
 

 

 

 
 

A Note on a Characterization of Gompertz-Verhulst Distribution 

 

 

M. Ahsanullah

1

, M. Shakil

2

 and B. M. Golam Kibria

3 

  
1

Department of Management Sciences, Rider University, Lawrenceville, NJ 08648, USA 

2

M. Shakil, Department of Mathematics, Miami Dade College 

Hialeah Campus, Hialeah, Fl 33012, USA 

3

B. M. Golam Kibria, Department of Mathematics and Statistics 

Florida International University, University Park, Miami, FL 33199, USA 

 

ahsan@rider.edu, mshakil@mdc.edu, kibriag@fiu.edu 

 

 

 

  
  

 

Abstract 
 

Characterization of a probability distribution plays an important role in probability and statistics. 
This paper considers a new characterization of Gompertz-Verhulst distribution. It is hoped that 
the findings of the paper will be useful for researchers in different fields of applied sciences. 
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1. Introduction 
 
This section discusses Gompertz-Verhulst distribution and some of its properties. 
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Gompertz-Verhulst Distribution: A continuous random variable X  is said to have Gompertz-
Verhulst (or G-V) distribution if its distribution function )(xF

 is given by 
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 0  , and positive reals 
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 and 


. The above model was used by Gompertz 
and Verhulst to compare known human mortality tables and to represent population growth, see 
Gompertz [8] and Verhulst [14, 15, and 16]. Further, Ahuja and Nash [2] studied some 
generalization of Gompertz-Verhulst distribution in their paper, known as the generalized 
Gompertz-Verhulst distribution, by introducing an additional parameter and made a study of the 
limiting distributions as the parameters of generalized Gompertz-Verhulst distributions tend to 
zero or infinity. Besides discussing some properties of the generalized Gompertz-Verhulst 
distribution, they showed that, by a simple transformation, the Gompertz-Verhulst distribution is 
related to the Pearson’s distributions of types III, VI, and I. For detrails, the interested readers are 
referred to Ahuja and Nash [2], and references therein. Also, see Ahuja [3], where the 
distribution of the difference of two independent generalized Gompertz-Verhulst random 
variables is considered. The probability density function (pdf) f(x) is given by  
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The Figure 1.1 gives the pdf’s )(xf  for , )red(3,2,1    (green) 30.5, 1,   , 
and ).black(4,2,1  
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Figure 1.1 PDFs  
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Characterization of Gompertz-Verhulst Distribution 
 

The pdf of Gompertz-Verhulst distribution can take different shapes. It is unimodal for 


> 1 and 
reversed `J' shaped for 1 . Further, the density function of Gompertz-Verhulst distribution is 
log-convex if  1   and log-concave if 1 . Also, it has an increasing or decreasing hazard 
function if  



  > 1 or  


  < 1 respectively and for 


 = 1, the hazard function is constant. 

The reverse hazard rate 
)(
)()(

xF

xf

x   of Gompertz-Verhulst distribution (1.1) is given by 
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Note that, the exponentiated exponential (EE) distribution, also known as the generalized 
exponential distribution, as described below, is a particular case of Gompertz-Verhulst 
distribution (1.1), when 1 . For distributional properties of the EE distribution, the interested 
readers are referred to Nadarajah [11], and Nadarajah and Kotz [12], among others.  
 
A random variable X  is said to have the EE distribution if its cdf )(1 xF

 is given by  
 
                                  

 



 )exp(1)(1 xxF 

                                                                           (1.2)                                                                
 
for  0x

 ,  0   and  0  , which is the 
th

 power of the cdf of the standard exponential 
distribution, which is obviously a particular case of Gompertz-Verhulst distribution (1.1) when  

1 .  
 
