
Public Proof of Retrievability Scheme against Active

Attack in Cloud Storage

Jianhong Zhang, Wenjing Tang

Department of North China University of Technology of Shijingshan District, Bejing 100144, China

jhzhangs@163.com, tangwenjing2011@yeah.net

 Abstract - Data integrity is one of the major concerns with

cloud data storage for cloud user. Besides, the cloud user’s

constrained computing capabilities make the task of data integrity

auditing expensive and even formidable. In recent years, many public

data integrity verification schemes have been proposed, however,

most of them are vulnerable to an efficient active attack, which means

that the active adversary is able to arbitrarily modify the cloud data

without being detected by the auditor. In this work, by utilizing

blinding factor, we proposed a new proof of retrievability scheme,

which can resist active attack and keep the privacy of the data in the

auditing process. Extensive security analysis shows our proposed

scheme is provably secure.

 Index Terms - Cloud storage, proof of retrievability, active

attack.

1. Introduction

By using cloud storage, people can remotely store their

data and access them via networks at anytime and from

anywhere. Despite the obvious benefits, it also brings new

security challenges to the cloud data security. Data integrity

and Confidentiality are two biggest concerns. So following the

first scheme constructed in [1], a number of new data integrity

verification schemes and improvements have been proposed,

such as [2],[3],[4]. Most of them consist of five algorithms

(KeyGen, SigGen, Challenge, GenProof, VerifyProof).

KeyGen is a key generation algorithm that is run by the data

owner. SigGen is used by the data owner to generate

authentication tag for each data block im . Challenge is run by

the TPA to produce the challenging message. GenProof is run

by the cloud server to generate a proof of data integrity, while

VerifyProof is run by the TPA to audit the proof. For the proof

information generated in the GenProof algorithm is not

provided authentication and it is in linear with im , most of the

existing scheme are vulnerable to an efficient active attack.

That is to say, an active adversary may corrupt or alter the data

at his will after data owner stores its data file and the

authentication tags in the cloud. Then only with the

information how data are modified, the active adversary can

change the wrong proof information to a valid one which can

pass the VerifyProof algorithm.

In this paper, we propose a public proof of Retrievability

scheme against active attack. Our work utilizes the technique

of public key based homomorphic linear authenticator (or

HLA for short) and constant size polynomial commitment

technique. What’s more, we introduce blinding factor into the

GenProof algorithm, so that the active adversary cannot

compute the valid proof information, that is to say, if the data

file stored in the cloud is modified by an active adversary,

there is on way to produce a valid proof information which can

pass the VerifyProof algorithm except for the situation that the

cloud server colludes with the active adversary, however, this

is no good for the cloud sever, so we can assume this situation

does not exist.

The rest of this paper is organized as follows. We provide

the detailed description of our scheme in Section 2. Section 3

gives the Security analysis. Finally, We conclude our whole

paper in section 4.

2. The Proposed Scheme

This section presents our PoR scheme which can resist

active attack and keep the privacy of the data files in the

auditing process. After introducing notations, we describe the

construction and show the correctness of our scheme.

Let G and TG be two multiplicative cyclic groups of the

same prime order p . g and h are generators of G and

R
u G . : Te G G G is a bilinear map. ()H is a secure

map-to-point hash function: * *{0,1} pZ . 'F is the erasure

coded file consisting of n blocks, each of which has s

elements: { },1 ,0 1ijm i n j s . ()a xf is a polynomial

with coefficient vector 0 1 1(, , ,)sa a a a .

KeyGen: The TA chooses a random number
*R
pZ

and generates the public keys for the system as
1
0{ }

j s
jg
 .

is the master key of the system only known to the TA. Given a

security parameter , the data owner generates a signing key-

pair ((,) ())
R

spk ssk Sign . The data owner also chooses a

random number
*R
pZò and computes ,v h k h 蝌

.

Then the cloud server chooses a random number
*R
pZ ,

and computes v based on the public key v . So the public

key, private key and master key are:

1
0{ , , , , , , ,{ } }

j s
jPK p k v spk h u g

1 2{ , } { } { }SK ssk SK MK ò .

