
Weighting Cache Replace Algorithm for Storage
System

Yihui Luo1 2 Changsheng Xie2 Chengfeng Zhang2
1School of mathematics and Computer Science, Hubei University, Wuhan 430062, P.R. China

2National Storage System Laboratory, School of Computer Science, Huazhong University of Science and
Technology, Wuhan 430074, P.R. China

Abstract
Usual cache replace algorithms are based on the
assumption that the high cache hit ratio can bring
lower average access time, which is right as storage
system has the same device access time. By analyzing
the performance of storage system, a conclusion is
drawn that storage system can get lower average
access time only when the cache hit ratios of some
objects with long device access time are higher. Based
on this, some weighting cache replace algorithms such
as Weighting LFU (WLFU), Weighting LRU (WLRU)
and Weighting LFRU (WLFRU) are proposed. These
algorithms are designed to minimize average access
time and algorithm overhead. Experiment proved that
WLFU and WLRU had better performance than usual
algorithms such as LRU, and WLFRU had the best
performance.

Keywords: Cache replace algorithm, Average access
time, Algorithm overhead, Weighting value

1. Introduction
With processor speed increasing dramatically over the
last few years and main memory density doubling
every two years, I/O appetite continues to grow,
especially with the development of applications such
as multimedia and network, which place an ever-
increasing demand on the storage subsystem.
Although the storage device I/O speeds have increased
greatly, it cannot satisfy the demand of computer. As a
result, storage systems become the bottleneck of
computer system and the performance of computer
system is not the optimization. There are many
methods to improve the performance of storage system
and one of the most effective methods is to place a
cache in storage system. The cache devices are usually
fast storage devices but have less capacity, so the
suitable replace algorithms must be used in cache to
improve the performance of storage system.

There are many cache replace algorithms such as
FIFO, LFU, LRU, and some varieties of them. All of
them improve the cache performance by increasing the
cache hit ratio based on the locality of data reference.
Must the higher cache hit ratio bring the better I/O
performance in the storage system? If the speeds of
storage devices are the same in storage system the
conclusion is right. However, storage devices usually
have different I/O speeds in storage system, at the case
the conclusion is no more right, so the usual
algorithms are not the optimization algorithms for the
storage system. Based on this standpoint, we propose a
new cache replace algorithm named Weighting Least
Frequently/Recently Used (WLFRU) algorithm, which
is designed not to increase the cache hit ratio but to
minimize the average access time of the storage
system. In order to do so, WLFRU is designed to
increase the cache hit ratios of objects with longer
device access time, which considers not only I/O
locality but the difference of device access time.

The rest of this paper is organized as the
following: after analyzing the related works, we first
analyze the I/O performance of storage system with
cache, through which we prove that the higher cache
hit ratios doesn’t result to higher I/O speeds, at the
same time, we can get a conclusion that the higher I/O
speeds are obtained only when it is higher to the cache
hit ratios of objects with longer device access time.
Based on the conclusion, we then give the Weighting
Least Frequently Used algorithm (WLFU), Weighting
Least Recently Used algorithm (WLRU) and WLFRU.
Afterwards, we give the experiment to prove our cache
algorithm right. At last, we give a conclusion and the
future work.

2. Related Works
There are many researches about cache replace
algorithm. The algorithm LRU always replaces the
least recently used objects. Various approximations
and improvements to LRU abound, see, for example,
enhanced clock algorithm [1]. If the workload or the

