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 Abstract - The entanglement-assisted (EA) formalism is a 

generalization of the standard stabilizer formalism, and it can 

transform classical linear quaternary codes into entanglement-assisted 

quantum error correcting codes (EAQECCs) by using of shared 

entangled qubits between the sender and the receiver. In this work, 

we give elementary recursive constructions of special quaternary 

codes of length n and dual distance four that constructed from known 

caps in projective space PG(5,4) and PG(6,4) for all length 6n283. 

Consequently, good maximal entanglement EAQECCs of minimum 

distance four for such length n are constructed from the obtained 

quaternary codes. 

 Index Terms - EAQECCs, maximal entanglement, quaternary 

code, cap. 

1.  Introduction 

Quantum error correcting codes (QECCs) are powerful 

tools for fighting against noise in quantum computation and 

quantum communication [1-2]. The most widely studied class 

of quantum codes are stabilizer (or additive) quantum codes, 

binary or non-binary. Under the stabilizer formalism [3-4], 

binary stabilizer codes can be constructed from classical codes 

over finite binary field 
2F or quaternary field 

4F  with certain 

self-orthogonal (or dual containing) properties. The self-

orthogonal properties form a barrier to import all classical 

codes into QECCs [5]. In 2006, Brun, Devetak and Hsieh 

devised the entanglement-assisted (EA) stabilizer formalism to 

break through this restriction [5], the EA-stabilizer formalism 

includes the standard stabilizer formalism as a special case. 

They showed that if shared entanglement between the encoder 

and decoder is available, classical linear quaternary (and 

binary) codes that are not self-orthogonal can be transformed 

into EAQECCs [5-6]. 

An [[ , , ; ]]ean k d c EAQECC encodes k  information qubits 

into n  channel qubits with the help of c  pairs of maximally-

entangled Bell states. The code can correct up to ( 1) / 2ead      

errors acting on the n  channel qubits, where ead is the 

minimum distance of the code. If 0c = , then an [[ , , ; ]]ean k d c  

EAQECC is a standard quantum code and is usually denoted 

as [[ , , ]]n k d . In [6-8], Lai et. al. discussed the construction of 

optimal EAQECCs. An [[ , , ; ]]ean k d c  EAQECC is optimal in 

the sense that ead  is the highest achievable minimum distance 

for given parameters n, k and c . In [7], they showed that the 

maximal entanglement EAQECCs can achieve the EA-hash 

bound asymptotically, and constructed many optimal maximal 

entanglement EAQECCs with length no more than 15. 

Cap is an important object of projective geometry, each 

cap in  ,PG r q  will determine two q  ary linear codes [8-9]. 

In [9], caps in ( ,4)PG r  were used to construct good QECCs of 

distance four. In [10], we use caps in ( ,4)PG r  for 4r   to 

construct optimal EAQECCs of length no more than 37. In this 

work, we will discuss the construction of caps with special 

character in  5,4PG  and  6,4PG , each of these caps can 

result in an maximal entanglement EAQECC of distance four. 

We structure our work as follows. Section 2 reviews some 

basic concepts on linear codes, quaternary cap and maximal 

entanglement EAQECCs. Section 3 and 4 give explicit 

constructions of caps with special character in  5,4PG  

and  6,4PG , and construct maximal entanglement EAQECCs 

deduced from caps that we have obtained. Section 5 discusses 

the constructed EAQECCs and draws a final remark.    

2.  Preliminaries 

In this section we introduce some basic knowledge on 

linear codes, caps and maximal entanglement EAQECCs. Let 

4 {0,1, }F ω,ω  be the finite field with four elements, where 
2ω ω , 2ω ω , and 3 1ω  . The conjugate is defined as 2x=x  

for all elements
4x F . Let 

4

nF  be the n - dimensional vector 

space over
4F . A k - dimensional subspace C  of 

4

nF  is called 

a k - dimensional linear code of length n , and is denoted by 

4[ ]C n, k . If the minimum distance is d , then it is denoted by 

4[ , ]C n, k d . 

