
A Simple Yet Efficient Solution For Se-

cured Data Exchange - Hiding Encrypted

Text In An Image File

Lawrence Wu
1
 Penn Wu

2

1
 Diamond Bar High School

2
Cypress College

Abstract

Hiding encrypted text in an image file can

possibly be a feasible solution to small-

office-home-office (SOHO) and personal

use for data and file transmission across

digital networks. In this paper, the au-

thors propose a simple, low-cost, but effi-

cient algorithm to (a) convert a text (short

or lengthy) to a byte array with a simple

encryption mechanism, (b) append the

byte array to an existing image file as

hidden content without changing the orig-

inal viewable image, and (c) retrieve and

decode the encrypted text with a reverse

algorithm and required keys. The authors

also discuss the algorithm with Windows

application created based on the proposed

algorithm.

Keywords: Cipher in bitmap, enciphered

text in bitmap, bitmap for enciphering

1. Problem Statement

Living in a highly transparent life, en-

crypting content of a file, or simply a

string literal is often inevitable to all of

us. In spite that there are many technolo-

gies available for encrypting data stored

on end user devices as well as network-

based data transmission, their algorithms

are either too complicated for program-

mers without strong knowledge and skills

in Cryptography to code or too difficult to

implement for SOHO and personal use.

Creating a simple but efficient solution

for secured data exchange is a pressing

issue that warrants attentions.

2. Objectives And Expected Outcomes

Results of a preliminary research have

pointed to a direction -- it seems to be a

feasible and optimal solution to store ci-

phertext or encrypted string as part of the

content of a “Bitmap” file, and keep the

“key” separately to decrypt at a later

time. The authors thus initiated the first

step to design an algorithm with an at-

tempt to provide a simple, light-weighted,

easy-to-implement but efficient solution

of encryption.

The objective of the algorithm is to (a)

read the bitmap content to an array (the

“origin”) of the Byte type; (b) convert a

plaintext (or a string) of any human lan-

guage supported by Unicode to a UTF-32

encoded array (the “data”) of Byte type;

(c) add a randomly selected integer from

a large range (e.g. 0 to 100000) as a

“key” to every element of the “data” ar-

ray as a basic encryption to convert the

plaintext to ciphertext; (d) apply other

encryption algorithms presented by the

authors to make the encryption mecha-

nism more difficult to crack; (e) combine

the “origin” and “data” arrays to make a

new array (the “encrypted”); and finally

(f) generate a new bitmap image file us-

International Conferences on Computer Graphics, Visualization, Computer Vision, and Game Technology (VisioGame 2013)

© 2014. The authors - Published by Atlantis Press 63

ing the “encrypted” which should contain

the bitmap contents and the ciphertext;

however, only the bitmap content can be

displayed to any graphic editing tools

(e.g. Microsoft Paint, PhotoShop, etc.).

The ciphertext is not visible to viewers

without the use of a special decoding

tool. In other words, the bitmap image

looks the same on screen to general view-

ers, with and without ciphertext in it, as

shown in Figure 1.

Without ciphertext

With ciphertext

Fig. 1: Without vs. with ciphertext

The “key” may function as password(s)

of the basic encryption; therefore, the text

stored in the bitmap is not retrievable un-

less a matching “key” is given. This pro-

ject also designed a reversed algorithm to

retrieve the text or the entire file stored in

the image file back to their origins.

The outcome of this project is a set of

applications, written in Visual C++ and

Visual C# with the .NET Framework, as

demonstration tools of the proposed algo-

rithm. The authors anticipate to advocate

an feasible way to encrypt text or string

literal in a bitmap file for SOHO and per-

sonal use, without the need of using

symmetric encryption algorithms such as

SHA-2, MD5, DES, TripleDES, AES,

Rijndael, etc..

3. Significance

This paper distinguishes itself in the at-

tempt to shorten the gap between an aca-

demic algorithm and its practical usage in

transmitting text or a file within a digital

network. The authors also attempt to pro-

vide an easy-to-use algorithm for pro-

grammers to build custom-make applica-

tions and optionally choose simple en-

cryption method(s) from a list of availa-

ble ones.

4. BITMAP And PNG

Many studies confirmed that the design

of file structure of a bitmap allows room

for stuffing plaintext as additional content

to these required sections (Xochellis,

2006; Anonymous, 2013; Wikipedia,

2013). Therefore, it is feasible to hide text

in a bitmap file with a good understand-

ing of bitmap structure.

