 0.0040 0.8831 0.925 0.0083 

20 2 10 2 1 1.9554   0.960 0.0062 2.1447    0.975 0.0049 1.6267 0.894 0.0097 
    3 0.7765   0.989 0.0033 0.8207 0.990 0.0031 0.5390 0.887 0.0100 
   3 1 2.9313   0.959 0.0063 3.2144    0.975 0.0049 2.4401 0.894 0.0097 
    2 1.5602   0.979 0.0045 1.6222 0.979 0.0045 1.2120 0.891 0.0099 
    3 1.1646   0.989 0.0033 1.2309 0.990 0.0031 0.8086 0.887 0.0100 
  15 2 1 1.7544   0.955 0.0066 1.8397    0.947 0.0071 1.6751 0.918 0.0087 
    3 0.6914   0.970 0.0054 0.7114    0.970 0.0054 0.5523 0.912 0.0090 
   3 1 2.6312   0.955 0.0066 2.7591    0.947 0.0071 2.5127 0.918 0.0087 
    2 1.3578 0.958 0.0063 1.4250    0.974 0.0050 1.2434 0.914 0.0089 
    3 0.9951 0.978 0.0046 1.0672    0.970 0.0054 0.8284 0.912 0.0090 
  20 2 1 1.7163   0.949 0.007 1.7498 0.955 0.0066 1.6911 0.926 0.0083 
    2 0.8764   0.955 0.0066 0.9020    0.956 0.0065 0.8340 0.923 0.0084 
    3 0.5985 0.968 0.0056 0.6102    0.966 0.0057 0.5550 0.919 0.0086 
   3 1 2.5742   0.949 0.007 2.6245    0.955 0.0066 2.5367 0.926 0.0083 
    2 1.3146 0.955 0.0066 1.3530    0.956 0.0065 1.2511 0.923 0.0084 
    3 0.8978 0.968 0.0056 0.9153    0.966 0.0057 0.8325 0.919 0.0086 
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Table 3. ( Continued) 
Approaches Inform Prior Non Inform Prior Classical 

n   r     MLI CP SDE MLI CP SDE MLI CP SDE 

40 1 20 2 1 2.4513   0.958 0.0063 2.8335 0.964 0.0059 1.8354 0.876 0.0104 
    2 1.1965   0.965 0.0058 1.2527 0.966 0.0057 0.9176 0.897 0.0096  
    3 0.8861   0.960 0.0062 0.9207 0.957 0.0064 0.6137 0.902 0.0094 
   3 1 3.6684   0.958 0.0063 4.2364 0.963 0.0060 2.7531 0.876 0.0104 
    2 1.7311   0.962 0.0060 1.8778   0.966 0.0057 1.3764 0.897 0.0096  
    3 1.3291   0.960 0.0062 1.3809   0.957 0.0064 0.9206 0.902 0.0094 
  30 2 1 1.5987   0.959 0.0063 1.6742 0.965 0.0058 1.3803 0.940 0.0075   
    2 0.7960 0.965 0.0058 0.8418   0.975 0.0049 0.6909 0.944 0.0073   
    3 0.6143 0.991 0.003 0.6203   0.992 0.0028 0.4616 0.945 0.0072   
   3 1 2.3970   0.959 0.0063 2.5100 0.965 0.0058 2.0704 0.940 0.0075   
    2 1.1939 0.965 0.0058 1.2292   0.969 0.0055 1.0364 0.944 0.0073   
    3 0.9219 0.991 0.003 0.9308   0.992 0.0028 0.6923 0.945 0.0072   
  40 2 1 1.3737   0.947 0.0071 1.3930   0.952 0.0068 1.2692 0.954 0.0066 
    2 0.6998 0.958 0.0063 0.7077   0.961 0.0061 0.6351 0.946 0.0071 
    3 0.5480 0.993 0.0026 0.5493   0.993 0.0026 0.4241 0.946 0.0071 
   3 1 2.0603   0.947 0.0071 2.0888   0.951 0.0068 1.9038 0.954 0.0066 
    2 1.0498   0.958 0.0063 1.0617   0.961 0.0061 0.9527 0.946 0.0071 
    3 0.8229   0.993 0.0026 0.8249   0.993 0.0026 0.6362 0.946 0.0071 

