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We study some mathematical properties of the Kumaraswamy modified Weibull distribution pioneered by
Cordeiro et al. [4] not discussed by these authors. This model is quite flexible for analyzing positive data since
it contains as special models some widely-known distributions, such as the Kumaraswamy Weibull, generalized
modified Weibull, exponentiated Weibull, modified Weibull and Weibull distributions, among several others.
The beauty and importance of this distribution lies in its ability to model both monotone and non-monotone
failure rates that are quite common in lifetime problems and reliability. We derive a useful power series for
the quantile function. Various new explicit expressions are derived for the asymptotes and shapes, skewness
and kurtosis based on the quantile function, the ordinary, incomplete and factorial moments, generating func-
tion, and Bonferroni and Lorenz curves. We verify the performance of the maximum likelihood estimates of
the model parameters by Monte Carlo simulation. The current model is modified to cope with possible long-
term survivors in the data. An application is presented to show the potentiality of this model. A multivariate
generalization is proposed.

Keywords: Cure rate model; Kumaraswamy distribution; Maximum likelihood estimation; Modified Weibull
distribution; Multivariate generalization.

1. Introduction

The statistics literature is filled with hundreds of lifetime distributions. Recent developments focus
on new techniques for building meaningful lifetime distributions. New extensions of the Weibull
distribution were proposed to model bathtub-shaped failure rate since the Weibull distribution is
not adequate for modeling phenomenon with non-monotone failure rates. Among these, we cite the
exponentiated Weibull (EW) (Mudholkar et al., [11]), the additive Weibull (Xie and Lai, [15]), the
extended Weibull (Xie et al., [16]) and the modified Weibull (MW) (Lai et al., [9]) distributions.
The probability density function (pdf) of the three-parameter modified Weibull (MW) distribution
(Lai et al., [9]), say MW(α,γ,λ ), is given by

g(x) = α xγ−1 (γ +λx) exp [λx−αxγ exp(λx)] , x > 0, (1.1)

where α > 0 controls the scale of the distribution, γ > 0 controls its shape and λ ≥ 0 is a kind of
accelerating factor in the imperfection time and it works as a factor of fragility in the survival of
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the individual when the time increases. The cumulative distribution function (cdf) corresponding to
(1.1) is given by

G(x) = 1− exp [−αxγ exp(λx)] . (1.2)

Providing a broader class of distributions is always precious for statisticians. Cordeiro et al. [4]
proposed the five-parameter Kumaraswamy modified Weibull (KwMW) distribution which seems to
be superior over the MW model for certain applications. A first positive point of this distribution
is that it includes the MW model as a basic exemplar. A second one is that it includes as special
cases some important lifetime models. The justification for the practicability of this model is based
on its flexibility in accommodating bathtub-shape and unimodal forms of the hazard rate function
(hrf). In this paper, we study some mathematical properties of the KwMW model not investigated
by Cordeiro et al. [4] with the hope that it will attract wider applications in reliability, engineering
and in other areas of research.

The cdf of the KwMW distribution (for x > 0) is given by

F(x) = 1−{1− [1− exp{−αxγ exp(λx)}]a}b, (1.3)

where α > 0, γ > 0, λ ≥ 0, a > 0 and b > 0. The pdf corresponding to (1.3) reduces to

f (x) = abα (γ +λx)xγ−1 exp [λx−αxγ exp(λx)] [1− exp{−αxγ exp(λx)}]a−1

×{1− [1− exp{−αxγ exp(λx)}]a}b−1. (1.4)

Hereafter, a random variable X with pdf (1.4) is denoted by X ∼ KwMW(a,b,α,γ,λ ).
The KwMW density function (1.4) allows for greater flexibility of its tails and can be widely