A bitmap file (BMP) contains an exact

pixel by pixel mapping of an image used

to create, manipulate (scale, scroll, rotate,

and paint), and store images as files on a

disk (MSDN, 2013; Microsoft, 2012;

Lancaster, 2003). A bitmap graphic is

made of pixels (short for “picture ele-

ment”) in a grid. Each pixel can be con-

sidered as a “cell” in a two-dimensional

plane similar to the Figure 2 which, when

zoomed in, is a capital letter “A.”

Fig. 2: Pixel

The structure of a bitmap image file

contains three main sections: headers,

color table, and other data (Pachghare,

2005). The rendering application reads

these information and contracture the im-

age on the display surface of an output

device. Due to decades of evolution, con-

tent of a modern bitmap image file (e.g.

Windows-based bitmap) may start with

54 bytes of headers in a predetermined

sequence. The first 14 bytes are the “bit-

map file header” for information describ-

ing the bitmap. The next 40 bytes are the

64

“device independent bitmap (DIB) head-

er” for information such as width, height,

file size, and number of colors used.

Green (2002) uses Table 1 to illustrate the

file structure of a bitmap.

Table 1: Bitmap file structure

Byte # Information

0 Signature

2 File size

18 Width (number of columns)

22 Height (number of rows)

28 Bits/pixel

46 Number of colors used

54 Start of color table

Source: Green (2002)

Next to the DIB header is the “color

table” which maps numbers in the bitmap

to specific colors. Microsoft (2012) uses

Figure 3 to illustrate how the color table

and its bitmap work in an image. Each

pixel is represented by a 4-bit number, so

there are 2^4 = 16 colors in the color ta-

ble. Each color in the table is represented

by a 24-bit number: 8 bits for red, 8 bits

for green, and 8 bits for blue. The num-

bers are shown in hexadecimal (base 16).

Fig. 3: Color table and bitmap

The structure of a modern bitmap file

may be further categorized as: (a) 14

bytes of bitmap file header, (b) DIB

header, (c) extra bit masks, (d) color ta-

ble, (e) Gap1, (f) pixel array, (g) Gap2,

and (h) International Color Consortium

(ICC) color profile. The “extra bit masks”

defines the pixel format. Gap1 and Gap2

are for structure alignments. The ICC

color profile defines the color profile for

color management. The pixel array must

begin at a memory address that is a mul-

tiple of 4 bytes.

PNG, short for Portable Network

Graphics, is another bit-mapped graphics

format with built-in compression. PNG

supports fifteen color options. PNG sup-

ports palette-based images (with palettes

of 24-bit RGB or 32-bit RGBA colors),

grayscale images (with or without alpha

channel), and full-color non-palette-based

RGGA images (with or without alpha

channel). Unlike BMP, PNG uses 48 bits.

Images can be created using color pal-

ettes or 8 bit grayscale. Pixel data with 8

bit values can index into palettes contain-

ing up to 256 colors, and with fewer col-

ors pixel values can be 1, 2 or 4 bits. The

“True color” 24-bit format and the “True

color with alpha transparency” 32-bit

format are highly compatible to the pal-

ette-based BMP.

The main difference between BMP and

PNG is the compression. BMP is both

uncompressed and lossless while PNG is

compressed but lossless. A “lossless”

compression algorithm discards no in-

formation. It looks for more efficient

ways to represent an image, while making

no compromises in accuracy. Interesting-

ly, text hidden inside a bitmap can be eas-

ily converted to a BMP-compatible PNG.

The authors found both BMP and PNG as

two optimal options of encryption vehi-

cle.

5. Why Using Unicode?

Text of English characters can be con-

verted to integer-based ASCII codes, and

then stored in a Byte array. However, the

major disadvantage of using ASCII is its

inability to process non-English charac-

65

ters, such as Chinese characters, because

ASCII characters are limited to the lowest

128 Unicode characters, from U+0000 to

U+007F. It is the authors’ intention to

support as many as human languages as

possible. The Unicode is a standard that

assigns a unique number to every charac-

ter of all written languages (e.g. Chinese,

Korean, Farsi, etc.) recognized by the

United Nation. This standard has been

adopted by most operating systems, pro-

gramming languages, application pro-

gramming interfaces (APIs), and encod-

ing platforms. Table 2 lists three sample

ranges and their languages.

