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 Abstract - Data integrity is one of the major concerns with 

cloud data storage for cloud user. Besides, the cloud user’s 

constrained computing capabilities make the task of data integrity 

auditing expensive and even formidable. In recent years, many public 

data integrity verification schemes have been proposed, however, 

most of them are vulnerable to an efficient active attack, which means 

that the active adversary is able to arbitrarily modify the cloud data 

without being detected by the auditor. In this work, by utilizing 

blinding factor, we proposed a new proof of retrievability scheme, 

which can resist active attack and keep the privacy of the data in the 

auditing process. Extensive security analysis shows our proposed 

scheme is provably secure. 

 Index Terms - Cloud storage, proof of retrievability, active 

attack. 

1.  Introduction 

By using cloud storage, people can remotely store their 

data and access them via networks at anytime and from 

anywhere. Despite the obvious benefits, it also brings new 

security challenges to the cloud data security. Data integrity 

and Confidentiality are two biggest concerns. So following the 

first scheme constructed in [1], a number of new data integrity 

verification schemes and improvements have been proposed, 

such as [2],[3],[4]. Most of them consist of five algorithms 

(KeyGen, SigGen, Challenge, GenProof, VerifyProof). 

KeyGen is a key generation algorithm that is run by the data 

owner. SigGen is used by the data owner to generate 

authentication tag for each data block im . Challenge is run by 

the TPA to produce the challenging message. GenProof is run 

by the cloud server to generate a proof of data integrity, while 

VerifyProof is run by the TPA to audit the proof. For the proof 

information generated in the GenProof algorithm is not 

provided authentication and it is in linear with im , most of the 

existing scheme are vulnerable to an efficient active attack. 

That is to say, an active adversary may corrupt or alter the data 

at his will after data owner stores its data file and the 

authentication tags in the cloud. Then only with the 

information how data are modified, the active adversary can 

change the wrong proof information to a valid one which can 

pass the VerifyProof algorithm.  

In this paper, we propose a public proof of Retrievability 

scheme against active attack. Our work utilizes the technique 

of public key based homomorphic linear authenticator (or 

HLA for short) and constant size polynomial commitment 

technique. What’s more, we introduce blinding factor into the 

GenProof algorithm, so that the active adversary cannot 

compute the valid proof information, that is to say, if the data 

file stored in the cloud is modified by an active adversary, 

there is on way to produce a valid proof information which can 

pass the VerifyProof algorithm except for the situation that the 

cloud server colludes with the active adversary, however, this 

is no good for the cloud sever, so we can assume this situation 

does not exist. 

The rest of this paper is organized as follows. We provide 

the detailed description of our scheme in Section 2. Section 3 

gives the Security analysis. Finally, We conclude our whole 

paper in section 4. 

2.  The Proposed Scheme 

This section presents our PoR scheme which can resist 

active attack and keep the privacy of the data files in the 

auditing process. After introducing notations, we describe the 

construction and show the correctness of our scheme. 

Let G  and TG  be two multiplicative cyclic groups of the 

same prime order p . g and h are generators of G  and 

R
u G . : Te G G G   is a bilinear map. ( )H  is a secure 

map-to-point hash function: * *{0,1} pZ . 'F  is the erasure 

coded file consisting of n  blocks, each of which has s  

elements: { },1 ,0 1ijm i n j s     . ( )a xf  is a polynomial 

with coefficient vector 0 1 1( , , , )sa a a a   . 

KeyGen: The TA chooses a random number 
*R
pZ  

and generates the public keys for the system as 
1
0{ }

j s
jg 
 .   

is the master key of the system only known to the TA. Given a 

security parameter  , the data owner generates a signing key-

pair (( , ) ())
R

spk ssk Sign . The data owner also chooses a 

random number 
*R
pZò  and computes ,v h k h 蝌

. 

Then the cloud server chooses a random number 
*R
pZ , 

and computes v   based on the public key v . So the public 

key, private key and master key are: 

1
0{ , , , , , , ,{ } }

j s
jPK p k v spk h u g 
  

1 2{ , } { } { }SK ssk SK MK   ò . 