For
4x, y F , their Hermitian inner product is  

h( )
n

2

1 1 2 2 n n i i

i=1

x, y = x y + x y + ...+ x y = x y . 

The dual of 4[ ]C n, k  is hC  = h{ ( ) 0x x, y ∣  , }y C  ,  

and hC = 4[ , ]n n k . 

An n  cap K  in  1,4PG k   is a set of n  points, no three 

of which are collinear.  If we write the n  points as columns of 

a matrix, we obtain a matrix K of size k n  such that every set 

of three columns is linearly independent, and we usually call K  

an cap, hence the code with check matrix K is an 4[ , 4]n,n-k  . 

We call the code with generator matrix K cap code, this cap 

code is an 4[ ]n, k  code. If G  is a sub-matrix of a cap matrix K, 

which is formed by some columns of K,  then G  is also a cap. 

Definition 1 Let 
1 2( , ,..., )m mG α α α  be an m  cap in 
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 1, 4PG k  , and denote 
mN    , ,...,1 2 m .  If  

1 2{ , ,..., }s mJ j j j N   

then 
JG   

1 2
( , ,..., )

sj j jα α α  is also an s  cap, and is called a sub-

cap of 
mG with index set J . 

An [[ , , ; ]]n k d c  is called an maximal entanglement 

EAQECC if k c n  . According to [11], for linear code 

4[ ]C n, m, d , hC  EA stabilizes an [[ , 2 , ; ]]n m c n d c  , where 

†( )c rank HH , H  is a check matrix of C  and †H  is the 

conjugate transpose of H . From this, one can deduce the 

following: 

Lemma 1 If K  is a n  cap in  1, 4PG k   such that 

†)(k rank KK  , the code of  K  EA stabilizes an [[ ,n, n - k  

4; ]]d k  maximal-entanglement EAQECC. 

In the following two sections, we will try to construct 

sub-caps satisfying Lemma 1 from known caps, then derive 

[[ , 4; ]]n, n k d k   maximal entanglement EAQECCs. To 

simplify statements, in each cap or matrix, we use 2 and 3 to 

represent ω  and ω , respectively. And, let 1 (1,1, ,1)m   and 

0 (0,0, ,0)m   be the all one vector and the all zero vector of 

length m , respectively. 
4[ ]C n, m, d  is denoted as [C n,     

]m, d .  

3.  EAQECCs constructed from caps in (5,4)PG   

 To construct an   [[ 6, 4; 6]]n, n   maximal entanglement 

EAQECCs, due to Lemma 1, we should firstly construct an 

 6, 4C n, n     classical code. 

A.   Construction of 126-cap 

Firstly we use one 30-cap in  4, 4PG  [12] as follows. 

  Let  

5 30

111111111111111111111111111111

231213002312310023123100322113

000000232323231212121213131313

112233001122330011223300112233

000000111111112222222233333333

H 

 
 
 
 
 
 
 
 

, 

5 30

300

H
B

 
  
 

. 

We use   random   algorithm for constructing a 126-cap from 

the matrix B . We choose any two column vectors of B , delete 

the vector in (5,4)PG , which is collinear with these two column 

vectors in B . Then add a column left to B , in this way, we can 

obtain one matrix 
6 126 2 3 4[ | | | ]H B H H H   that generates a 126-

cap, where  

2

11111111111111111111111111111111

23121311232113223221313323213123

11223323232323121212121313131333

11223300112233001122330011223311

00000011111111222222223333333300

11111111111111111111111111111122

H















 
 
 
 
 



 

3

11111111111111111111111111111111

12133332121311232113222312132312

11222323232312121212131313132233

22330011223300112233001122331122

00001111111122222222333333330000

22222222222222222222222222223333

H















 
 
 
 
 



 

4

11111111111111111111111111000000

13223221313332121311321231111111

11232323231212121213131313231213

33001122330011223300112233000000

00111111112222222233333333000000

33333333333333333333333333112233

H















 
 
 
 
 



 

This cap has the same weight polynomial as that of the 

126-cap given in [8].  