SigGen: To outsource a file F , the data owner first

obtain 'F by applying erasure code. Then the owner randomly

chooses a file name
*
pname Z and generates the file tag

International Conference on Future Computer and Communication Engineering (ICFCCE 2014)

© 2014. The authors - Published by Atlantis Press 29

under ssk as ()sskname n sign name n . For each

data block ,1im i n , the owner produces an authentication

tag as:

1
()() ()

0

() ()
j

ij i

s
fmH name i H name i

i

j

u g u g

 蝌

where ,0 ,1 , 1{ , , , }i i i i sm m m . The data owner stores 'F ,

file tag and corresponding authentication tags i in the

cloud.

Challenge: To verify the integrity of 'F , a user first gets

the file tag from the cloud server and verifies the signature

on with spk . If the signature is invalid, the user rejects and

halts; otherwise, the user recovers file name name and n .

Then the user randomly chooses a k elements subset K of

[1,]n and one random number
*R
pr Z . Finally, the user

produces the challenging message { , }CM K r and sends it to

the cloud server.

GenProve: Based on the challenging message

{ , }CM K r , the cloud server first computes { mod }i
ip r p

and { },i iv p i K . Then the cloud server generates

()
A

y f r , where ,0 , 1, ,i i i i si I i I
A v m v m
 . As

polynomials () []f x Z x have the algebraic property that

()x r perfectly divides the polynomial () ()f x f r . The

server divides the polynomial () ()f x f r with ()x r using

polynomial long division, and denotes the coefficients vector

of the resulting quotient polynomial as 0 1 1(, , ,)s ,

that is,
() ()

() A A
f x f r

f x
x r

. The cloud server generates

()

1

0

()
j

j

s
f

j

g g

 .

Then cloud server computes iv
i

i I

 and sends the

proof information { , , }Prf y to the user.

VerifyProof: On receiving the Prf , the user firstly

computes mod ,i
ip r p i K and

 ii K
H name i p

u .

Based on , the user verifies the integrity of F together with

{ , , }Prf y as:

(,) (,) (,) (,)r ye e k v e h e g v

 (1)

If Eq.1 holds, the user outputs AuditRst as accept;

otherwise, outputs AuditRst as reject.

Correctness: we analyse the correctness of our

construction based on Eq.1 as:

(,) (,)re e k v

 () (),) ,(()
ii K

H name i p f re u h e g h 蝌

() ()

()

(, () ,)
A A

ii K

f f r
rH name i p

re u h e g h

 òò

 · (() ())
(), (,)

ii K A A
H name i p f f r

e u h e g h

 ò ò

 () ()
, ,() ()

ii K A A
H name i v f f r

e u h e g h

 ò 蝌

 () ()
))((, ,

ii K A A
H name i v f f r

e u g h e g h

 ò ò ò

(, ,) ()ye h e g v

3. Security Analysis

In this section, we start from giving the assumptions used

in our scheme, then we evaluate the security of our scheme by

analysing its fulfillment of the security guarantee, namely, the

soundness, confidentiality and Active Attack Resistance

property.

Definition 1. Discrete Logarithm Problem

Let ,g h G , where G is a cyclic group. Given (,)g h , it

is computationally intractable to compute the value of x such

that xh g .

Definition 2. Computational Diffie-Hellman Problem
(CDH)

Let *,
R

px y Z . Given (, ,)x yg g g , it is computationally

intractable to compute the value of xyg , where G is a cyclic

group of order p and g is a generator of G .

Definition 3. Static Diffie-Hellman Problem

Let
*R
pZ . Given input as (,)g g and h G ,

where g is a generator of a cyclic group G of order p . it is

computationally intractable to compute the value h .

Definition 4. t-Strong Diffie-Hellman (t-SDH) Problem

Let
*R
pZ . Given input as a (1)t tuple

1(, , ,)
t tg g g G , where g is the generator of a cyclic

group G of order q . For any probabilistic polynomial time

adversary, the probability

1

[(, , ,) (,)]
t

cPr Adv g g g c g

is negligible for any value of
* /pZ .

Definition 5. Knowledge of Exponent Assumption

Let
*R
pZ . Given input as (,)g g G , where g is

a generator of a cyclic group G of order p . The only way to

output a pair (,)C C G in polynomial time is to extract the

exponent c , such that cg C .

A. Soundness Guarantee

We need to prove that the cloud server cannot generate

valid proof information for the user without faithfully storing

the data, as captured by Theorem 1 and Theorem 2.

30

Theorem 1. If
()

A
f

g

 can be forged by an existed

probabilistic polynomial time adversary Adv , we can

construct an algorithm B to efficiently compute the solution

to the t-SDH problem based on the Adv .