request stream is drawn from a LRU Stack Depth
Distribution (SDD), LRU is the optimal policy. LRU
has several advantages, for example, it is simple to
implement and responds well to changes in the
underlying SDD model. However, while the SDD
model captures “recency”, it does not capture
“frequency”. The algorithm LFU replaces the least
frequently used objects. A relatively recent algorithm
LRU-2 [2] approximates LFU, which remembers the
last two times for each object, when it is requested,
and to replace the object with the least recent
penultimate reference. Algorithms, which consider
both recency and frequency, are Frequency-based
replacement (FBR) [4], Least Recently/ Frequently
Used (LRFU) [5], multi-queue replacement (MQ) [6].
Based on those, an algorithm named Adaptive
Replacement Cache (ARC) was proposed in [7]. The
basic idea behind ARC is to maintain two LRU lists of
objects. One list, say L1, contains objects that have
been seen only once “recently”, while the other list,
say L2, contains objects that have been seen at least
twice “recently”. L1 is thought as capturing “recency”
while L2 capturing “frequency”. Although ARC
captures both frequency and recency, it doesn’t
consider the access cost of objects. Additionally, the
size of L1 is resized very frequently, which may
increase the algorithm overhead.

Ekow Otoo etc gave a replace algorithm for
storage source manager in data grids [4], which
defined a utility function for each object to express its
use status. This function relate to reference frequency,
object size and device access speed, but it has several
drawbacks: it pays almost no attention to recent
history, and does not adapt well to changing access
patterns since it accumulates stale objects with high
frequency counts that may no longer be useful,
moreover, it requires logarithmic implementation
complexity in cache size. Ulrich Hahn etc offered a
replace algorithm called ObjectLRU, which take into
account influence to replace algorithm by various
object properties [8]. This uses a weighting function to
evaluate combinations of object properties, which
provides a more flexible approach. But its weight
values are difficult to select. Furthermore, the cost of
algorithm realization is not low.

3. The Performance Formula of
Storage System

The basal goal is to improve the I/O performance
using cache in storage system. So we first calculate
performance gain of storage system with cache after
describing the model of hierarchical storage system.
With the performance gain, we can get a few of

conclusions that is the base of designing cache replace
algorithm in order to optimize its I/O performance.

3.1. The Model of Hierarchical Storage System

The hierarchical storage system is described as figure
1 that consists of cache and storage devices. The cache
is a small storage device with high speed, which
maybe the server memory or its local disk. The storage
devices include different devices such as disk,
CDROM, tape or other storage devices, which may
have different access speeds. The links between cache
and devices may be bus or network, and their
communication speeds maybe different. If it is
network, its speed may vary as the network load varies.
In order to simplify calculation, we suppose that the
communication time is contained in access time of
devices and the speeds don’t vary with the network
load varies. The access data maybe data blocks or files
in the storage system and their sizes maybe the same
or different, so we call the access data as data object,
which means that their sizes are different.

Storage
device 1

Server

Storage
device 2

Storage
device 3

Cache

Fig 1: The Model of Hierarchical Storage System.

3.2. The Performance Formula of Storage System

The performance gain is defined to be the ratio of
access times without and with cache [8].

cachewithtimeaccess
cachewithouttimeaccessg = (1)

The factors influencing the I/O performance are
the I/O latency of devices, the hit ratio of cache and
data sizes. In order to simplify calculation, we suppose
that data objects have the same sizes. On the
assumption that the accessed data objects are {O1,
O2, … , On}, and their access frequencies are {m1,

m2, …, mn}, the total access frequencies of storage
system is as the following:

∑
=

=
n

i
imM

1
 (2)

Without cache, accessed data comes from
different storage devices, their access time are {t1, t2，
t3，…，tn}, so the total access time is as following:

i

n

i
io tmT ∗=∑

=1
 (3)

If the storage system configures cache, suppose
the cache hit ratios of objects are {p1, p2, …,pn}, the
total cache hit ratio is as following:

 ∑
=

=
n

i
ipP

1
 (4)

Suppose access time of data object in cache is tc,
the total access time with cache is as following:

ii

n

i
ic

n

i
ic tpMmtpMT ∗∗−+∗∗= ∑∑

==

)(
11

 (5)

Thus performance gain is as the following:

∑

∑

∑ ∑

∑

=

=

= =

=

∗

−∗
−

=

∗∗−+∗∗

∗
==

n

i
ii

n

i
cii

n

i

n

i
iiici

n

i
ii

c

o

tm

ttpM

tpMmtpM

tm

T
Tg

1

1

1 1

1

)(
1

1

)(

 (6)

From the formula (6), the following conclusions
are drawn. It is not the high total cache hit ratio but the
high cache hit ratio of the data objects with long
access time from devices that result to high
performance gain. The usual cache replace algorithms
are used to increase the total cache hit ratio, so they
are no more right in the case.

