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Abstract 
The foreign exchange market is a chaotic dynamic 
system. We apply the RBF network-based chaotic 
time series prediction on the daily USD/RMB 
exchange rate. We apply the RBF network and phase 
space reconstruction to find the optimal embedding 
dimension in the foreign exchange market from the 
point view of forecasting. We find that the optimal 
embedding dimension is 10. As a result the dimension 
of the attractor of the market is about in the interval 
between 4 and 5. Finally, we use the optimal 
embedding dimension to implement the prediction.  
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1. Introduction 
A chaotic system is a relatively complex behavior 
through the deterministic dynamics of nonlinear 
systems. Deterministic laws make the orbits of the 
system attracted to a complex higher-dimensional 
subset called a strange attractor. The chaotic system is 
sensitivity to initial conditions; points that are 
arbitrarily close initially become exponentially further 
apart with increasing time, leading to the amplification 
of very small perturbations into global uncertainties. 
As a result it is not possible to make accurate long-
term predictions. The importance of studying chaotic 
behavior lies in the fact that chaotic behavior is much 
more widespread, and may even be the norm in the 
real world. Scheindman and Lebaron, Frank and 
Stengos found the chaotic behavior in financial market 
such as stock market, foreign exchange markets and 
futures market [1]-[2].  Chaotic time series prediction 
becomes an extremely important research area and 
obtains widespread application [3]-[4]. The phase 
space reconstruction and embedding theorem proposed 
by Takens supply the theory foundation for nonlinear 
time series prediction [5]. In the phase space 
reconstructed artificial neural networks can deal with 
the mapping relations between the current situation 

and future situation to implement the chaotic time 
series prediction.  

BP (back propagation) neural network is 
universally applied in nonlinear prediction. Since BP 
neural network encounters local minimum, slow 
convergence speed and convergence instability, the 
shortcomings should be overcome by application of 
other new method. Radial basis function network is a 
special type of feed-forward neural network. It has 
received considerable attention recently due to its 
universal approximation properties and simple 
parameter estimation in the field of interpolation 
regression and classification [6]-[7]. Due to its 
nonlinear approximation properties, RBF network is 
able to fit the training data in multidimensional space. 
As a direct consequence, RBF’s properties made them 
attractive for complex prediction in nonlinear 
dynamics systems of financial market [8]. 

In this paper we will apply the RBF network-
based chaotic time series prediction to the foreign 
exchange market in China. The paper is structured as 
follows: in section 2 we describe the method of 
chaotic time series prediction based on RBF network. 
In section 3 we apply the method to the foreign 
exchange market, and obtain the optimal embedding 
dimension in China exchange market. Section 4 gives 
the conclusion. 

2. Chaotic time series prediction 
based on RBF network 

We can not exactly know the attractors of the real 
dynamic system in foreign exchange market. We can 
only observe the exchange rate series, which are 
unable to exhibit the inherent essential character of the 
dynamic system. But in fact, the time series actually 
imply the information and characteristic of other 
variables even the whole system, because the 
evolvement of any subset in the system is determined 
by all other variables. The phase space reconstruction 
can embed one-dimensional time series in higher-
dimensional phase space, and the attractor in the 
original phase space is completely unfolded in the 
reconstructed phase space. If a time series comes from 



a dynamic system that is on an attractor, the 
trajectories constructed from the time series by 
embedding will have the same topological properties 
as the original one. That is to say phase space 
reconstruction enables us to study unobserved 
variables. In reconstructed space we can map the 
relation between current and future situation with 
artificial neural networks. 

2.1. Radial basis function networks 
A standard radial basis function networks are 
embedded into a two-layer feed-forward neural 
network. The network is characterized by a set of 
inputs and a set of outputs. Between the inputs and 
outputs there is a layer of processing units called 
hidden units, each of which implements a radial basis 
function. The nodes in the hidden layer operate on the 
distance from an applied input vector to an internal 
parameter vector, called a center. The response of each 
basis function is a nonlinear function of the distance 
and is radically symmetric about the center. Various 
functions have been tested as activation functions for 
RBF network. In this paper we use the Gaussian 
activation function. The output layer implements a 
weighted sum of hidden-unit outputs. The mapping 
function is given by: 
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for 1, 2,j l= L , where NX R∈ is input N-

dimensional vector, and ( )jp X  is the output of the j-

th units. ijw are the output weights, each 
corresponding to the connection between a hidden unit 
i and an output unit j and n represents the number of 
output units. jμ and jΣ are the mean and the 
covatiance matrix of the jth Gaussian function. 
Geometrically, a radial basis function represents a 
bump in the multidimensional space. In order to model 
such a mapping we have to find the centers of 
Gaussian function, output weights and the number of 
hidden units. Meanwhile we must design the structure 
of the network to improve the generalization 
performance. 