Using the similar idea of [5], we prove Theorem 1 as:
Proof: Suppose there exists a probabilistic polynomial

time adversary Adv that can generate
1

()
A

f such that

1
() ()A A

f f
g g

 , where

()A
f

 and

1()A
f

 are known to the Adv .

The Adv can construct another polynomial
2 1

() () ()
AA A

f x f x f x .

And we can get 2 1 1
() () () ()()

/ 1A A A AA
f f f ff

g g g g

 ,

so
2

() 0
A

f , which means is a root of polynomial

2

()
A

f x . By factoring
2

()
A

f x , B can find and easily find a

number c to get 1/(,)cc g as solution to the instance of the t-

SDH problem given by the system parameters.

Theorem 2. If the signature scheme used for

authentication tags is existentially unforgeable, the CDH

problem, the Static Diffie-Hellman problem and the t-SDH

problem are hard in bilinear groups, then, in the random oracle

model, no adversary against the soundness of our public PoR

scheme could cause verifier to accept in a proof-of-

retrievability protocol instance with non-negligible probability,

except by responding with correctly computed values Prf .

Proof: It is easy to prove that the signature scheme is

existentially unforgeable based on the CDH problem. In

concrete, if there is an adversary that can break our signature

scheme, we show how to use this adversary to solve the CDH

problem as follows: set 0 1,
x x

u h g h , the signature scheme

used for authentication tags can be simulated as

1 0

1
· () ?

0

)() (
j

iiji i

s
x f x tmt

i

j

u g h

 蝌

where ,0 ,1 , 1{ , , , }i i i i sm m m and ()it H name i .

Finally, if there is an adversary can forge a new signature

i i on a message im , the adversary have found a solution

to the CDH problem. i.e., given

1

0

·
j

iji

s
mtx

j

h u g

 and

h vò
, the adversary can generate

·xh ò
. Hence, the

signature scheme used for authentication tags is existentially

unforgeable.

Next, we prove that any proof information which can pass

the verifyproof algorithm of our scheme must be the correct

proof information.

Suppose a probabilistic polynomial time adversary Adv

can generate a (, ,),(, ,) (, ,)Prf y y y and

pass the verification in our proposed scheme, we can get the

following two equations:

)(,) (, (,) (),r ye e k v e h e g v (2)

)(,) (, (,) (),r ye e k v e h e g v
 (3)

Dividing Eq.3 with Eq.2, we obtain:

1 1 ()(() (),) , ,r y ye k v e h e g v
 (4)

Now we do a case analysis for 'Prf .

Case 1: . We rewrite Eq.4 as

1 1, ,() ()) ,(r y ye h e k v e g v

1 ,(())r y ye g v
 (5)

Based on the Eq.5, we can get 1 1)()(r y yg
 ò

For (, ,)Prf y and (, ,)Prf y are both known to

the Adv , the Adv can compute 1)(r y yg
 with

the mater key got from the TA.

At first, we prove that h .

Suppose h , we can get the following equation:

 1)(r y yg h
 (6)

We rewrite Eq.6 as 1 ()() r y yh g
 .

According to the Knowledge of Exponent Assumption,

given (,)rg g , the only way for the Adv to output

1 ()(,)y yh g
 is that the Adv must know the exponent

c such that 1· cg . Then we can get the following

equation: ·() ()c r y yg h g

We see that the Adv have found the solution to the

discrete logarithm problem: ·() ()c r y yh g . Therefore,

h . Using the same method, we can prove that h .

Now, given input (,)h v and , the Adv have solved the

Static Diffie-Hellman Problem: 1· ò .

Therefore, .

Case 2: y y . Here, by Eq.4 and , we can

output

 1 (),)((,)r y ye k v e g v
 (7)

Based on the Eq.7 we can get 1)(r y yg
 We

rewrite the above equation as

1 1

1() y y rg .

Now, we can output

1

(,)rr g as a solution for t-SDH

problem, unless r . However, and r are two random

numbers chosen from
*
pZ , so the probability of r is 1/ p ,

which is negligible. Therefor, y y .

Case 3: . Based on the Eq.4 with and

y y , we can output 1)(1r . As , the Adv

can infer r . In this case, the Adv can also output
1

(,)rr g as a solution of the t-SDH problem. Therefore,

 . In addition, as we proved in Theorem 1,
()f

g

cannot be forged. That is, when the Adv outputs , it

31

have to be computed based on actual data blocks according to
our scheme.

