Weight Distributions of Divisible Codes Meeting the Griesmer Bound over F₅ with Dimension 3

Fangchi Liang^{1,2}, Yuena Ma², and Tao Ku²

¹ School of Mathematics and Statistics, Xi'an Jiaotong University, Shaanxi, Province, China ² College of Science, Air Force Engineering University, Shaanxi, Province, China liangfangchi@aliyun.com, mayuena2014@126.com, kutao2014@126.com

Abstract - Based on a relationship between generator matrix of given code and its weight distribution, all $[31s+t, 3]_5(t=7, 13, 19, 25)$ optimal divisible codes with divisor 5 are determined by solving systems of linear equations. Then their generator matrices and weight polynomials of these optimal divisible codes are also given.

Index Terms - Weight Distributions, divisible codes, Griesmer Bound

1. Introduction

Let F_q^n be the n-dimensional vector over the Galois field GF(q), where q be a prime or power of prime. A q-ary linear code of length n, dimension k and minimum distance d is said to be an $[n, k, d]_q$ code.

Suppose C is an $[n, k, d]_q$ code. Any basis of C forms a k by n matrix G that is called a generator matrix of C, and C is uniquely determined by any of its generator matrices.

For a code C, let $A_i(C)$ be the number of words of Hamming weight i in C, the weight polynomial of C is given by

$$W_C(y) = \sum_{i=1}^n A_i y^i.$$

The famous Griesmer bound [1] asserts that the minimum value $n_q(k, d)$ of n satisfies

$$n \ge \sum_{i=0}^{k-1} \left\lceil \frac{d}{q^i} \right\rceil,$$

where $\lceil x \rceil$ denotes the smallest integer $\geq x$. A q-ary linear code is optimal in the sense that no shorter code exists for the same k and d. It is therefore of considerable interest in coding theory to study code meeting the Griesmer bound with equality. We shall abbreviate the right side of the bound by $g_q(k,d)$ and call a code meeting the bound a Griesmer code.

Divisible codes were introduced by Ward in 1981 [2]. A q-ary divisible code is a linear code over the F_q^n whose codewords all have weights divisible by some integer $\Delta \ge 1$, where $\Delta \ge 1$ is called a divisor of the code. Ward proved in [2] that if a divisor Δ of a divisible code is relatively prime to the field characteristic, then the code is merely equivalent to a Δ -folded replicated code. Thus for a q-ary divisible code C, one is most interested in the case where the greatest divisor of C equals p^e for some integer $e \ge 1$.

The study of divisible codes was motivated by a theorem of Gleason and pierce giving constraints on the divisor and field size for divisible codes that are formally self-dual. Later, people began to study the bounds for divisible codes, see [3] and [4] and the references therein.

Optimal codes are often divisible, and the purpose of this paper is to discuss the weight distributions of divisible codes meeting the Griesmer bound over F_5 .

This paper is arranged as follows. In section 2, some preliminary materials are introduced. In section 3, we shall give all the weight polynomials of divisible codes with dimension k=3, which divisor $\Delta=5$ and meeting the Griesmer bound, and the main results of this paper are presented.

2. Preliminary Knowledge

Let $F_5 = \{0, 1, 2, 3, 4\}$ be the Galois field with five elements, and let F_5^n be the *n*-dimensional row vector space over F_5 . In the following, we always assume that all the matrices and classical codes are F_5 .

Let $1_n=(1,1,\cdots,1)_{1\times n}$, $0_n=(0,0,\cdots,0)_{1\times n}$ and $0_{m\times n}$ be the all-ones vector, the zero vector of length n and the zero matrix of size $m\times n$, respectively.

A non-zero row (column) vector is *monic* if its first non zero coordinate is 1. Suppose $N_k = \frac{5^k-1}{4}$ for $k \ge 2$, then the total number of k-dimensional monic column vectors is N_k .