SigGen: To outsource a file F , the data owner first 

obtain 'F  by applying erasure code. Then the owner randomly 

chooses a file name 
*
pname Z  and generates the file tag   
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under ssk as ( )sskname n sign name n  . For each 

data block ,1im i n   , the owner produces an authentication 

tag as: 

1
( )( ) ( )

0

( ) ( )
j

ij i

s
fmH name i H name i

i

j

u g u g 







  蝌
 

where ,0 ,1 , 1{ , , , }i i i i sm m m   . The data owner stores 'F , 

file tag   and corresponding authentication tags i  in the 

cloud. 

Challenge: To verify the integrity of 'F , a user first gets 

the file tag   from the cloud server and verifies the signature 

on   with spk . If the signature is invalid, the user rejects and 

halts; otherwise, the user recovers file name name  and n . 

Then the user randomly chooses a k  elements subset K  of 

[1, ]n  and one random number 
*R
pr Z . Finally, the user 

produces the challenging message { , }CM K r  and sends it to 

the cloud server. 

GenProve: Based on the challenging message 

{ , }CM K r , the cloud server first computes { mod }i
ip r p  

and { },i iv p i K   . Then the cloud server generates 

( )
A

y f r , where  ,0 , 1, ,i i i i si I i I
A v m v m  
   . As 

polynomials ( ) [ ]f x Z x  have the algebraic property that 

( )x r  perfectly divides the polynomial ( ) ( )f x f r . The 

server divides the polynomial ( ) ( )f x f r  with ( )x r  using 

polynomial long division, and denotes the coefficients vector 

of the resulting quotient polynomial as 0 1 1( , , , )s      , 

that is, 
( ) ( )

( ) A A
f x f r

f x
x r







. The cloud server generates  

( )

1

0

( )
j

j

s
f

j

g g  




  . 

Then cloud server computes iv
i

i I

 



  and sends the 

proof information { , , }Prf y   to the user. 

VerifyProof: On receiving the Prf , the user firstly 

computes mod ,i
ip r p i K   and 

  ii K
H name i p

u   . 

Based on  , the user verifies the integrity of F together with 

{ , , }Prf y   as: 

( , ) ( , ) ( , ) ( , )r ye e k v e h e g v   


                      (1) 

If Eq.1 holds, the user outputs AuditRst  as accept; 

otherwise, outputs AuditRst  as reject. 

Correctness: we analyse the correctness of our 

construction based on Eq.1 as: 

( , ) ( , )re e k v      

  ( ) ( ), ) ,( ( )
ii K

H name i p f re u h e g h      蝌  

 
( ) ( )

( )

( , () , )
A A

ii K

f f r
rH name i p

re u h e g h







 




  òò
 

  · ( ( ) ( ))
( ), ( , )

ii K A A
H name i p f f r

e u h e g h
 




 ò ò
 

  ( ) ( )
, ,( ) ( )

ii K A A
H name i v f f r

e u h e g h





 ò 蝌
 

  ( ) ( )
) )( (, ,

ii K A A
H name i v f f r

e u g h e g h





 ò ò ò  

( , ,) ( )ye h e g v    

3.   Security Analysis 

In this section, we start from giving the assumptions used 

in our scheme, then we evaluate the security of our scheme by 

analysing its fulfillment of the security guarantee, namely, the 

soundness, confidentiality and Active Attack Resistance 

property. 

Definition 1. Discrete Logarithm Problem   

Let ,g h G , where G  is a cyclic group. Given ( , )g h , it 

is computationally intractable to compute the value of x  such 

that xh g . 

Definition 2. Computational Diffie-Hellman Problem 
(CDH)  

Let *,
R

px y Z . Given ( , , )x yg g g , it is computationally 

intractable to compute the value of xyg , where G  is a cyclic 

group of order p  and g  is a generator of G . 

Definition 3. Static Diffie-Hellman Problem  

Let 
*R
pZ . Given input as ( , )g g  and h G , 

where g  is a generator of a cyclic group G  of order p . it is 

computationally intractable to compute the value h . 

Definition 4. t-Strong Diffie-Hellman (t-SDH) Problem  

Let 
*R
pZ . Given input as a ( 1)t tuple   

1( , , , )
t tg g g G   , where g  is the generator of a cyclic 

group G  of order q . For any probabilistic polynomial time 

adversary, the probability 

1

[ ( , , , ) ( , )]
t

cPr Adv g g g c g    

is negligible for any value of 
* /pZ   . 

Definition 5. Knowledge of Exponent Assumption  

Let 
*R
pZ . Given input as ( , )g g G  , where g  is 

a generator of a cyclic group G  of order p . The only way to 

output a pair ( , )C C G   in polynomial time is to extract the 

exponent c , such that cg C . 