2.2. Phase space reconstruction 
Phase space reconstruction was firstly proposed by 
Packard [9] and was proved by Takens. Let M be a 
compact manifold of dimension d, and the dynamic 
system is defined as / ( )y t G y∂ ∂ = , where ∂  
represents differential operator. ( ) :G ⋅ M M→  is a 

smooth mapping. Let 0y M∈ , there is only solution 

0( , )y t y in dynamic system /y t∂ ∂  ( )G y= passing 

through 0y . Let 0( )t yφ  0( , )y t y= . We define 

:t M Mφ → , t R∀ ∈ , and obviously tφ satisfies: 

(1) 0 ( )y yφ = ， y M∀ ∈ ； 

(2) ( ( )) ( ),t s t sy yφ φ φ += , ,y M t s R∀ ∈ ∀ ∈ . 

Take any time series 0 0{ ( ), ,nT Z Z Mφ ∈  

0,1, 2, ,}n = L in the compact manifold, note tf φ= , 

and the time series can be written as 0{ ( ),nf Z  

0 , 0,1, ,}Z M n∈ = L , or { , }nZ n N∈ , where 

1 ( )n nZ f Z+ = . Let :h M R→  is a observe function, 

we can write down the observation time series{ }nx , 

where 0( ( ))n
nx h f Z= = 1

0( ( ( )))nh f f Z− . Define 

mapping : mM Rϕ → , satisfying ( )Zϕ = 

( ( ), ( ( )),h Z h f Zτ L ( 1)( ( )))mh f Zτ− , where m is the 
embedding dimension, andτ is the time delay. Delay 
vectors nX  can be written as nX = ( )nZϕ = 

( 1)( , , )n n n mx x xτ τ− − −L . 
Takens [5] proved that if the curve is in the 

compact regions of the phase space and the embedding 
dimension satisfy 2 1m d≥ + , and thenϕ  is a one to 

one mapping. The embeddingϕ maps from M to mR , 
and then we can analyze the structure of the trajectory 
of the dynamic system in mR and easily infer 
properties of the actual trajectory on the attractor in 
M . Define a composite function F =  

1 : m mf R Rϕ ϕ− →o o , which satisfies: ( )nF X = 
1( )nf Xϕ ϕ−o o = ( )nf Zϕ o  = 1 1( )n nZ Xϕ + += . So if 

h and f are continuous and differential, then so is ϕ , 
which means the trajectories constructed from the time 
series by embedding will have the same topological 
properties as the original dynamic system.  

2.3. Chaotic time series prediction 
If we find the embedding dimension m , according to 
the method of phase space reconstruction, we can 
reconstruct an m-dimensional phase space from the 
time series { }tp . Let the vector of the phase space 

marked as tP =  2 ( 1)( , , , , )t t t t mp p p pτ τ τ− − − −L . And 

there exists a smooth function : m mF R R→ , 
satisfying 1( )t tF P P+= . We can infer from F a 



function : mf R R→ , satisfying 1 ( )t tp f P+ = . As a 
result choosing the embedding dimension m is very 
important, with which we can predict 1tp + from the 
history data. Takens considered that the sufficient 
condition for embedding dimension is 2 1m d≥ + . 
However, too large embedding dimension needs more 
observations and complex computation. If m is too 
large, chaotic data add redundancy and degrade the 
performance of many algorithms. It is more difficult to 
separate the deterministic system from the signal 
noises in observations [10]. As a result if the original 
attractor has dimension d, then an embedding 
dimension of m = 2d + 1 will be adequate for 
reconstructing the attractor. 

We apply RBF network to find the optimal 
embedding dimension. We construct a RBF network 
to fit the nonlinear function f̂ , which can approximate 

f precisely. Take 1 ( 1)
ˆ ( , , , )t t t t mp f p p pτ τ+ − − −= L  

tε+ . Through the training of the network with the 
sample, we can obtain different ε with different 
dimension m . The noise ε will diminish 
with m increases. Then we can obtain the 
optimal m when tε is minimal.  