B.   Permutation on 126-cap  

Although this matrix generates one 126-cap, but as our 

demand is to seek for a matrix 
6 126H 

 that generates a 126-cap, 

at the same time that by selecting the first n  column vectors , 

the sub-matrix 
6 nH 

of 
6 126H 

 also satisfies: †

6 6( ) 5n nrank H H    

( 6 63n  ). So we use permutation on the above matrix 
6 126H 

, 

and we get a desired cap as  ' ' ' '

126 1 2 3 4[ | | | ]G H H H H ,  where 

'

1

11111111111111111111111011011101

31223231021111013131222121132313

12011113111113222133012322231331

30121202023230031012222023031003

32023231230233112231001001010102

12013213003023020211023311221210

H













 
 
 
 
 
 



 

 '

2

11111111111111111111111110111111

33321031023322210332333131131122

21133311321321121023233112022221

11123033011111020131031210213021

22331323100112213010111020002122

23023010031110120032210211030132

H













 
 
 
 
 
 



 

'

3

11111111110111111111111111111111

21122232211101113133212131212221

21112323301323312231333121121322

13000012130303023330122232121213

12331110100123122032301313323122

02323333302001133223030302122231

H













 
 
 
 
 
 



 

'

4

111110111111111111111111111111

211221133123332312313223233311

233221333313223112323330312222

023120233320312332121113033022

233210330033213322013130300202

103113101111223330202230232311

H

 
 
 
 

  




 





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C.  Construction of sub-cap of the 126-cap  
126G  

If 6 63n   and 12,16, 33, 35, 41, 44, 50, 55, 61n  , let 

n {1,..., }I n  .If 12,16,35,41,44,45n  , let  1,..., 1, 2nI n n   . 

For n   50, 61 , define  1,2,..., 1, 3nI n n   . And, define 
33I   

{1,2,...,32,37} . For 64 120n  , define '{1,2,...,126}n n
J \I , 

where 126n n    and with  6 ' 63n  . For 6 63n  , denote 

nIG  be the cap  with index  set 
nI , and for 64 120n  , denote 

nJG be the sub-cap of 
126G  with  index  set  

nJ . 

It is easy to check that: for 6 63n  , the sub-cap 
nIG  of 

126G  generates a code [ ,6]n satisfying Lemma 1. Since 
126G  

generates an [ ,6]n  self-orthogonal code, one can deduce the 

sub-cap 
nJG  of 

126G  with index set 
nJ  also satisfies Lemma 1 

for 64 120n  . Thus we have 

Theorem 1 If 6 120n  , there exists [[ , 6, 4; 6]]n n   

maximal entanglement EAQECC. 

4. Construction of EAQECCs from caps in (6,4)PG  

In this section, we will construct maximal entanglement 

EAQECCs with parameters [[ , 7,4;7]]n n  . According to 

Lemma 1, we should firstly construct caps
7 nH H  , such that 

†( ) 7rank HH  and an [ , 7,4]n n   classical codes with parity 

check matrix 
7 nH 

can be obtained. Following we will give out 

the main process in obtaining
7 nH 

. 

A.  Construction of a 252-cap 

Let 
6 126G H   be the cap given in Section 3. Applying 

elementary row operation on
1261

G 
 
 

, we can change it into 

'

1261

G 
 
 

, where 
'

1261

G 
 
 

120 5

5

120 5

1 0 0

0

1 1 1

X Y

 
 

  
 
 

.  Construct:  

'

7 252

126 1260 1

G G
H 

 
  
 

 

Then it is easy to check 
7 252H 

 is a cap and
7 252 7 25

†

2 0H H   . 