Table 2: Three language ranges

Range Language

0000 ~ 007F Basic Latin

0590 ~ 05FF Hebrew

0E00 ~ 0EFF Thai

Commonly used Unicode standards in-

clude UTF-8, UTF-16, and UTF-32.

“UTF” stands for Unicode Transfor-

mation Format. UTF-8 uses 1 byte (8

bits), UTF-16 uses 2 bytes (16 bits), and

UTF-32 uses 4 bytes (32 bits) to encode

every individual character. UTF-8 is

backwards compatible with ASCII while

UTF-16 and UTF-32 are totally incom-

patible with ASCII. Table 3 compares

these three standards (Microsoft, 2010).

Table 3: Unicode standards

Option Description

UTF-8 Encoding using 8-bit data siz-

es and works well with many

existing operating systems. It

is identical to ASCII encoding

and allows a broader set of

characters.

UTF-16 Characters as sequences of

16-bit integers. It is used na-

tively in Windows operating

system and the .Net Frame-

work. It is the most popular

Unicode code points take only

2 bytes.

UTF-32 Characters as sequences of

32-bit integers. It avoids the

surrogate code point behavior

of UTF-16

6. The Algorithm

The authors presented the algorithm to

meet the previously described objectives.

Figure 4 illustrates the concept that serves

as the guiding principles through the de-

velopment of algorithm.

Fig. 4: Algorithm

The algorithm starts with reading the

content of a given bitmap (e.g. “poo-

dle.bmp”) and storing them in a byte ar-

ray named “origin.” It continues with

converting a plaintext to Unicode equiva-

lents with basic encryption mechanism

presented by the authors, and storing the

ciphertext in a byte array named “data.”

Then, it combines the “origin” and “data”

arrays to another byte array named “en-

crypted,” and converts the elements of the

“encrypted” as bitmap content of a new

image file (e.g. “poodle2.bmp”).

6.1. Implementation

66

The authors hand-coded the demo appli-

cation as implementation of the algorithm

in Visual C++, and then converted the

source code to Visual C# to avoid the

known “” problem of Visual C++ appli-

cations. The authors chose Visual C++,

during the development stage, for the fol-

lowing reasons:

 C++ is still a dominant general pur-

pose programming language.

 Visual C++ is one of the .NET

Framework languages; therefore, the

authors can shorten the coding time

by using namespaces, classes, prop-

erties, and methods provided by the

.NET Framework to focus more on

conception formation and algorithm

development.

The following code illustrates how the

authors use the File.ReadAllBytes()

method of .Net Framework to open a

bitmap file of a given path, reads the con-

tents of the file into a Byte array, and

then closes the file. The variable “size1”

stores the number of elements the

“origin” array has, which is also the

number of bytes of the bitmap content.

array<Byte>^ origin =

File::ReadAllBytes("poodle.bmp");

int size1 = origin->Length;

The algorithm continues with taking a

string-based text (named “userInput”)

from a given source, such as a textbox,

converting every character of the text to

their UTF-32 equivalents, and then stor-

ing each UTF32-encoded value as an el-

ement of a Byte array named “data”. The

variable “size2” stores the number of el-

ements of the “data” array, which is also

the number of characters of the text. Dur-

ing this step, the algorithm also creates

the “newSize” variable to perform a cal-

culation, size1 + size2*4, to deter-

mine the size of the “encrypted” array. It

is necessary to note that each character of

the “userInput” takes four bytes due to

the UTF-32 encoding. Since every ele-

ment in a Byte array holds only a byte (or

8 bits), it takes four consecutive elements

of the “data” array to store one single

UTF-32 encoded character; therefore, the

total number of elements of “data” must

be at least size2*4.

String^ userInput = textBox3->Text;

int size2 = userInput->Length;

array <Byte>^ data = Encod-

ing::UTF32->GetBytes(userInput);

/* convert user's data into UTF32

array */

int newSize = size1 + size2*4;

/*4 ia number of bytes per charac-

ter */

newSize++;

/* 1 extra byte to store a hidden

key */

The last line of the above code snippet

increases the total elements of the “en-

crypted” array by 1 because the authors

attempt to store a one-byte-long “hidden

key” to the last element of the “encrypt-

ed” array. Before proceeding to the en-

cryption, the following code declares and

instantiates the “encrypted” array with the

size defined by the “newSize” variable. It

also copies all elements of the “origin”

array to “encrypted” in a verbatim man-

ner.