applied in many areas of engineering and biology. We study the structural properties of this dis-
tribution because it extends some important distributions previously considered in the literature.
In fact, for λ = 0, it reduces to the Kumaraswamy Weibull (KwW) distribution. If b = 1, it gives
the generalized modified Weibull (GMW) distribution. If γ = 1, in addition to λ = 0, it yields the
Kumaraswamy exponential (KwE)distribution. If a = 1, in addition to b = 1, we obtain the mod-
ified Weibull (MW) distribution. For b = 1, in addition to λ = 0, it gives the generalized Weibull
(GW) distribution. This model is also known as the exponentiated Weibull (EW) distribution. If
γ = 1, in addition to b = 1 and λ = 0, it yields as special case the generalized exponential (GE)
distribution. For γ = 2, in addition λ = 0 and b = 1, it reduces to the generalized Rayleigh (GR)
distribution. In Figure 1, we display some special models of the KwMW distribution, where the
well-known sub-models not defined before are: the Kumaraswamy modified Rayleigh (KwMR),
Kumaraswamy modified exponential (KwME), generalized modified Rayleigh (GMR), general-
ized modified Weibull (GMW), generalized modified exponential (GME), Kumaraswamy Rayleigh
(KwR), modified Rayleigh (MR), modified exponential (ME), Rayleigh (R), Weibull (W) and expo-
nential (E) distributions. This generalization is obtained by increasing the number of parameters
compared to previously used distributions, this increase being the price to pay for adding more flex-
ibility to the distribution. A further positive aspect of the KwMW model provides more flexibility
for modeling skewed data.

The hrf of X is given by

h(x) = abα (γ +λx)xγ−1 exp [λx−αxγ exp(λx)] [1− exp{−αxγ exp(λx)}]a−1

×{1− [1− exp{−αxγ exp(λx)}]a}−1, (1.5)
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Fig. 1. Relationships of the KwMW special models.

respectively. Plots of the functions (1.4) and (1.5) for selected parameter values are given Cordeiro
et al. [4].

Further, Cordeiro et al. [4] demonstrated that the KwMW density function can be expressed as
a mixture of generalized modified Weibull (GMW) (Carrasco et al., [3]) densities. This is an impor-
tant result to provide some structural properties of the KwMW model directly from those GMW
properties. Unless otherwise stated, all the results derived in the paper are original. The rest of the
paper is outlined as follows. In Section 2, we define the asymptotes and shapes. A useful expansion
for the pdf of X is reviewed in Section 3. A range of new KwMW structural properties is considered
in Sections 4 to 7. These include quantile moments, a power series for the quantile function, alter-
native explicit expressions for the ordinary, central, factorial and incomplete moments, cumulants,
Bonferroni and Lorenz curves and generating function. For the first time, in Section 8, we propose
the KwMW mixture model for survival data with cure fraction. In Section 9, we perform a simula-
tion study for this broader class of distributions. An application to real data set in Section 10 shows
the potentiality of the current model. A bivariate generalization of the KwMW model is presented
in Section 11. Finally, some conclusions are addressed in Section 12.

2. Asymptotes and shapes

The asymptotes of equations (1.3), (1.4) and (1.5) as x → 0, ∞ are given by

F(x)∼ a [1− exp{−αxγ exp(λx)}]a as x → 0,

1−F(x)∼ {1− [1− exp{−αxγ exp(λx)}]a}b as x → ∞,

f (x)∼ abα xγ−1(γ +λx)exp{λx−αxγ exp(λx)}[1− exp{−αxγ exp(λx)}]a−1 as x → 0,

f (x)∼ abα xγ−1(γ +λx)exp{λx−αxγ exp(λx)}{1− [1− exp{−αxγ exp(λx)}]a}b−1 as x → ∞,
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h(x)∼ abα xγ−1(γ +λx)exp{λx−αxγ exp(λx)}[1− exp{−αxγ exp(λx)}]a−1 as x → 0,

h(x)∼ abα xγ−1(γ +λx)exp{λx−αxγ exp(λx)}{1− [1− exp{−αxγ exp(λx)}]a}−1 as x → ∞.

3. A useful expansion

For b > 0 real, Cordeiro et al. [4] demonstrated that the density function of X can be expressed as

f (x) =
∞

∑
s=0

bs gs(x), (3.1)

where the coefficient bs is given by

bs =
∞

∑
r=s

(−1)s (r+1)dr

(s+1)

(
r
s

)
. (3.2)

and

gs(x) = (s+1)α xγ−1 (γ +λx) exp [λx−α(s+1)xγ exp(λx)]

denotes the density function of the MW((s+1)α,γ,λ ) distribution. Equation (3.1) reveals that the
KwMW density function can be expressed as a linear combination of MW densities. Clearly, some
mathematical properties of the KwMW distribution can be obtained directly from those properties
of the MW distribution. If b is an integer, the index i in equation (3.1) stops at b−1.

4. Quantile function

Let x = Q(u) be the quantile function of X . Cordeiro et al. [4] demonstrated that

Q(u) =
∞

∑
i=1

ai
(
−α−1 log

{
1− [1− (1−u)1/b]1/a})i/γ

, (4.1)

where

ai =
(−1)i+1ii−2

(i−1)
(λ/γ)i−1.