If the access time from different devices is the
same, the formula (6) can express as the following:

i

ci

n

i
ii

n

i
ici t

Ptt

tm

pttM
g

∗−
−

=

∗

∗−∗
−

=

∑

∑

=

=

)(
1

1

)(

)(
1

1

1

1

 (7)
In this case, the higher total cache hit ratio means

the higher I/O performance gain. So the usual cache
replace algorithms such as LFU, LRU and OPT are
based on this conclusion.

4. The Cache Replace Algorithms
There are usually two goals to design cache replace
algorithms, one is to make the cache hit ratio higher to
obtain least access time, and the other is to simplify
the cache algorithms in order to minimize the
overhead [9].

As described in section 3, the usual replace
algorithms are based on the formula (7), so they are
not the optimization algorithms for storage system. In
this section, we propose some algorithms based on the
formula (6), which are designed in order to obtain
least access time but not highest cache hit ratio. In
addition, we also try to simplify the cache replace
algorithms in order to minimize the algorithm
overhead.

4.1. The WLFU algorithm

As described above, the high cache hit ratio of the data
objects with long access time from devices result to
high performance gain. We define a weighting hit ratio
for each object in cache as the following:

iii
i

i pcp
t
tp =∗⎦⎣=′
min

 (8)

Fig 2: The Weighting Least Frequently Used algorithm.

where, tmin is the minimal devices access time, ti

is the object’s device access time, ci is an integer to
express the relative access time of Oi. We use ci to
replace ti in order to make the weighing value simple.
tmin is given as the following: when the first data object
is accessed, its device access time is set as tmin,
afterwards, if the device access time of data objects is
not less than tmin, it is not changed; otherwise, the new
device access time is set as tmin, at the same time, the
weighting hit ratios of all objects in cache are
multiplied by the ratio of old and new tmin. In the case,

Input: The request stream x1, x2, …, xi, …
For every i≥1, the following two cases must
occur.
 Case 1: If i=1 then: tmin=ti
 Otherwise: If ti< tmin then

{k=⎣tmin / ti⎦ and tmin=ti and
 for every Oj in cache pi= pi*k and ci= ci*k}

 Case 2: If xi is in cache
 then: pi=pi+ci and sort the p queue

 Otherwise:
The following two cases must occur.

1: If cache is full then:
delete object with minimal pi

2: ci=⎣ ti / tmin ⎦ and pi=ci
and insert p in queue

the weighting cache hit ratio is used to replace the
cache hit ratio, and the objects having little '

ip in
cache are first replaced, which makes the object with
long device access time in cache long time and
improve its cache hit. So the average access time of
storage system is little according to formula (6).

In order to make algorithm simple, the LFU
algorithm usually replaces hit ratio with frequency, the
WLFU algorithm also use the same technique. The
WLFU algorithm uses a queue to record the weighting
frequency of all objects in cache. If an object is not
accessed in cache, when it is put in cache, its weight
value is calculated and weighting frequency is set as
weight value, at the same time, the tmin may be
changed, and all of the weighting frequency and
weight value maybe renewed. If an object is accessed
in cache, its weighting frequency is added by weight
value. So the WLFU algorithm selects the data object
with the least weighting frequency as the replaced
object when the cache needs storage space to cache
new data object. The WLFU is described as figure 2.