B.  Construction of a 288-cap 

Let 17-cap in  3,4PG  be as follows: 

17

1 16

11111111111111110

1 1 002223113121123331

00332130120322110

00012212022011131

H
α α β

 
 

        
 
 

, 

We can construct one 288-cap using method of recursive 

construction [10] from this 17-cap. The 288-cap 7 288H   

consists of three kinds of column vectors:   

    (1) (1, , )T

i jα α ,  (2) (0, , )T T

jβ α ,  (3) (0, , )T T

jα β , 1,...,16i  . 

The numbers of these three kinds of vectors are 256, 16, 16 

respectively.  This cap code and its dual are with weight 

polynomials 
288( ) 1Wt z   202 2031089 270z z  267 271. 90 6.. z z    

and 4

288 1 18( 0) 8625Wt yz    , respectively. 

C.  Sub-caps of the 252-cap and related codes 

If 7 121n  , let 
6 ( 1)nH  

be an ( 1)n  -cap satisfying 

Lemma 1, then the matrix 

' 6 ( 1) 6

1

0
H

0 1

T

n

n

n

H  



 
  
 

 

forms an n  cap, which is a sub-cap of the 252-cap, this 

n  cap satisfies Lemma 1 and gives an [ , 7,4]n n  . As for 

122 126n  , we define 
122 {7,...,128}I  , 

123I  {7,...,128,133} , 

124 {7, ...,130}I  ,
125 {7,...,130,132}I  , and

126 {7, ...,132}I   

respectively.  It is easy to check that the n -cap with index set 

nI  also satisfies Lemma 1 and gives an  [ , 7, 4]n n  for 

122 126n   . If 127 245n  , let 252n n    and  with 

7 126n  , define {1,2, ..., 252}n n'J \ I . For 
7 252H 

 generates a 

self-orthogonal code, we have an n  cap satisfies Lemma 1 

and give an [ , 7, 4]n n  code for127 245n  . 

D.  Sub-caps of 288-cap and codes 

The 288-cap we have obtained in B. doesn't meet the 

demand †( ) 6i irank H H  . Applying a permutation on this 288-

cap, we get a new 288-cap, whose last 42 columns are the sub-

cap of the original 288-cap 
7 288H 

 with index set J , where J  

is the following order set:   

J ={141, 169, 69, 134, 283, 159, 154, 67, 142, 182, 195, 115, 

107, 287, 9, 251, 261, 230, 25, 80, 98, 197, 37, 207, 27, 189, 

146, 222, 206, 256, 253, 97, 201, 59, 5, 211, 148, 138, 257, 

177, 179, 247}. 

Denote the new 288-cap as
288 1 2 246 288( , , ..., , ..., )G      . 

Then define index set 
nI  of sub-cap of 

288G  as follows: 

1) If n =246, or 251  n  256, or 258  n  260, or 

262  n  267, or 269  n  277, or n =280, define 

{1, ..., }nI n ; 

2) If n =247, 248, 250, 257, 278, 279, 281, 283, define 

n {1, ..., 1 1}I n , n+  ; 

3) If n =261, 268, 282, define {1, ..., 1, 3}nI n n    ; 

4) If 249, 276n  , define
249 {1,..., 247, 249, 250}I    and 

276 {1, ..., 275, 276}I  .  

It is easy to check that: for 246 283n  , each sub-cap 

In

G  satisfies Lemma 1 and gives an [ , 7,4]n n   code.  

Summarizing the sub-caps in Step 3 and 4, we have  

Theorem 2 If 7 283n   , there exists [[ , 7,4;7]]n n   

maximal entanglement EAQECC.  

5.  Conclusions 

In this paper, we have constructed maximal entanglement 

EAQECCs from a class of dual codes determined by caps in 

(5,4)PG  and (6,4)PG . However the codes generated by caps 

in (5,4)PG and (6,4)PG  are not always good enough. Hence in 

the future, we may try to seek for families of classical codes 
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with good parameters generated from finite geometries, and 

construct EAQECCs from such code families. 
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