A. Soundness Guarantee 

We need to prove that the cloud server cannot generate 

valid proof information for the user without faithfully storing 

the data, as captured by Theorem 1 and Theorem 2. 
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Theorem 1. If 
( )

A
f

g


 can be forged by an existed 

probabilistic polynomial time adversary Adv , we can 

construct an algorithm B  to efficiently compute the solution 

to the  t-SDH problem based on the Adv . 

Using the similar idea of [5], we prove Theorem 1 as: 
Proof: Suppose there exists a probabilistic polynomial 

time adversary Adv  that can generate 
1

( )
A

f   such that 

1
( ) ( )A A

f f
g g

 
 , where 

( )A
f


 and 

1( )A
f


 are known to the Adv . 

The Adv  can construct another polynomial 
2 1

( ) ( ) ( )
AA A

f x f x f x  . 

And we can get 2 1 1
( ) ( ) ( ) ( )( )

/ 1A A A AA
f f f ff

g g g g
   

   , 

so 
2

( ) 0
A

f   , which means   is a root of polynomial 

2

( )
A

f x . By factoring 
2

( )
A

f x , B can find   and easily find a 

number c  to get 1/( , )cc g   as solution to the instance of the t-

SDH problem given by the system parameters. 

Theorem 2. If the signature scheme used for 

authentication tags is existentially unforgeable, the CDH 

problem, the Static Diffie-Hellman problem and the t-SDH 

problem are hard in bilinear groups, then, in the random oracle 

model, no adversary against the soundness of our public PoR 

scheme could cause verifier to accept in a proof-of-

retrievability protocol instance with non-negligible probability, 

except by responding with correctly computed values Prf . 

Proof: It is easy to prove that the signature scheme is 

existentially unforgeable based on the CDH problem. In 

concrete, if there is an adversary that can break our signature 

scheme, we show how to use this adversary to solve the CDH 

problem as follows: set 0 1,
x x

u h g h  , the signature scheme 

used for authentication tags can be simulated as  

1 0

1
· ( ) ?

0

)( ) (
j

iiji i

s
x f x tmt

i

j

u g h 









  蝌
 

where ,0 ,1 , 1{ , , , }i i i i sm m m    and ( )it H name i . 

Finally, if there is an adversary can forge a new signature 

i i    on a message im , the adversary have found a solution 

to the CDH problem. i.e., given 

1

0

·
j

iji

s
mtx

j

h u g






   and 

h vò
, the adversary can generate 

·xh  ò
. Hence, the 

signature scheme used for authentication tags is existentially 

unforgeable. 

Next, we prove that any proof information which can pass 

the verifyproof algorithm of our scheme must be the correct 

proof information. 

Suppose a probabilistic polynomial time adversary Adv  

can generate a ( , , ),( , , ) ( , , )Prf y y y              and 

pass the verification in our proposed scheme, we can get the 

following two equations: 

)( , ) ( , ( , ) ( ),r ye e k v e h e g v                              (2) 

)( , ) ( , ( , ) ( ),r ye e k v e h e g v   
                          (3) 

Dividing Eq.3 with Eq.2, we obtain: 

1 1 ( )( ( ) ( ), ) , ,r y ye k v e h e g v   
                    (4) 

Now we do a case analysis for 'Prf . 

Case 1:    . We rewrite Eq.4 as 

1 1, ,( ) ( )) ,(r y ye h e k v e g v   
         

1 ,(( ) )r y ye g v 
                          (5) 

Based on the Eq.5, we can get 1 1)( )( r y yg   
      ò                        

For ( , , )Prf y      and ( , , )Prf y   are both known to 

the Adv , the Adv  can compute 1)( r y yg  
     with 

the mater key   got from the TA.  

At first, we prove that h  . 

Suppose h  , we can get the following equation: 

   1)( r y yg h 
                                     (6) 

We rewrite Eq.6 as 1 ( )( ) r y yh g 
       . 

According to the Knowledge of Exponent Assumption, 

given ( , )rg g , the only way for the Adv  to output 

1 ( )( , )y yh g 
      is that the Adv  must know the exponent 

c  such that 1· cg    . Then we can get the following 

equation: ·( ) ( )c r y yg h g                  

We see that the Adv  have found the solution to the 

discrete logarithm problem: ·( ) ( )c r y yh g     . Therefore, 

h  . Using the same method, we can prove that h  . 