3. Application 
We apply the chaotic time series prediction based on 
RBF network to the foreign exchange market in China.  
We take the U.S dollar as basic exchange rate. In the 
following empirical studies, we use the daily 
USD/RMB rate from 7-22-2005 to 3-20-2007. We 
take two steps. In the first step, we apply the RBF 
network and phase space reconstruction to find the 
optimal embedding dimension in the foreign exchange 
market. In the second step, we use the optimal 
embedding dimension to implement the prediction. 

3.1. Optimal embedding dimension 

Let { }tp represents the observable time series of 
exchange rate with t =1，2，…，N, and the time 
delay τ is 1. According to the phase space 
reconstruction, we construct from the original time 
series tp vectors of dimension m, tP =  

1 2 ( 1)( , , , , )t t t t mp p p p− − − −L . 1tp + ＝ ˆ ( )tf P  describe 
the relation between the current state and future rate. 
We take the 1{( , ) :t tP p + 1, 2, , ( 1)}t N m= − −L as 
the training data, and apply RBF network to simulate 
the exchange rate. In our RBF network, there 

are m hidden units and one output unit. Vector tP is the 

inputs, and f̂ is the output. The radial basis function in 
hidden units implement nonlinear computations to 
inputs and the output layer implements a weighted 
sum of hidden-unit outputs. We compare the 
output f̂ with the target output 1tp + , and define the 
mean square error as: 
           2

1
ˆ( ( ) ) /( ( 1))t tMSE f P p N m+= − − −         (2) 

With different embedding dimension m , we can 
obtain different mean square errors. When dimension 
m is optimal when MSE gets minimal. We picture the 
MSE with different embedding dimension m in Fig. 1. 
From the figure it is obviously that the optimal 
embedding dimension is 10 when we apply the 
prediction with RBF network. According to the 
embedding theorem, 2 1m d≥ + , we can know that 
the dimension of the attractor is between 4 and 5 in 
foreign exchange market. 
 

 
Fig. 1: MSE-m relationship. This shows the MSE with 
different embedding dimensions.  

3.2. Prediction with optimal 
embedding dimension 

From the Fig.1, it is obviously that the optimal 
embedding dimension is 10. We can make a 
conclusion that when we take m=10, the error of the 
prediction must be minimal. With the same sample, 
we train the RBF network. The training error is 
depicted in Fig. 2. We use the basic exchange rate 
from 3-21-2007 to 4-11-2007 to test prediction effect. 
And the results are in Table 1. The forecasting results 
are measured by the mean squared error, which is 
0.0345. 
 
 



Date 3-21-2007 3-22-2007 3-23-2007
USD/RMB 

exchange rate 7.7355 7.731 7.7359 

Estimation with 
RBF network 7.7743 7.663 7.7364 

Date 3-26-2007 3-27-2007 3-28-2007
USD/RMB 

exchange rate 7.7393 7.7343 7.7318 

Estimation with 
RBF network 7.728 7.7016 7.7089 

Date 3-29-2007 3-30-2007 4-2-2007 
USD/RMB 

exchange rate 7.7303 7.734 7.731 

Estimation with 
RBF network 7.7313 7.667 7.747 

Date 4-3-2007 4-4-2007 4-5-2007 
USD/RMB 

exchange rate 7.7277 7.7349 7.7268 

Estimation with 
RBF network 7.6898 7.7337 7.7103 

Table 1: Prediction with m=10. 
 

 
Fig. 2: Training error. This shows the training error with 
epochs increase. 

4. Conclusions 
The phase space reconstruction and embedding 
theorem proposed by Takens supply the theory 
foundation for nonlinear time series prediction. In the 
reconstructed phase space artificial neural networks 
can deal with the mapping to implement the chaotic 
time series prediction. Radial basis function network is 
a special type of feed-forward neural network. It has 
nonlinear approximation properties to fit the training 
data in higher-dimensional space and model complex 
mappings. In this paper we apply the RBF network 
and phase space reconstruction on daily USD/RMB 
exchange rate, and find that the optimal embedding 
dimension is 10. As a result the dimension of the 
attractor of foreign exchange market is about in the 

interval between 4 and 5. Therefore, the foreign 
exchange market is a chaotic system, and we must 
take the nonlinear analytical instruments. Finally, we 
use the optimal embedding dimension to implement 
the prediction.  
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