array<Byte>^ encrypted = gcnew ar-

ray<Byte>(newSize);

for (int i=0; i < size1; i++) { en-

crypted[i] = origin[i]; }

The “hidden key” is a random number

from 0 to 255 which will be stored in the

last element of the “encrypted” array. The

following code illustrates how the algo-

rithm generates the value of “hidden key”

and store the actually value as the last

byte of the “encrypted” array. It is neces-

sary to note that anyone who analyzes the

bitmap content may retrieve the value of

this “hidden key” although it is not dis-

67

closed to the human user. The “hidden

key” is an approach to improve the com-

plexity, not a measure of encryption.

int hidden = rn->Next(1, 256);

/* hidden key 1~255 (because a

byte)*/

encrypted[newSize-1] = (Byte) hid-

den;

6.2. The Encryption Mechanism

The encryption mechanism requires one

or more keys in addition to the “hidden

key.” The authors denote them as “key1,”

“key2,” and so on. While the “hidden

key” has a fixed range (0 ~ 255), the

range of “key1” is variable and adjusta-

ble. The following code snippet illustrates

how the authors add a random number to

the existing value of every element of the

“data” array, and then stores the comput-

ed results as new elements of the “en-

crypted” array. In the following example

code, the range of “key1” is set to be 0 to

99999; however, the range is adjustable

to increase the complexity and difficulty.

In the “for” loop, the initial value is set to

be the value of “size1”; therefore, the ad-

dition only applies to the text being stored

in the bitmap file. It does not apply to the

original bitmap content.

Random^ rn = gcnew Random;

int key1 = rn->Next(100000);

/* generate a random number 0 ~

99999 */

int j=0;

for (int i=size1; i<newSize-1; i++)

{

 encrypted[i] = data[j] + key1;

/* add the randomly number to every

element*/

 j++;

}

The value of “key2” is another ran-

domly picked integer from a variable and

adjustable range (e.g. 0 ~ 9999 or 1000 ~

99999). This is one of the options provid-

ed by the authors to increase the com-

plexity of the encryption mechanism.

There are other options the authors have

presented. These options are furnished

upon selection on a case-by-case basis to

make the encryption mechanism more

difficult to crack; however, details of the-

se options are not discussed in this paper

for the confidentiality.

All the keys when used, except the

“hidden key,” are kept separately from

the bitmap content by human users. The

following illustrates how the authors

write the elements of the “encrypted” ar-

ray as content of a bitmap image file

named “poodle.bmp.”

File::WriteAllBytes("poodle2.bmp",

encrypted);

One problem is the number of bit a

“Byte” type allows. Both “Byte” of C++

or “byte” of C# are defined by the Sys-

tem.Byte type of the .NET Framework

type. They are unsigned 8-bit integers in

the range of 0 to 255. In other words, a

byte array cannot support any integer

larger than 255. The authors chose to use

the Encoding.UTF32.GetString() method

to go around this limit (Microsoft, 2013).

The following code illustrates the trick.

UTF-32 is an encoding of Unicode in

which each character is composed of 4

bytes.

String^ input = textBox1->Text;

int size = input->Length;

array <Byte>^ data = Encod-

ing::UTF32->GetBytes(test);

String^ str = Encoding::UTF32-

>GetString(data);

The decryption mechanism simply re-

verses the above described algorithm. It is

necessary to note that the concepts and

algorithms discussed in this paper apply

to any general purpose language and are

not specific to any programming lan-

68

guage. Figure 5 demonstrates two Win-

dows application, encode.exe and de-

code.exe, created based on the presented

algorithm. The “encode.exe” stores

(writes and encodes) a paragraph contain-

ing characters of English, Chinese, Japa-

nese, Korean, Hindi, Russian, and Arabic

characters within a PNG image file. The

paragraph (plaintext) is also encrypted

during the writing process. At least two

keys are generated by the application.

The “decode.ext” can only retrieve (read

and decode) the paragraph by converting

the “ciphertext” back to “plaintext” when

the “decode.exe” is provided with a cor-

rect set of keys.

Encoding

Decode with incorrect keys

Decode with correct keys

Fig. 5: Encoder and Decoder Applications

6.3. Scalability of Encryption Mecha-

nism

Even though the authors did not intend to

adopt any existing symmetric, asymmet-

ric or hash algorithms, such as those pro-

vided by the .NET Framework Cryptog-

raphy Model, the algorithm has the scala-

bility to work with these well-known en-

cryption algorithms in two ways: built-in

and external. Table 4 compares these two

options.