For
$$k=2$$
, let $\alpha_{2,1}=(1,0)^T$, $\alpha_{2,2}=(0,1)^T$, $\alpha_{2,3}=(1,2)^T$, $\alpha_{2,3}=(1,3)^T$, $\alpha_{2,4}=(1,3)^T$ and $\alpha_{2,6}=(1,4)^T$. Then $\alpha_{2,i}$ are the monic vectors of dimension 2. Let S_2 be the following matrix

$$S_2 = (\alpha_{2,1}, \alpha_{2,2}, \dots, \alpha_{2,6}) = \begin{pmatrix} 1 & 0 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 2 & 3 & 4 \end{pmatrix}$$

Then S_2 is a generator matrix of [6, 2, 5] Simplex code C_2 . From S_2 , we can construct a generator matrix of $[N_k, k, 5^{k-1}]$ $(k \ge 3)$ Simplex code C_k by the following method:

$$S_k = \begin{pmatrix} S_{k-1} & 0_{k-1}^T & S_{k-1} & \cdots & S_{k-1} \\ 0_{N_{k-1}} & 1 & 1_{N_{k-1}} & \cdots & 4 \times 1_{N_{k-1}} \end{pmatrix}.$$

Let $M_k = S_k^T S_k$, then M_k is a matrix of size $N_k \times N_k$ for S_k is a $k \times N_k$ matrix.

If $P = (a_{ij})$ is a matrix over F_5 , its projection $P_p = (b_{ij})$ is a binary matrix, $b_{ij} = 0$ if $a_{ij} = 0$ and $b_{ij} = 1$ otherwise. We denote $P_k = P(M_k)$ as projective matrix of the matrix M_k .

Let $Q_k = J_{N_k} - P_k$, where J_{N_k} be the all-ones matrix of $N_k \times N_k$. The matrices P_k and P_k are introduced and their properties are discussed in [5].

Let $S_k = (\alpha_{k,1}, \alpha_{k,2}, \cdots, \alpha_{k,N_k})$ be the generator matrix of Simplex code S_k . Suppose C be a $[n, k, d]_5$ code without zero coordinate and its generator matrix G with columns are all monic vectors. If $\alpha_{k,i}$ appears l_i times in G, we denote $G = (l_1\alpha_{k,1}, l_2\alpha_{k,2}, \cdots, l_{N_k}\alpha_{k,N_k})$ and call $L = (l_1, l_2, \cdots, l_{N_k})$ as the defining vector of G.

Let $P_kL^T=W^T$, here $W=(w_1,w_2,\cdots,w_{N_k})$ is the projective weight vector of $[n,k,d]_5$. So we can change W into $W^T=(d,d,\cdots,d)^T+(\lambda_1,\lambda_2,\cdots,\lambda_{N_k})^T=d\cdot 1_{N_k}+\Lambda^T$. Figure the sum from two sides of this equation, left side is $q^{k-1}\sum_{i=1}^{N_k}l_i=nq^{k-1}$, and right side is $N_kd+\sum_{i=1}^{N_k}\lambda_i$. Then $nq^{k-1}=N_kd+\sum_{i=1}^{N_k}\lambda_i$, we denote $\sigma(\Lambda)=\sum_{i=1}^{N_k}\lambda_i$, so $\sigma(\Lambda)=nq^{k-1}-N_kd$.

Finally, we set up the connection between definition and projective weight distribution in the form of systems of equations as follows:

$$\begin{cases}
P_k L^T = d \cdot 1_{N_k}^T + \Lambda^T \\
\sigma(\Lambda) = \lambda_1 + \lambda_2 + \dots + \lambda_{N_k} \\
\lambda_i \ge 0 (1 \le i \le N_k) \\
n = l_1 + l_2 + \dots + l_{N_k}
\end{cases} \tag{1}$$

For a given $C=[n,k,d]_5$, it is easy to give all the possible projective weight distribution from $\sigma(\Lambda)$, thus $W^T=d\cdot 1_{N_k}+\Lambda^T,\, C=[n,k,d]_5$ exits if and only if (1) has non negative integer solution L. From L we can obtain $C=[n,k,d]_5$ generator matrix G and weight polynomial $W_C(y)$.