40 2 20 2 1 1.3107   0.948 0.0070 1.3690   0.957 0.0064 1.1938 0.914 0.0089 
    2 0.6877   0.957 0.0064 0.7112 0.963 0.0060 0.5938 0.914 0.0089 
    3 0.5647   0.991 0.0030 0.5699   0.990 0.0031 0.3957 0.916 0.0088 
   3 1 1.9658   0.948 0.0070 2.0533   0.957 0.0064 1.7907 0.914 0.0089 
    2 1.0317   0.957 0.0064 1.0670 0.963 0.0060 0.8906 0.914 0.0089 
    3 0.8483 0.991 0.0030 0.8560 0.990 0.0031 0.5936 0.916 0.0088 
  30 2 1 1.2531   0.950 0.0069 1.2896   0.950 0.0069 1.2116 0.930 0.0081 
    2 0.6387   0.974 0.0050 0.6532   0.977 0.0047 0.6012 0.926 0.0083 
    3 0.4770   0.958 0.0063 0.4803   0.955 0.0066 0.4004 0.928 0.0082 
   3 1 1.8796   0.950 0.0069 1.9343   0.950 0.0069 1.8175 0.930 0.0081 
    2 0.9615 0.958 0.0063 0.9796   0.977 0.0047 0.9018 0.926 0.0083 
    3 0.6346 0.966 0.0057 0.6453   0.965 0.0058 0.6006 0.928 0.0082 
  40 2 1 1.2471   0.950 0.0069 1.2578 0.955 0.0066 1.2114 0.941 0.0075 
    2 0.6374   0.957 0.0064 0.6463   0.962 0.0060 0.6004 0.937 0.0077 
    3 0.3909 0.953 0.0067 0.4286   0.977 0.0047 0.3997 0.938 0.0076 
   3 1 1.8706   0.950 0.0069 1.8867   0.955 0.0066 1.8171 0.941 0.0075 
    2 0.9562   0.957 0.0064 0.9694   0.962 0.0060 0.9007 0.937 0.0077 
    3 0.5865 0.953 0.0067 0.5934 0.953 0.0067 0.5996 0.938 0.0076 
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Table 4. The (MLIs), (CPs) and (SDEs) for the Bayesian and the classical approaches when the nominal level 
is 95% for the parameter   based on type-II progressive censored samples with uncensored levels ( 50% 

and 75%).  
Approaches Inform Prior Non Inform Prior Classical 

n   r     MLI CP SDE MLI CP SDE MLI CP SDE 

20 1 10 2 1 2.3004   0.940 0.0075 2.4357   0.955 0.0066 2.3476 0.883 0.0102 
    2 1.4266   0.947 0.0071 1.5197   0.953 0.0067 1.1793 0.896 0.0097 
    3 1.0439   0.969 0.0055 1.0924   0.975 0.0049 0.7919 0.903 0.0094 
              
   3 1 2.3459   0.971 0.0053 2.4998   0.974 0.0050 3.5214 0.883 0.0102 
    2 1.6806   0.958 0.0063 1.7713   0.966 0.0057 1.7689 0.896 0.0097 
    3 1.3951   0.975 0.0049 1.4451   0.978 0.0046 1.1878 0.903 0.0094 
              
  15 2 1 2.0478   0.933 0.0079 2.1302   0.943 0.0073 1.9795 0.893 0.0098 
    2 1.1405   0.939 0.0076 1.1865   0.944 0.0073 0.9894 0.904 0.0093   
    3 0.8005   0.960 0.0062 0.8205   0.963 0.0060 0.6622 0.908 0.0091 
              