A sample from the KwMW distribution may be obtained by applying its quantile function to a
sample from a uniform distribution. Further, we can obtain the median, quantiles 25 and 75 by
replacing 0.5, 0.25 and 0.75 in equation (4.1), respectively.

The shortcomings of the classical kurtosis measure are well-known; see Seier and Bonett [13]
and Brys et al. [2]. There are many heavy-tailed distributions for which this measure is infinite, so it
becomes uninformative precisely when it needs to be. Indeed, our motivation to use quantile-based
measures stemmed from the non-existence of classical kurtosis for many distributions. The effect
of the shape parameters a and b on the skewness and kurtosis of the KwMW distribution can be
based on quantile measures. One of the earliest skewness measures to be suggested is the Bowley
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Fig. 2. Bowley skewness and Moors kurtosis of the KwMW distribution as a function of a for some values of b.
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Fig. 3. Bowley skewness and Moors kurtosis of the KwMW distribution as a function of b for some values of a.

skewness (Kenney and Keeping, [8]) defined by

B =
Q(3/4)+Q(1/4)−2Q(1/2)

Q(3/4)−Q(1/4)
.

On the other hand, the Moors kurtosis is based on octiles and given by

M =
Q(7/8)−Q(5/8)+Q(3/8)−Q(1/8)

Q(6/8)−Q(2/8)
.

The measures B and M are less sensitive to outliers and they exist even for distributions without
moments. Figures 2 and 3 display the plots of the measures B and M as functions of a and b for some
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parameter values of the KwMW distribution, respectively. The plots indicate that these measures can
be very sensitive on both shape parameters, thus indicating the importance of this distribution.

5. Power series for the quantile function

When the function Q(u) does not have a closed-form expression, as is the case of the KwMW model,
it can usually be written in terms of a power series. Here, we propose new explicit expressions for the
moments and generating function of the KwMW distribution using a power series for the quantile
function x =Q(u) = F−1(u) of X obtained by inverting (1.3) with easily computed linear recurrence
equation for its coefficients.

We consider an identity of Gradshteyn and Ryzhik ( [6], Section 0.314)) for a power series
raised to any j positive integer (

∞

∑
i=0

ai xi

) j

=
∞

∑
i=0

c j,i xi, (5.1)

where the coefficients c j,i (for i = 1,2, . . .) are easily obtained from the recurrence equation

c j,i = (ia0)
−1

i

∑
l=1

[l( j+1)− i]al c j,i−l (5.2)

and c j,0 = a j
0. Equations (5.1) and (5.2) are used throughout this paper. The coefficients c j,i can be

given explicitly in terms of the ai’s, although it is not necessary for programming numerically our
expansions in any algebraic or numerical software.

Setting t = xγ exp(λx), we can express x in terms of t by (Cordeiro et al., [4])

Q(u) =
∞

∑
i=1

ai t i/γ , (5.3)

where the ai’s are given in the previous section. Considering this substitution and inverting (1.3),
we can write

t =−α−1 log
{

1− [1− (1−u)1/b]1/a
}
. (5.4)

By expanding (5.4), we obtain

t =−α−1 log

(
1−

∞

∑
j=0

v j u j

)
, (5.5)

where v j = ∑∞
i=0(−1)i+ j

(1/a
i

)(i/b
j

)
.

In Appendix A, based on equations (5.3) and (5.5) and other expansions, we demonstrate that
the quantile function of X admits a power series given by

Q(u) =
∞

∑
j=0

h j u j, (5.6)

where the basic quantities cr, j, p j and gr, j are defined in Appendix A, h j = ∑∞
i=1 ∑∞

r=0 ai gr,i qr, j,
qr, j = ( j p0)

−1 ∑ j
m=1 [m(r+1)− j] pm cr, j−m (for j ≥ 1) and cr,0 = pr

0.
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Equation (5.6) is the main result of this section. We can derive from this equation alternative
explicit expressions for the ordinary and incomplete moments, generating and characteristic func-
tions and other statistical measures for the KwMW model.