The corresponding probability density function (pdf) )(1 xf

 of the EE distribution (1.2) is given 
by 
  
                                  )exp()(1 xxf    

1)exp(1 
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,                                                   (1.3) 
 
where 



 and 


 are the shape and scale parameters respectively. Also, it should be noted that 
Gompertz-Verhulst distribution (1.1) belongs to the family of  

F

 distributions (see Shakil and  
Ahsanullah [13]).    
 

Moments and Variance of the Gompertz-Verhulst Distribution: The first and second 
moments (about the origin) and variance of the random variable 

X

 with cdf (1.3) are given 
below: 
 
First Moment (about the origin): We have 
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Taking  



 )exp(1 xu 

, we have  
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where  .   denotes psi (or digamma) function, see Gradshteyn and Ryzhik [9]. 
 
Second Moment (about the origin): We have 
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Characterization of Gompertz-Verhulst Distribution 

 
Thus 
  

    Var(X) = ))1(')1('(1
2  



.                    

 
2. A Characterization of Gompertz-Verhulst Distribution 

 
Characterization of a probability distribution plays an important role in probability and statistics. 
Before a particular probability distribution model is applied to fit the real world data, it is 
necessary to confirm whether the given probability distribution satisfies the underlying 
requirements by its characterization. A probability distribution can be characterized through 
various methods (see, for example, Ahsanullah et al. [1], among others). In recent years, there 
has been a great interest in the characterizations of probability distributions by truncated 
moments. For example, the development of the general theory of the characterizations of 
probability distributions by truncated moment began with the work of Galambos and Kotz [4]. 
Further development on the characterizations of probability distributions by truncated moments 
continued with the contributions of many authors and researchers, among them Kotz and 
Shanbhag  [10], Glänzel [5, 6], and Glänzel et al. [7], are notable. However, most of these 
characterizations are based on a simple relationship between two different moments truncated 
from the left at the same point. It appears from literature that no attention has been paid on the 
characterizations of Gompertz-Verhulst distribution by using truncated moment. As pointed out 
by Glänzel [5], these characterizations may also serve as a basis for parameter estimation.  
 
In this paper, we present a new characterization of Gompertz-Verhulst distribution by using the 
truncated moment. For this, we have considered a product of reverse hazard rate and another 
function of the truncated point, as proved in Theorem 2.1 below. 
 
Theorem2.1 

 

Suppose that 
X

 is an absolutely continuous (with respect to Lebesgue measure) random variable 
with cdf )(xF and pdf )(xf . We assume   0|inf  xFx
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and  
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To prove the theorem, we need the following lemma 2.1.  
 

Lemma 2.1  

 

Suppose that X  is an absolutely continuous (with respect to Lebesgue measure) random variable 
with cdf )(xF

and pdf )(xf

. We assume   0|inf  xFx
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Proof of Lemma 2.1  
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Differentiating both sides of the above equation with respect to 

x

, we obtain 
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On simplification, we get 
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Integrating the above equation, we obtain 
 

         ,)( )(
)('







x

du

ug

ugu

cexf

  
  
where 

c

 is determined such that 
  

  .1)(








dxxf

. 

 
Proof of Theorem 2.1 

 
Suppose  
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We will prove here the only if condition. 
 
Suppose that 
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then 
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On integrating the above equation, we  
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This completes the proof of Theorem 2.1. 
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3. Concluding Remarks 

 

Characterization of a probability distribution plays an important role in probability and statistics. 
Before a particular probability distribution model is applied to fit the real world data, it is 
necessary to confirm whether the given probability distribution satisfies the underlying 
requirements by its characterization. A probability distribution can be characterized through 
various methods. In this paper, a new characterization of Gompertz-Verhulst distribution has 
been established. For this, we have considered a product of reverse hazard rate and another 
function of the truncated point. For the sake of completeness, some distributional properties of 
Gompertz-Verhulst distribution have also been discussed.  It is hoped that the findings of this 
paper will be useful for the practitioners in various fields of studies and further enhancement of 
research in the field of distribution theory and its applications. 
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