3. Main results

In this section, we will use the results of the above section to study the weight distributions of optimal [n,3] divisible codes for n=31s+t, where $t\in\{7,13,19,25\}$. To save space we only explain our process for case [31s+7,3] optimal divisible codes, other cases can be deuced similarly.

Let $n=31s+7(s\geq 1)$, using the Griesmer bound, we can deduce a [31s+7,3] optimal divisible code has minimum distance d=25s+5 and $\sigma(\Lambda)=20$, then

$$L = \frac{1}{5^2} (25 \cdot 1_{31} - 5Q_3\Lambda).$$

Since each code words of a divisible codes with divisor $\Delta=5$ has weight $w\equiv (mod5)$, we can assume $\Lambda=5\Lambda'$, thus

$$L = 1_{31} - Q_3 \Lambda', \tag{2}$$

where $\sigma(\Lambda')=4$. Using MATLAB program, one can easily get all solutions satisfying (2) for $s\geq 1$.

In the following, we let $M^w(n,k)$ be the number of different weight polynomial of optimal [n,k] divisible code, and use $sG=(G,G,\cdots,G)$ to denote the juxtaposition of s copies of G for given matrix G.

Case 1: If $s = 1, M^w(38,3) = 1$, and this one weight polynomial is $1 + 108y^{30} + 16y^{35}$ for optimal [38,3,30] divisible code, its generator matrix G_{38} with defining vector L_{38} is $L_{38} = (0011100112212112122111222002222)$.

Case 2: If s = 2, $M^w(69,3) = 2$. These two weight polynomials for optimal [69,3,55] divisible code are

$$1 + 108y^{55} + 16y^{60}$$
 (two cdoes),
 $1 + 112y^{55} + 8y^{60} + 4y^{65}$.

There are two optimal divisible codes have weight polynomial $1+108y^{55}+16y^{60}$, their corresponding generator matrices are $G_{69,1}=(G_3,G_{38})$ and $G_{69,2}$ with defining vectors $L_{69,1}=1_{31}^T+L_{38}$ and $L_{69,2}$ are

$$L_{69,1} = (1122211223323223233222333113333),$$

and $L_{69,2} = (11222102233322233322233322)$, respectively.

There is one optimal divisible codes has weight polynomial $1 + 112y^{55} + 8y^{60} + 4y^{65}$, its generator matrices $G_{69,3}$ with defining vector $L_{69,3}$ is

$$L_{69.3} = (0111101233332233332233332233332)$$

Case 3: If $s \ge 3$, $M^w(69,3) = 5$. These five weight polynomials for optimal [31s+7,3,25s+5] divisible code as follows:

$$\begin{array}{l} 1+108y^{25s+5}+16y^{25s+10}(\mathbf{three\ cdoes}),\\ 1+112y^{25s+5}+8y^{25s+10}+4y^{25s+15}(\mathbf{two\ cdoes}),\\ 1+116y^{25s+5}+8y^{25s+15},\\ 1+116y^{25s+5}+4y^{25s+10}+4y^{25s+20},\\ 1+120y^{25s+5}+4y^{25s+25}. \end{array}$$

Let $G_{100,i}(1 \le i \le 5)$ are generator matrices of optimal [100,3,80] divisible code, their defining vectors $L_{100,i}$ are

$$L_{100,1} = 2 \cdot 1_{31}^T + L_{38}$$

$$L_{100,2} = 1_{31}^T + L_{69,2},$$

$$L_{100,3} = (33434303343433343433343433343433),$$

$$L_{100,4} = 1_{31}^T + L_{69,3}$$

$$L_{100.5} = (3442430344243344243344243344223),$$

$$L_{100.6} = (44424204442424442424442424442424),$$

$$L_{100,7} = (444143044414344414344414344143),$$

Then, there exit three different generator matrices for weight polynomial for $1+108y^{25s+5}+16y^{25s+10}$, we denote its by $G_{31s+7,i}(1 \le i \le 3)$.