This algorithm is designed based on the
assumption that all data objects have the same size in
storage system, but it is also suited to the storage
system that has different object sizes. As described the
above, all data objects have the same size in storage
system, which means that the device access time is the
ones of unit data object. Although the larger object can
make its weighting frequency increases, it also
impropriates more cache space. So in storage system
with different object sizes, the device access time is
replaced with the ones of unit data object. In the case
the same algorithm is used. As this algorithm is used,
there are many objects that have the same weighting
frequency but different sizes, how to select the
replaced object? Our scheme is to select the large
object to be replaced because the write of large object
can reduce the replace latency.

The following algorithms are also designed for
storage system with same object size, but they are all
suitable to storage system with different object sizes
for the above reasons.

4.2. The WLRU algorithm

The WLFU algorithm captures the notion of frequency,
but it pays almost no attention to recent history, and
does not adapt well to varying access patterns since it
accumulates stale objects with high frequency counts
that may no longer be useful. The WLRU algorithm is
designed to capture recency. In order to design it, we
first have a look at the LRU algorithm. LRU algorithm
uses recency to replace frequency, which can reduce
algorithm overhead. LRU uses a recency stack to
realize object queue, the top object of the LRU stack is
accessed recently and the bottom object is least

recently accessed. LRU selects the object at the
bottom of stack to be replaced as storage system needs
cache space to cache new object.

Fig 3: The Weighting Least Recently Used algorithm.

Considering the device access time different, the
WLRU algorithm gives a weight value ki to the
recency of each object. Precisely, if some object has
long device access time, its recency is multiplied by a
small weight value; otherwise, its recency is
multiplied by a big weight value. ki is integer
calculated as (9).

iii
i

i rkr
t

tr =∗⎦⎣=′ max (9)

In order to make a queue with weighted recency,
WLRU set a window at the top of the LRU stack. In
the window, the new object can insert anywhere; out
the window, the order of objects is no changed unless
some objects are deleted. The window size is set as the
integer ratio of the maximal and the minimal device
access time. When an object is first put in cache, its
device access time is recorded as both the maximal
and the minimal device access time and the window
size is set as 1. Afterwards, when some new object is
put in cache, if its device access time is more(or less)
than the maximal(or minimal) device access time, the
maximal(or minimal)is set as the now device access
time and the window size value is renewed, otherwise
the window size value is not changed.

Input: The request stream x1, x2, …, xi, …
Initialization: window=1
For every i≥1, The following four cases must

occur.
 Case 1: If i=1 then: tmin=tmax= ti
 Otherwise: one and only one of the following

two cases must occur.
1: If ti< tmin then tmin=ti

 2: If ti> tmax then for every Oj in cache,
kj= kj*⎣ti / tmax⎦ and tmax=ti

 Case 2: k=⎣tmax / tmin⎦ and if k>window then
window=k

 Case 3: If xi isn’t in cache then: The following two
cases must occur.

1: If stack is full then: delete object at the
bottom of stack and replace the object in
cache

2: ki=⎣tmax / ti⎦
 Otherwise: delete xi in the stack
Case 4: If the ki tier is not empty then move all

seriate Oj, whose local≥ki, down to the
next tier

 Put xi in the ki tier of the stack

The WLRU algorithm is realized with a stack as
figure 3. Case 1 is used to revise the maximal and
minimal device access time. At the same time, the
weight values of all objects in cache are renewed if the
maximal device access time is revised. Case 2 changes
the size of the window as the maximal/minimal device
access time is revised. Case 3 deletes hit object or
replace the weighting least recently access object in
the stack. Case 4 inserts recently access object in the
window according to weight value.

4.3. The WLFRU algorithm

The WLFU algorithm captures frequency and the
WLRU algorithm captures recency, which utilize one
part of I/O locality to improve the performance of
storage system. The WLFRU algorithm is a
comprehensive one that uses both frequency and
recency to select the replaced object.

Fig. 4: The Least Frequently/Recently Used algorithm.