   3 1 2.1108   0.969 0.0055 2.2078   0.970 0.0054 2.9692 0.893 0.0098   
    2 1.4686   0.946 0.0071 1.5199   0.954 0.0066 1.4842 0.904 0.0093   
    3 1.1544   0.962 0.0060 1.1799   0.964 0.0059 0.9932 0.908 0.0091 
              
 2 10 2 1 1.8015   0.980 0.0044 2.0945   0.970 0.0054 2.3464 0.903 0.0094 
    2 1.1862   0.970 0.0054 1.2898   0.963 0.0060 1.1332 0.892 0.0098 
    3 0.8386   0.952 0.0068 0.9037   0.971 0.0053 0.7506 0.892 0.0098 
              
   3 1 1.9329   0.979 0.0045 2.1408   0.969 0.0055 3.5196 0.903 0.0094   
    2 1.2866   0.987 0.0036 1.4227   0.980 0.0044 1.6997 0.892 0.0098 
    3 1.0568   0.977 0.0047 1.1326   0.972 0.0052 1.1259 0.892 0.0098 
              
  15 2 1 1.6243   0.972 0.0052 1.8391   0.965 0.0058 1.9515 0.933 0.0079 
    2 0.9957   0.965 0.0058 1.0480   0.963 0.0060 0.9511 0.927 0.0082 
    3 0.6931   0.977 0.0047 0.7128   0.984 0.0040 0.6307 0.928 0.0082 
              
   3 1 1.6772   0.988 0.0034 1.8810   0.980 0.0044 2.9273 0.933 0.0079 
    2 0.9086   0.960 0.0062 1.1647   0.990 0.0031 1.4266 0.927 0.0082 
    3 0.8824   0.988 0.0034 0.9189   0.987 0.0036 0.9461 0.928 0.0082 
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Table 4.  (continued) 
 

Approaches Inform Prior Non Inform Prior Classical 
n   r     MLI CP SDE MLI CP SDE MLI CP SDE 

40 1 20 2 1 1.8566   0.946 0.0071 1.9125   0.959 0.0063 1.7564 0.912 0.0090 
    2 0.9881   0.950 0.0069 1.0159   0.959 0.0063 0.8785 0.919 0.0086 
    3 0.6935   0.965 0.0058 0.7046   0.967 0.0056 0.5874 0.921 0.0085 
              
   3 1 1.9761   0.977 0.0047 2.0458   0.979 0.0045 2.6347 0.912 0.0090 
    2 1.3396   0.959 0.0063 1.3743   0.964 0.0059 1.3177 0.919 0.0086 
    3 1.0236   0.966 0.0057 1.0390   0.968 0.0056 0.8812 0.921 0.0085 
              
  30 2 1 1.5611   0.950 0.0069 1.5914   0.954 0.0066 1.4479 0.923 0.0084 
    2 0.8009   0.962 0.0060 0.8143   0.964 0.0059 0.7249 0.925 0.0083   
    3 0.5815   0.975 0.0049 0.5863   0.976 0.0048 0.4844 0.928 0.0082 
              
   3 1 1.7687   0.968 0.0056 1.8112   0.969 0.0055 2.1718 0.923 0.0084 
    2 1.1540   0.963 0.0060 1.1728 0.965 0.0058 1.0873 0.925 0.0083   
    3 0.8686   0.975 0.0049 0.8756   0.976 0.0048 0.7267 0.928 0.0082 
              
 2 20 2 1 1.5020   0.963 0.0060 1.6614   0.959 0.0063 1.7028 0.926 0.0083 
    2 0.8449   0.955 0.0066 0.9115   0.957 0.0064 0.8388 0.928 0.0082   
    3 0.6021   0.979 0.0045 0.6006   0.980 0.0044 0.5579 0.929 0.0081 
              
   3 1 1.5945 0.984 0.0040 1.6937 0.972 0.0052 2.5542 0.926 0.0083   
    2 0.9852   0.988 0.0034 1.0367   0.985   0.0038 1.2582 0.928 0.0082   
    3 0.7986   0.961 0.0061 0.8070   0.981 0.0043 0.8369 0.929 0.0081   
              
