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Abstract - The robust stability of control systems where the
controlled object has dynamics is highlighted in present. This paper
proposes a new approach to designing control systems for objects
with uncertain parameters in the form of three-parameter structurally
stable mappings. This method allows the synthesis of highly effective
control system, which has wide field of robust stability. For a
dynamic system affected by parametric uncertainty, this paper
focuses on robust stability analysis of system with Lyapunov
functions. This paper presents some theoretical fundamental results
assisting in analyzing of the behavior of control systems, depending
on parameter uncertainty. The obtained results are robust stability
type since the robust stability is guaranteed under certain deviations
from the current state. We developed a new method for the study of
robust stability MIMO linear automatic control systems with m -
inputs and n - output by constructing a vector Lyapunov function.
Using the approach to the construction of Lyapunov functions, we
have asymptotically stable stationary state of the control object. In
fact, the results to provide dynamic safety and performance of control
systems. Finally, conditions for robust stability is presented
permitting to understand the application of the proposed approach.

Index Terms - control system, uncertainty of parameters, robust
stability, structurally stable mappings, stability area, method of
Lyapunov functions, catastrophe.

1. Introduction

The modern problems of control is characterized by
escalating complexity of control objects, the requirement of
high efficiency and stability in the numerous uncertainty
conditions and incomplete information.

At present almost in all spheres of production and
equipment control systems are widely applied: in mechanical
engineering, energetics, the electronic, chemical, metallurgical,
biological and textile industry, transport, a robotics, aircraft,
space systems, high-precision military technology and
equipment. In these systems uncertainty can be caused as
existence of the uncontrollable indignations operating on
control object, and ignorance of true values of parameters of
control objects and their unpredictable change in time. In this
regard, creation of the control systems providing somewhat the
best protection against uncertainty in knowledge of object
properties is one of the actual problems. Ability of a control
system to keep stability in the conditions of parametrical or
nonparametric uncertainty is understood as a robust system
[1-4].

For the solution of problems of robust stability we offer a
universal approach to the creation of Lyapunov’s vector
functions [5-7]. Components of a an anti-gradient vector of
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vector functions from geometrical interpretation of the
theorem of the Lyapunov’s second method [8-10] are set by
components of a speed vector (the right member of equation of
a state). Researches of robust stability of the system are made
by designing of a negative function [11-14] which is equal to a
scalar product of a gradients vector on a speed vector. Stability
conditions turn out from positive definiteness of a Lyapunov’s
vector function, in the form of inequalities system in uncertain
parameters of control objects and established parameters of the
regulator. The method of research the robust stability of
MIMO linear systems of automatic control with m - input and
with n - outputs on the basis of construction a Lyapunov’s
vector function is developed and conditions of robust stability
are received.

In scientific literature [1-4] there are some well-known
methods of creation of objects control systems with uncertain
parameters, which are generally devoted to the determination
of robust stability of system with the set structure of linear
laws of control or inertialess nonlinear (relay) characteristics
and do not allow to project a control system with rather wide
area of robust stability in the conditions of big uncertainty of
parameters of control object and drift of their characteristic in
big limits.

Nowadays scientific provisions on development and
research of control systems with rather wide area of robust
stability do not exist.

The problem described in the article is the problem of
creation of a robust steady control system by dynamic objects,
with uncertain parameters with approach to synthesis of
control systems in a class of the structural and stable mappings
[15-17], allowing to maximize the potential of robust stability
and indicators of quality of a control system.

2. Mathematical Formulation of Model

Let us investigate the problem of creation of control
systems with an increased potential of robust stability [18-21]
in a class three-parameter structurally stable mappings
(catastrophe hyperbolic umbilic) [22-24] for linear objects
with m input and n outputs.

The control system is described by the following
equation:

X(t) = AX(t) + Bu(t)
y(t) =Cx(t)

Variables: x(t)eR" vector of a system’s condition,

(M



u(t)eR™ control vector, y(t)eR°® system exit. AeR™ ,

BeR™, CeR™ matrixes do not depend on ¢ time. Let us
consider a case of nonlinear control of linear object and we
will assume that it is a vector — function y(t) =u() e R"

Therefore we will assume that y=X the condition of

system is known. The purpose of control is the choice of such
forms of nonlinear vector functions from a class of three-
parameter structurally stable mappings (catastrophe hyperbolic
umbilic) [23,24] which give to system (1) set properties
(stability at any change of uncertain parameters) systems.