Now, given input ( , )h v  and  , the Adv  have solved the 

Static Diffie-Hellman Problem: 1·   ò . 

Therefore,    . 

Case 2: y y  . Here, by Eq.4 and    , we can 

output 

  1 ( ), )( ( , )r y ye k v e g v 
                               (7) 

Based on the Eq.7 we can get 1)( r y yg 
      We 

rewrite the above equation as 

1 1

1( ) y y rg       . 

Now, we can output 

1

( , )rr g  as a solution for t-SDH 

problem, unless r  . However,   and r  are two random 

numbers chosen from 
*
pZ , so the probability of r   is 1/ p , 

which is negligible. Therefor, y y  . 

Case 3:    . Based on the Eq.4 with     and 

y y  , we can output 1)( 1r      . As    , the Adv  

can infer r  . In this case, the Adv  can also output 
1

( , )rr g  as a solution of the t-SDH problem. Therefore, 

   . In addition, as we proved in Theorem 1, 
( )f

g     

cannot be forged. That is, when the Adv  outputs    , it 
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have to be computed based on actual data blocks according to 
our scheme. 

Based on our above analysis, we prove that there is no 

Adv  that can compute invalid proof information to pass the 

verification in our scheme with non-negligible probability, i.e., 

our scheme is equipped with soundness property. 

B. Confidentiality Guarantee 

Theorem 3. From the cloud server's prove message Prf , 

the user cannot recover the data file , ,0 1ijm i I j s    . 

Proof: Suppose the user can recover the data file 

, ,0 1ijm i I j s     in polynomial time, then we show the 

user can construct a simulator that solves the discrete 

logarithm problem. 

The simulator is given as inputs values ,v G  ; its goal 

is to output   such that v  . 

For { },i iv p i K   , the simulator can get  

( () )
A A

y f r f r


    

where  ,0 , 1, , .i i i i si I i I
A p m p m  
     

Based on the recovered data file , ,0 1ijm i I j s    , 

the simulator computes ( )
A

y f r


   . 

Finally the simulator computes 
y

y
 


. 

So if the user can recover the data file 

, ,0 1ijm i I j s     in polynomial time, it can construct a 

simulator that solves the discrete logarithm problem.Thus the 

TPA cannot recover the data file , ,0 1ijm i I j s     based 

on the prove message.  

C. Active Attack Resistance Guarantee 

Now we show that our scheme can resist the active attack, 

as shown in Theorem 4. 

Theorem 4. If an active adversary alters *M  to M  , then, 

except with negligible probability the adversary cannot change 

the proof information 'Prf  produced by the cloud server 

based on the modified data file M   to the valid proof 

information Prf   which can  pass the verification algorithm. 

Proof: Suppose there is an active adversary who alters 
*M to M  , where M   consists of  ,1 ,0 1ijm i n j s      , 

and ij ij ijm m m   .  , ,Prf y     is the proof information 

produced by the cloud server based on the message M  . 

Now we show that if the active adversary can produce the 

valid proof information  , ,Prf y   with negligible 

probability, it can construct a simulator to solve the discrete 

logarithm problem. 

The simulator is given as inputs values ,v G  ; its goal 

is to output   such that v  . 

Based on the challenging message CM, the simulator 

computes  

 B
y f r   

where  ,0 , 1, ,i i i i si I i I
B p m p m  

    . 

Based on y  and 'y , the simulator computes  

* ( ) ( )
A A

y y y f r f r


     

where        ,0 , 1, ,i i i i si I i I
A v m v m  
     

 ,0 , 1, ,i i i i si I i I
A v m v m  
     . 

    It is clear that  * · ·
B

y f r y    . 

At the last, the simulaor can get 
*y

y
 


.  

So if the active adversary can produce the valid proof 

information  , ,Prf y   with negligible probability after it 

modified the data file, it can construct a simulator to solve the 

discrete logarithm problem. 

Thus, our scheme can resist active attack.  

4. Conclusions 

In this paper, we propose a new public PoR scheme for 

data storage security in cloud computing, we utilize blinding 

factor to guarantee that any active adversary who is able to 

arbitrarily modify the cloud data cannot produce valid proof 

information to pass the verification algorithm and the TPA 

would not learn any knowledge about the data content during 

the auditing process. Then the following security analysis 

shows our proposed schemes is provably secure. 
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