  30 2 1 1.4057   0.941 0.0075 1.4119   0.945 0.0072 1.3959 0.928 0.0082 
    2 0.7310   0.945 0.0072 0.7444   0.950 0.0069 0.6892 0.932 0.0080 
    3 0.4610   0.0047 0.0047 0.4688   0.978 0.0046 0.4583 0.933 0.0079 
              
   3 1 1.4301   0.987 0.0036 1.4400   0.983 0.0041 2.0939 0.928 0.0082 
    2 0.8427   0.992    0.0028 0.8723   0.990 0.0031 1.0338 0.932 0.0080 
    3 0.6541   0.982 0.0042 0.6661   0.982 0.0042 0.6875 0.933 0.0079 
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Table 5: The Lower (LL) and the Upper limits (UL), Maximum likelihood estimates (MLE), and the lengths of 

the 95% confidence intervals (CI) for the  parameters for α and β using the kernel and classical approaches 
based on GOS based on the ball  bearing data. 

Par. S n r λ  Inform Prior Non Inform Prior Classical 

 
 
 
 
 
 
 
 
 
 
 

  

 
 
 
 

Type-II 
censored 
sample 

         
23 11 1 1.835 (2.1832) 4.018 1.6888 (2.3222) 4.011 2.4166 (4.8487) 7.265 

  2 1.193  (1.7667) 2.959     1.047     (1.8747) 2.922   1.528   (2.8469)4.375 
         
 17 1 1.193   (1.7677)2.959     1.377   (1.8572) 3.234    1.9985  (2.3036) 4.301    
  2 0.977  (1.1645) 2.142     0.903    (1.1631) 2.0663   1.345   (1.4909) 2.836    
             
 23 1 1.491 (1.2739) 2.765     1.436 (1.2841) 2.7203    1.458    (1.2885) 2.746   
  2 1.0368 (0.857) 1.893      0.9904 (0.8608) 1.851    1.008    (0.8607) 1.868   

 
Type-II 
progressive 

censored 
sample 

         
 11 1 2.221  (1.8228) 4.044     2.1129   (1.9294) 4.042    1.650    (4.1296) 5.779    
  2 1.604  (1.7132) 3.318     1.4735 (1.8351) 3.3086   1.0276  (2.3151) 3.343   
         
 17 1 1.973 (1.3614) 3.334     1.9009  (1.4303) 3.3312   1.362    (1.8615) 3.224   
  2 1.395  (1.4451) 2.840     1.318   (1.4772) 2.795    0.9077 (1.1570) 2.065    

 
 
 
 
 
 
 
 
 
 
 
 
  

 
 
 
 
 

Type-II 
censored 
sample 

         
23 11 1 55.619 (34.001) 89.619 55.690 (39.016) 94.706   51.435 (23.016) 74.451   

  2 35.601  (21.291) 56.892   34.838 (21.959) 56.796 36.737 (17.158) 53.895   
         
 17 1 66.041 (39.303) 105.34 65.597 (41.216) 106.81 62.961 (32.954) 95.958   
  2 34.413 (27.371) 61.784   32.669 (28.550) 61.219   34.231 (25.777) 60.008   
         
 23 1 66.208 (36.018) 102.23    65.467 (36.794) 102.26   65.022 (33.714) 98.735   
  2 33.913 (26.622) 60.535   32.645  (27.198) 59.843   33.857 (26.253) 60.111   

 
Type-II 
progressive 

censored 
sample 

              
23 11 1 33.259 (32.777)66.036     33.026  (33.410) 66.436   41.043 (11.751)52.794 

  2 22.475 (17.065) 39.540    21.621  (17.805) 39.426   28.840 (14.066) 42.906   
         
 17 1 45.481  (32.434) 77.915   45.315 (32.749) 78.064   51.087 (19.117) 70.204   

   2   29.827  (18.495) 48.322   29.006  (19.148) 48.154   32.311 (18.217) 50.530   
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