The law of control is set in the form of three-parameter
structurally stable mappings (catastrophe hyperbolic umbilic)
[15-16],[20-21],[23-24].
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A linear object and B control Matrixes respectively are
shown below:
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3. Stationary Conditions of System

The installed states of systems (1) will be defined by the
solution of the equations:
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From system of the equations (3) we can find stationary
states
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Some other stationary states can be defined by the
solution of the equations:
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correspond to any physical possible situation. When [k. _aiiJ
I bii

more than zero (ki _ﬂ>0) the equation (5) allows the

following established states:

x. = [k + 3, x, =0 if i ji=1..m]
1S I b”

and

=i Xy =0 I =T

4. Research of Stability

1...,n (7

Let us research Stability of stationary conditions (4), (6)
and (7) of systems (1) by the functions of Lyapunov’s method.

1. Let us consider stability of a steady state (4).
Let us enter designation of components of anti-gradient
vector from a function vector V (x) = (V, (X),V, (X),...,V, (X)) :
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Full derivative of time from Lyapunov's function

V(x) = (V,(X),V, (X),...,V, (x)) we will receive in as follows:
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From (8) it is visible that the full derivative of time from
Lyapunov's vector function will be negative function,
therefore, the sufficient condition of asymptotic stability of
system is satisfied.

On components of an anti-gradient Lyapunov's function
in a scalar form is represented as:
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Conditions of positive or negative definiteness of
Lyapunov’s functions of V(x) from (9) are not obvious,
therefore we can use the Mors lemma from theories of
accidents [23,24].

From the Mors lemma (9) we can locally present
Lyapunov's function (5) to vicinities of a steady state in the
form of a square form taking into account the equation of a
state (3):
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Conditions of positive definiteness of a square form (10)
(stability of a steady state (5)) are defined by system of
inequalities:
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Thus, the area of stability of a steady state (4) will be
defined by performance of system of the inequalities (11),
made rather uncertain parameters of object control and chosen
parameters of a control system.

2. Let us investigate stability of stationary states (6) and
(7). The equations of a state (1) will be represented in
deviations of rather steady state (6) and (7), and by known
formalism [22].

Equations of a state (1) in deviations of steady state (6)
an (7) write them down, as:
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Let us accept components of an anti-gradient vector from
vector of functions V(x) = (V; (x),V, (x), ..., V,(x)), by the
equal:
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We find full derivatives on time from components of
Lyapunov’s vector function:
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From (13) it is visible that the full derivative on time
from Lyapunov's vector function will be negative function,
therefore, the sufficient condition of asymptotic stability of
system (12) is satisfied.
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Lyapunov's function in a scalar form it is representable in
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Conditions of positive or negative definiteness of
functions (14) are unevident therefore we will use the Morse’s
lemma from the theory of catastrophe.

On a lemma of the Mors of Lyapunov’s function (15) in a
vicinity of a steady state (6) and (7) it is locally possible to
present in the form of a square form taking into account the
equation of a state (12) in deviations of rather steady state (6)
or (7):
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Stability conditions of a steady state (6) or (7) are
defined by positive definiteness of a square form (15) i.e.
system of inequalities:
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Thus, MIMO control system, constructed in a class of
three-parameter structurally stable mappings, will be steady in
beyond all bounds wide limits of change of uncertain
parameters of object control.

The steady state (4) exists and is steady at change of
uncertain parameters in area (11), and stationary states (6) and
(7) exist at loss of stability of a steady state (4) and they at the
same time don't exist.

Steady stationary states (6) and (7) appear when
performing inequalities (16).

5. Conclusions

As a universal method of research of stability of dynamic
systems is considered the method of A.M.Lyapunov’s
functions. As the instrument of research in Lyapunov's method
some special continuously differentiable are used, turning at
the beginning of coordinates in zero the functions called
Lyapunov’s function. Application of this method restrains lack
of universal approach to creation of Lyapunov’s function. It is
necessary to remind that the mistake in a choice and failure to
construct necessary Lyapunov's function doesnt mean
instability of system: it points only to failure at creation of
Lyapunov’s function.

Use of the developed approach to create Lyapunov’s
functions allows to demonstrate that the system has
asymptotically steady stationary states both in negative, and in
positive area of change of uncertain parameters of object
control. Upon transition of uncertain parameters through zero
there is a bifurcation and new steady branches appear. This is
zero steady state loses stability.

These stationary states at the same time do not exist and
there is an opportunity to synthesize steady system at any
change of uncertain parameters.

Actually the results received on creation of control
systems with an increased potential of robust stability, allow to
ensure dynamic safety and operability of operated systems at a
stage of their construction and exploitation.
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