7. Known Issues

All encryption algorithms can be cracked.

It is just the matter of time. The presented

encryption mechanism is still vulnerable

to a “brute force” attack which basically

tries every possible key combination until

finding the one that decrypts. Further-

more, anyone with a good understanding

of bitmap structure can manage to ana-

lyze the bitmap content and possibly

shorten the time to crack the algorithm.

However, with the options of encryption

mechanism, the authors believe this vul-

nerability is not really applicable if the

presented encryption is used for time-

sensitive exchange of data over a network

(e.g. within 24 hours). It would take sig-

nificantly longer than days to crack the

encryption.

Table 4: Options of Scalability

Option Details

Built-in Using third-party encryption

APIs (e.g. the .NET Frame-

work Cryptography) as ad-

vanced options to encrypt text

before using the presented en-

cryption mechanism.

External Use third-party encryption

toolkit(s) to convert a

plaintext to ciphertext, and

then use the presented encryp-

tion mechanism to further en-

crypt the already-encrypted

ciphertext.

8. Future Development Plan

As of the time this paper is written, the

authors have developed an algorithm to

store an entire file of a variety of types in

either a BMP or PNG file with basic en-

cryption. The supported file types include

binary (e.g. an .exe file), text (e.g. a .doc

69

file), audio (e.g. an mp3 file), and video

(e.g. an mp4 file). The authors are work-

ing on improving this algorithm with

more reliable and trustworthy encryption

mechanism. The authors also attempt to

make this algorithm adaptive to third-

party cryptograph APIs such as the .NET

Framework Cryptography Model.

9. Conclusion

The proposed algorithm led to the devel-

opment of demo applications which in

turn confirms the algorithm could be a

simple, low-cost, but efficient way to

hide encrypted text in an image file. The

authors believe this algorithm can possi-

bly be a feasible solution to small-office-

home-office (SOHO) and personal use for

data and file transmission across digital

networks. This algorithm is able to (a)

convert a text (short or lengthy) to a byte

array with a simple encryption mecha-

nism, (b) append the byte array to an ex-

isting image file as hidden content with-

out changing the original viewable image,

and (c) retrieve and decode the encrypted

text with a reverse algorithm and required

keys. Although the quality of encryption

algorithm mainly replies on how long it

takes to break the encryption, the authors

believe this vulnerability is not really ap-

plicable to this algorithm if the presented

encryption is used for time-sensitive ex-

change of data over a network.

10. References

[1] Anonymous. (2013). A Novel Use For

Bitmap Files. Retrieved on August

24, 2013 from

http://www.simplecodeworks.com/Ne

w/tips/dataimages.html.

[2] Green, B. (2002). Raster Data Tuto-

rial. Retrieved on August 24, 2013

from

http://dasl.mem.drexel.edu/alumni/bG

reen/www.pages.drexel.edu/_weg22/r

aster.html.

[3] D. (Years Unknown). Exploring the

.BMP File Format. Retrieved on Sep-

tember 28, 2013 from

http://www.tinaja.com/glib/expbmp.p

df.

[4] Microsoft (2012). Types of Bitmaps.

Retrieved on September 28, 2013

from http://msdn.microsoft.com/en-

us/library/windows/desktop/ms53639

3(v=vs.85).aspx.

[5] Microsoft. (2010). Using Unicode

Encoding. Retrieved on September

28, 2013 from

http://msdn.microsoft.com/en-

us/library/zs0350fy(v=vs.90).aspx.

[6] Microsoft. (2013). Encod-

ing.GetString Method (Byte[], Int32,

Int32). Retrieved on August 24, 2013

from http://msdn.microsoft.com/en-

us/library/05cts4c3(v=vs.110).aspx.

[7] MSDN. (2013). Bitmaps. Retrieved

on September 28, 2013 from

http://msdn.microsoft.com/en-

us/library/windows/desktop/dd18337

7(v=vs.85).aspx.

[8] Pachghare, V. (2005). Comprehensive

Computer Graphics: Including C++.

New Delhi, India: Laxmi Publica-

tions.

[9] Wikipedia. (2013). Cornelia. Re-

trieved on September 28, 2013 from

http://en.wikipedia.org/wiki/Cornelia.

[10] Xochellis, J. (2006). A very sim-

ple solution for partial bitmap en-

cryption. Retrieved on September 28,

2013 from

http://www.codeproject.com/Articles/

13435/A-very-simple-solution-for-

partial-bitmap-encrypti.

70