6. Moments

6.1. Ordinary, central and factorial moments

The moments of the X can be calculated from an infinite weighted linear combination of MW
moments (Cordeiro et al., [4]). Here, we provide an alternative explicit expression for µ ′

r = E(X r)

based on the quantile power series. We can write from (5.6)

µ ′
r =

∫ ∞

0
xr f (x)dx =

∫ 1

0

(
∞

∑
j=0

h j u j

)r

du,

and then using (5.1) and (5.2), we obtain

µ ′
r =

∞

∑
j=0

vr, j

( j+1)
, (6.1)

where the quantities vr, j (for j = 1,2, . . .) are easily determined from the recurrence equation

vr, j = (ih0)
−1

j

∑
m=1

[m(r+1)− j]hm vr, j−m,

and vr,0 = hr
0. We compare the numerical moments from equation (6.1) using a Mathematica script

with those calculated by direct integration of the density function (1.4) for several choices of param-
eters. In all cases, the two methods are in good agreement by taking 20 terms in (6.1). Plots of the
skewness and kurtosis when α = 1.1, γ = 0.9 and λ = 0.2 for some choices of a as function of
b and for some choices of b as function of a are displayed in Figures 4 and 5, respectively. These
plots indicate different behavior in terms of variation of the parameters a and b from those quantile
moments presented in Section 4.

The central moments (µr) and cumulants (κr) of X can be determined from (6.1) as

µr =
r

∑
k=0

(−1)k
(

r
k

)
µ ′r

1 µ ′
r−k and κr = µ ′

r −
r−1

∑
k=1

(
r−1
k−1

)
κk µ ′

r−k,

respectively, where κ1 = µ ′
1. Thus, κ2 = µ ′

2 − µ ′2
1 , κ3 = µ ′

3 − 3µ ′
2µ ′

1 + 2µ ′3
1 , κ4 = µ ′

4 − 4µ ′
3µ ′

1 −
3µ ′2

2 +12µ ′
2µ ′2

1 −6µ ′4
1 , etc. The skewness γ1 = κ3/κ3/2

2 and kurtosis γ2 = κ4/κ2
2 can be calculated

from the third and fourth standardized cumulants. The rth descending factorial moment of X is

µ ′
(r) = E[X (r)] = E[X(X −1)×·· ·× (X − r+1)] =

r

∑
n=0

s(r,n)µ ′
n,

where s(r,n) = (n!)−1[dnx(r)/dxn]x=0 is the Stirling number of the first kind.

6.2. Incomplete moments

The rth incomplete moment of X is defined by mr(y) = E(X r | X < y) =
∫ y

0 xr f (x)dx. Here, we
propose two methods to calculate the KwMW incomplete moments. The first method is based on
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Fig. 4. KwMW skewness as functions of b and a for fixed values of the other parameter.
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Fig. 5. KwMW kurtosis as functions of b and a for fixed values of the other parameter.

the quantile power series. We can write from (5.6)

µr(y) =
∫ y

0
xr f (x)dx =

∫ F(y)

0

(
∞

∑
j=0

h j u j

)r

du,

and using similar algebra for the ordinary moments, we obtain

µr(y) =
∞

∑
j=0

vr, j F(y) j+1

( j+1)
, (6.2)

where F(y) is given by (1.3).
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The second method requires more algebra and follows from the linear combination (3.1)

mr(y) =
∞

∑
j=0

b j tr( j), (6.3)

where tr( j) =
∫ y

0 xr g j(x)d(x) denotes the rth MW incomplete moment under the parameters ( j+
1)α , γ and λ given by

tr( j) = ( j+1)α
∫ y

0
xr+γ−1 (γ +λx) exp(λx)exp{−( j+1)αxγ exp(λx)}dx. (6.4)

Let z = xγ exp(λx). We can invert this equation to obtain x in terms of z (when both λ and γ are
positive) as

x =
γ
λ

F

(
λ z1/γ

γ

)
, (6.5)

where

F(w) =
∞

∑
k=1

(−1)k+1 kk−2 wk

(k−1)!
.

Further, we can express x in terms of z from equation (6.5) by

x =
∞

∑
k=1

pk zk/γ ,

where pk = γ λ k ak/(λγk) and ak were defined in Section 5.
Changing the variable x by z, the integral in (6.4) becomes

I j =
∫ yγ exp(λy)

0

(
∞

∑
k=1

pk zk/γ

)r

exp{−( j+1)αz}dz.

We can write (
∞

∑
k=1

pk zk/γ

)r

=
∞

∑
k1,...,kr=1

Ak1,...,kr zsr/γ ,

where Ak1,...,kr = ak1 . . .akr and sr = k1 + . . .+ kr. So, the quantity I j can be rewritten as

I j =
∞

∑
k1,...,kr=1

Ak1,...,kr

∫ yγ exp(λy)

0
zsr/γ exp{−( j+1)αz}dz.