There exit two different generator matrices for weight polynomial for $1+112y^{25s+5}+8y^{25s+10}+4y^{25s+15}$, we let its be $G_{31s+7,i}(4 \le i \le 5)$.

For weight polynomials $1 + 116y^{25s+5} + 8y^{25s+15}$,

$$1 + 116y^{25s+5} + 4y^{25s+10} + 4y^{25s+20}$$
 and

 $1+120y^{25s+5}+4y^{25s+25}$, their corresponding generator matrices denote by $G_{31s+7,i}(6\leq i\leq 8).$

To above generator matrices $G_{31s+7,i} (1 \le i \le 8)$, their corresponding defining vectors are

$$L_{31s+7,i} = (s-3) \cdot 1_{31}^T + L_{100,i}$$
.

In sum up all statements above, then we could get:

Theorem 3.1 Let $n = 31s + 7(s \ge 1)$, if s = 1, then $M^w(38,3) = 1$; if s = 2, then $M^w(38,3) = 2$; if $s \ge 3$, then $M^w(38,3) = 5$. All weight polynomials see above.

Similar to the above discussion, we have the following:

Theorem 3.2 Let
$$n = 31s + 13(s > 1)$$
,

(1) If s=1, then $M^w(44,3)=1$, and this weight polynomial is $1+112y^{35}+12y^{40}$.

(2) If $s \ge 2$, then $M^w(31s+13,3)=3$, and these three weight polynomials are

$$1 + 120y^{25s+10} + 4y^{25s+25};$$

$$1 + 116y^{25s+10} + 4y^{25s+15} + 4y^{25s+20};$$

$$1 + 112y^{25s+10} + 12y^{25s+15}$$
 (two cdoes).

Theorem 3.3 Let $n = 31s + 19(s \ge 1)$, then

$$M^w(31s+19,3) = 2$$
, and these two weight polynomials are $1 + 120y^{25s+15} + 4y^{25s+25}$,

$$1 + 116y^{25s+15} + 8y^{25s+20}.$$

Theorem 3.4 Let $n = 31s + 25(s \ge 0)$, then

$${\cal M}^w(31s+25,3)=1$$
, and this one weight polynomial is

$$1 + 120y^{25s+20} + 4y^{25s+25}$$

4. Conclusions

In this paper, we have given the complete weight distribution of $[31s+t,3]_5(t=7,13,19,25)$ optimal divisible codes, our results of these codes have lengths one above the Griesmer bound. Our method given can also be used to $[n,k]_5$ optimal divisible codes for dimensionk > 4.

Acknowledgment

This work is supported by National Nature Science Foundation of China under Grant No. 11071255 and No. 11171265.

References

- J. H. Griesmer, "A bound for error-correcting codes," IBM J.Res. Develp., vol. 4, pp. 532-542, 1960.
- [2] H. N.Ward, "Divisible codes," Arch. Math., vol. 36, pp.485–499, 1981.
- [3] H. N. Ward, "A bound for divisible codes," IEEE Trans. Inf. Theory, vol. 38, no. 1, pp. 191–194, Jan. 1992.
- [4] H. N. Ward, "Divisibility of codes meeting the Griesmer bound," J. Combin. Theory Ser. A, vol. 83, no. 1, pp. 79–93, 1998.
- [5] Fangchi liang, Ruihu Li, Zongben Xi, "The incidence matrix of two classes of symmetric BIBD," Proceedings of the Ninth International Conference on Matrix Theory and its Applications, PP. 175-178, 2010.