In order to utilize the frequency locality, we use
two variable-sized stacks Q1 and Q2 to record the
history of the cached object. The first holds objects
that have been accessed only once recently and the
second holds objects that have been accessed at least
twice recently, so the objects in Q1 (or Q2) may be
least (or frequently) accessed. In order to utilize the
recency locality, objects in both Q1 and Q2 are
organized according to the WLRU. Suppose the cache
size is C and the maximal size of Q1 is L, Q1 and Q2
satisfy the following:

0≤|Q1|≤L，0≤|Q2|≤C，0≤|Q1|+|Q2|≤C
L is continually revised in order to improve the

utility of cache, at the same time it can reduce

jouncing in Q1. For example, if some objects are
continually accessed in cycle and the size of Q1 is less
than the total size of those objects, objects are
frequently replaced and the cache hit is 0. In the case,
L must be increased. However, if L is too big, Q2 is
small, which may result to objects frequently accessed
to be replaced. The algorithm revises L according to
the accumulating integer k. k is set as 0 at the
beginning, and it increase (or decrease) as a
replacement is taken place in Q1 (or Q2). L is changed
only when k is accumulated to some value (such as
10), which can reduce the revising of L.

The WLFRU algorithm is described as figure 4. L
is set with C/2 at beginning, which can reduce L’s
revising. In case 1, cache hit takes place, the hit object
is inserted in Q2 according to WLRU. In case 2, cache
miss takes place, the object is inserted in Q1 according
to WLRU. Cache replace may take place in case 2. If
|Q1|=L, replace takes place in Q1 regardless cache
being full or not, so k increases, at the same time, L
may increase as k is more than a threshold. If |Q1|<L
and |Q1|+|Q2|=C, which means that L is too big, so
cache replace takes place in Q2 and k is reduced to
reduce L.

5. Experiment and Results
Cache hit ratio is usually used to evaluate the
performance of cache, which shows how cache can
reduce device I/O. However, as described above, the
higher cache hit ratio doesn’t mean the less average
access time in storage system. Thus we use average
access time to evaluate the performance of storage
system. At the same time, we also measure cache-hit
ratios to compare it with average access time.

We used Disksim simulator, which was
developed by Carnegie Mellon University, to simulate
cache storage system. Disksim is an efficient, accurate
and highly configurable disk system simulator
developed to support research into various aspects of
storage subsystem architecture [10]. Disksim contains
a cache module that can simulate cache replace
algorithms such as LRU, and we have programmed to
realize algorithms such as WLFU, WLRU and
WLFRU. We used the synthetic traces contained in
Disksim to simulate those algorithms in order to
compare their performance.

The storage system configured two disks. The
average device access time was constant but the ratio
of device access time was set as 1, 4 and 16. We
measured both cache hit ratios and average response
time of storage system with LRU, WLFU, WLRU, and
WLFRU. The cache hit ratios are shown as the figure
5, WLFU and WLRU have cache hit ratio as much as
LRU, and WLFRU has the highest cache hit ratio.

Input: The request stream x1, x2, …, xi, …
Initialization: L=C/2, window1= window2=1, k=0
For every i≥1, one and only one of following two

cases must occur.
Case1: xi is in Q1 or Q2: Cache hit, insert xi

according to WLRU in Q2
Case2: xi is neither in Q1 nor in Q2, Cache miss.

One and only one of following two cases
must occur.

 1: |Q1|=L, then
a) Replace the WLRU object with xi in

Q1, and k=k+1
 b) if k>10 then L=L+1
 2: |Q1|<L, then

a) If |Q1|+|Q2|=C, then delete the
WLRU object in Q2, and k=k-1

b) Insert xi according to WLRU in
Q1

c) If k<-10 then L=L-1

Since WLRU and WLFU enhance the hit ratios of
some objects with more device access time while
reduce the hit ratios of some objects with less device
access time, it doesn’t improve cache hit ratio compare
to LRU. However, WLFRU uses both frequency and
recency to capture locality, so its cache hit ratio is
higher than the two ones.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

1 4 16

The Ratio of Device Access Time

C
a
c
h
e

Hi
t

R
a
t
i
o

LRU WLFU WLRU WLFRU

Fig. 5: The cache hit ratios vary with varying of device

access time.