Setting t = ( j+1)αz, we can obtain I j and then, equation (6.4) becomes

tr( j) = ( j+1)α
∞

∑
k1,...,kr=1

Ak1,...,kr γ(k/γ +1,( j+1)α yγeλy)

{(j+1)α}sr/γ+1 .

Substituting the last equation in (6.3), we obtain

mr(y) = α
∞

∑
j=0

∞

∑
k1,...,kr=1

( j+1)b j
Ak1,...,kr γ(sr/γ +1,( j+1)α yγeλy)

{( j+1)α}sr/γ+1 . (6.6)
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Incomplete moments can be used to obtain Bonferroni and Lorenz curves which are applied in
economics, reliability, demography, insurance and medicine. For the random variable X , they are
defined by B(p) = m1(q)/µ and L(p) = m1(q)/µ , respectively, where µ ′

1 = E(X) and q = F−1(p)
is the quantile function of X . Thus, using (6.6), these curves can be expressed as

B(p) =
α

pµ ′
1

∞

∑
j=0

∞

∑
k1,...,kr=1

( j+1)b j
Ak1,...,kr γ(s1/γ +1,( j+1)α qγeλq)

[( j+1)α]s1/γ+1

and L(p) = B(p)/µ ′
1, respectively. The Lorenz curve is displayed in Figure 6 for a =

6,10,20,50,100 and b = 1.1, α = 1.1, γ = 1.1 and λ = 0.01. The Bonferroni curve is displayed in
Figure 7 for a = 5,10,20,30,50 and b = 2.0, α = 0.5, γ = 0.5 and λ = 0.1. The area between the
Bonferroni curve and B(p) = 1 is known as the Bonferroni concentration index, B(X), and is given
by

B(X) =
∫ 1

0
[1−B(p)]d p = 1−

∫ 1

0
B(p)d p.

The area between the Lorenz curve and L(p) = p is known as the area of concentration. The
Gini concentration index, C(X), is twice this area given by

C(X) = 2
∫ 1

0
[p−L(p)]d p = 1−2

∫ 1

0
L(p)d p.
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Fig. 6. The KwMW Lorenz curve. (a) For a = 10,40,150,350 and b = 1.1, α = 1.1, γ = 0.3 and λ = 0.0001. The curves
from the bottom to top correspond to increasing values of a. (b) For a = 20 and b = 1,2,10,60, α = 1.1, γ = 0.3 and
λ = 0.0001. The curves from the bottom to top correspond to increasing values of b.

Equations (6.1), (6.2), (6.3) and (6.6) are the main results of this section.

Published by Atlantis Press 
Copyright: the authors 

95



Some new results for the Kumaraswamy modified Weibull distribution

(a) (b)

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

  

p

B
(p

)

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

  

p

B
(p

)

Fig. 7. The KwMW Bonferroni curve. (a) For a = 10,40,150,350 and b = 1.1, α = 1.1, γ = 0.3 and λ = 0.0001. The
curves from the bottom to top correspond to increasing values of a. (b) For a = 20 and b = 1,2,10,60, α = 1.1, γ = 0.3
and λ = 0.0001. The curves from the bottom to top correspond to increasing values of b.

7. Generating function

Cordeiro et al. [4] provided a representation for the moment generating function (mgf) of X ,
M(t) = E(etX) say, computed from equation (3.1) as an infinite weighted linear combination of
MW generating functions. They obtained

M(t) =
∞

∑
s,n=0

bs t γ(−1)n+1(nλ − tγ)n−1

n!γn{(s+1)α}n/γ Γ
(

n
γ
+1
)
. (7.1)

We now provide a new alternative representation for M(t) in (7.1) based on the quantile power
series (5.6). We can write

M(t) =
∫ ∞

0
etx f(x)dx =

∫ 1

0
exp

[
t

(
∞

∑
j=0

hj uj

)]
du.