Based on our above analysis, we prove that there is no

Adv that can compute invalid proof information to pass the

verification in our scheme with non-negligible probability, i.e.,

our scheme is equipped with soundness property.

B. Confidentiality Guarantee

Theorem 3. From the cloud server's prove message Prf ,

the user cannot recover the data file , ,0 1ijm i I j s .

Proof: Suppose the user can recover the data file

, ,0 1ijm i I j s in polynomial time, then we show the

user can construct a simulator that solves the discrete

logarithm problem.

The simulator is given as inputs values ,v G ; its goal

is to output such that v .

For { },i iv p i K , the simulator can get

(())
A A

y f r f r

where ,0 , 1, , .i i i i si I i I
A p m p m

Based on the recovered data file , ,0 1ijm i I j s ,

the simulator computes ()
A

y f r

 .

Finally the simulator computes
y

y

.

So if the user can recover the data file

, ,0 1ijm i I j s in polynomial time, it can construct a

simulator that solves the discrete logarithm problem.Thus the

TPA cannot recover the data file , ,0 1ijm i I j s based

on the prove message.

C. Active Attack Resistance Guarantee

Now we show that our scheme can resist the active attack,

as shown in Theorem 4.

Theorem 4. If an active adversary alters *M to M , then,

except with negligible probability the adversary cannot change

the proof information 'Prf produced by the cloud server

based on the modified data file M to the valid proof

information Prf which can pass the verification algorithm.

Proof: Suppose there is an active adversary who alters
*M to M , where M consists of ,1 ,0 1ijm i n j s ,

and ij ij ijm m m . , ,Prf y is the proof information

produced by the cloud server based on the message M .

Now we show that if the active adversary can produce the

valid proof information , ,Prf y with negligible

probability, it can construct a simulator to solve the discrete

logarithm problem.

The simulator is given as inputs values ,v G ; its goal

is to output such that v .

Based on the challenging message CM, the simulator

computes

 B
y f r

where ,0 , 1, ,i i i i si I i I
B p m p m

 .

Based on y and 'y , the simulator computes

* () ()
A A

y y y f r f r

where ,0 , 1, ,i i i i si I i I
A v m v m

 ,0 , 1, ,i i i i si I i I
A v m v m
 .

 It is clear that * · ·
B

y f r y .

At the last, the simulaor can get
*y

y

.

So if the active adversary can produce the valid proof

information , ,Prf y with negligible probability after it

modified the data file, it can construct a simulator to solve the

discrete logarithm problem.

Thus, our scheme can resist active attack.

4. Conclusions

In this paper, we propose a new public PoR scheme for

data storage security in cloud computing, we utilize blinding

factor to guarantee that any active adversary who is able to

arbitrarily modify the cloud data cannot produce valid proof

information to pass the verification algorithm and the TPA

would not learn any knowledge about the data content during

the auditing process. Then the following security analysis

shows our proposed schemes is provably secure.

Acknowledgment

This work was supported partly by Supported by Beijing

Natural Science Foundation (No:4122024,4132056), the New

Star Plan Project of Beijing Science and Technology

(NO:2007B001)and and The importation and development of

High-Caliber Talents project of Beijing Municipal

Institutions(NO:CIT$\&$TCD201304004).

References

[1] Y. Deswarte, J. J. Quisquater, A. Sa?dane. Remote integrity checking

//Integrity and Internal Control in Information Systems VI. Springer US,

2004: 1-11. H. Simpson, Dumb Robots, 3rd ed., Springfield: UOS Press,

2004, pp.6-9.

[2] G. Ateniese, R. Burns, R. Curtmola, et al. Provable data possession at

untrusted stores //Proceedings of the 14th ACM conference on

Computer and communications security. ACM, 2007: 598-609.

[3] G. Ateniese, R. Di Pietro, L. V. Mancini, et al. Scalable and efficient

provable data possession //Proceedings of the 4th international

conference on Security and privacy in communication netowrks. ACM,

2008: 9.

[4] C. Erway, A. Küp?ü, C. Papamanthou, et al. Dynamic provable data

possession //Proceedings of the 16th ACM conference on Computer and

communications security. ACM, 2009: 213-222.

[5] J. Yuan, S. Yu. Proofs of retrievability with public verifiability and

constant communication cost in cloud //Proceedings of the 2013

international workshop on Security in cloud computing. ACM, 2013:

19-26.

32