0

5

10

15

20

25

30

1 4 16

The Ratio of Device Access Time

A
ve

ra
ge

 A
c
ce

ss
 T

im
e

(
ms

)

LRU WLFU WLRU WLFRU

Fig. 6: The average access time vary with varying of device

access time.

The average response times of storage system are
described as figure 6, WLRU and WLFU have less
average response time than LRU and the WLFRU has
the least average response time. This is because
WLFU, WLRU and WLFRU consider not only access
locality but also the difference of device access time.

6. Conclusions and the Future Work
Configuring cache in storage system is an effective
means to improve its performance. Considering the

effect of device access time, the higher cache hit ratio
doesn’t mean the less average access time. Based on
this conclusion, we propose WLFU, WLRU and
WLFRU algorithm, which consider not only the I/O
locality but also the device access time, so they have
higher performance than usual algorithm. However,
these algorithms don’t consider the effect of network
bandwidth and I/O load. Additionally, in WLFRU
algorithm, although we use accumulated k to revise L,
how to select the threshold with I/O load varying is
not considered. In the future, we will research on
cache replace algorithms adapted to the varying of
network bandwidth and I/O load. We also plan to
improve WLFRU algorithm to make it suit to different
I/O load. Additionally, the cache algorithms about
distributed cache and cooperation cache are our goal.

Acknowledgement
This work is partially supported by National Nature
Science Foundation of China (Grant No. 60273073).

References
[1] W. R. Carr and J. L. Hennessy, WSClock – a

simple and effective algorithm for virtual
memory management. Proc. 8th Symp. Operating
System Principles, pp. 87–95, 1981.

[2] E. J. O’Neil, P. E. O’Neil, and G. Weikum, “An
optimality proof of the LRU-K page replacement
algorithm,” J. ACM, 46: 92–112, 1999.

[3] J. T. Robinson and M. V. Devarakonda, “Data
cache management using frequency-based
replacement,” in Proc. ACM SIGMETRICS Conf.,
pp. 134–142, 1990.

[4] Ekow Otoo, Frank Olken and Arie Shoshani.
Disk Cache Replacement Algorithm for Storage
Resource Managers in Data Grids. Proceedings of
the IEEE/ACM SC2002 Conference, November,
2002.

[5] D. Lee, J. Choi, J.-H. Kim, S. H. Noh, S. L. Min,
Y. Cho, and C. S. Kim, “LRFU: A spectrum of
policies that subsumes the least recently used and
least frequently used policies,” IEEE Trans.
Computers, 50:1352–1360, 2001.

[6] Y. Zhou and J. F. Philbin, “The multi-queue
replacement algorithm for second level buffer
caches,” in Proc. USENIX Annual Tech. Conf.
(USENIX 2001), Boston, MA, pp. 91–104, June
2001

[7] N. Megiddo and D. S. Modha. ARC: A self-tuning,
low overhead replacement cache. In Proceedings
of the Second USENIX Conference on File and

Storage Technologies (FAST), pages 115–130,
San Francisco, CA, Mar. 2003.

[8] Ulrich Hahn, Werner Dilling, Dietmar Kallta.
Improved Adaptive Replacement Algorithm for
Disk Caches in HSM Systems. IEEE Symposium
on Mass Storage Systems, March, pp. 128-140,
1999.

[9] Aameek Singh etc. A Hybrid Access Model for
Storage Area Networks. Proceedings of the 22nd
IEEE/13th NASA Goddard Conference on Mass
Storage Systems and Technologies (MSST 2005).

[10] John S. Bucy etc. the DiskSim Simulation
Environment Version three Reference Manual.
School of Computer Science, Carnegie Mellon,
2003.