We expand the exponential function and use the same algebra that leads to (6.1)

M(t) =
∫ 1

0

∞

∑
r=0

tr
(
∑∞

j=0 h j u j
)r

r!
du =

∫ 1

0

∞

∑
r=0

tr vr, j u j

r!
du

and then

M(t) =
∞

∑
r, j=0

tr vr, j

( j+1)r!
. (7.2)

Equation (7.2) is a good alternative in terms of computing time to formula (7.1).
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8. A KwMW mixture model with cure fraction

In population based cancer studies, cure is said to occur when the mortality in the group of cancer
patients returns to the same level as that expected in the general population. The cure fraction is of
interest to patients and also a useful measure when analyzing trends in cancer patient survival. Cure
rate models have been used for modeling time-to-event data for various types of cancers, including
breast cancer, non-Hodgkins lymphoma, leukemia, prostate cancer and melanoma. Perhaps the most
popular type of cure rate models is the mixture model (Berkson and Gage, [1]; Maller and Zhou,
[10]). In this model, the population is divided into two sub-populations so that an individual either
is cured with probability π , or has a proper survival function S(x) with probability 1− π. This
formulation leads to an improper population survivor function S∗(x) expressed in the mixture form

S∗(x) = π +(1−π)S(x), S(∞) = 0, S∗(∞) = π. (8.1)

Common choices for S(x) in (8.1) are the exponential and Weibull distributions. Here, we adopt
the KwMW distribution. Mixture models involving these distributions have been studied by several
authors, including Farewell [5], Sy and Taylor [14] and Ortega et al. [12]. The use of survival models
with a cure fraction has become more and more frequent because traditional survival analysis do
not allow for modeling data in which nonhomogeneous parts of the population do not represent the
event of interest even after a long follow-up. Now, we propose an application of the new distribution
to compose a mixture model for cure rate estimation.

Suppose that the Xi’s are independent and identically distributed random variables having the
density function (1.4). Consider a sample x1, . . . ,xn, where xi is either the observed lifetime or
censoring time for the ith individual. Let a binary random variable zi (for i = 1, . . . ,n) indicate that
the ith individual in a population is at risk or not with respect to a certain type of failure, i.e. zi = 1
indicates that the ith individual will eventually experience a failure event (uncured) and zi = 0
indicates that the individual will never experience such event (cured). The proportion of uncured
1−π individuals can be expressed such that the conditional distribution of zi is Pr(zi = 1) = 1−π .

The maximum likelihood method is used to estimate the model parameters. So, the contribution
of an individual that failed at xi to the likelihood function reduces to

(1−π)abα (γ +λx)xγ−1 exp [λx−αxγ exp(λx)]

× [1− exp{−αxγ exp(λx)}]a−1 {1− [1− exp{−αxγ exp(λx)}]a}b−1, (8.2)

whereas the contribution of an individual that is at risk at time xi becomes

π +(1−π){1− [1− exp{−αxγ exp(λx)}]a}b. (8.3)

The new model defined by (8.2) and (8.3) is called the KwMW mixture model with long-term sur-
vivors. For a = b = 1, we obtain a special model called the MW mixture model with long-term
survivors.
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Thus, the log-likelihood function for the parameter vector θ = (a,b,α,γ,λ )T can be obtained
from equations (8.2) and (8.3) as

l(λ ) = r log [(1−π)abα]+ (γ −1)∑
i∈F

log(γ +λxi)+ ∑
i∈F

log [λxi + log(ui)]

+(a−1)∑
i∈F

log(1−ui)+(b−1)∑
i∈F

log[1− (1−ui)
a]

+∑
i∈C

log
{

π +(1−π) [1− (1−ui)
a]

b
}
, (8.4)

where ui = exp
[
−α xγ

i exp(λ xi)
]
, F and C denote the sets of individuals corresponding to lifetime

observations and censoring times, respectively, and r is the number of uncensored observations
(failures).

9. Simulation results

We shall report the results from a Monte Carlo experiment on the finite sample behavior of the
MLEs of the parameters a, b, α , γ and λ . The simulation was carried out using the R programming
language and were obtained from 10,000 Monte Carlo replications. In each replication, a random
sample of size n is drawn from the KwMW(a,b,α,γ,λ ) distribution and the parameters were esti-
mated by maximum likelihood. In Table 1, we present the means of the MLEs of the five parameters
with the corresponding root mean squared error (RMSE) for sample sizes 50, 100, 300 and 500. The
true parameters values used in the data generating processes are a = 10.5, b = 2.5, α = 3.5, γ = 2.5
and λ = 2.5. The figures in Table 1 indicate that the bias and RMSE of the estimates approach zero

Table 1. Mean estimates and root mean squared errors of the MLEs based Monte Carlo simulation.

Parameter Mean RMSE
n=50 n=100 n=300 n=500 n=50 n=100 n=300 n=500

a 11.6704 10.8372 10.6686 10.4484 9.0340 6.4256 4.9804 3.9874
b 4.6927 3.7767 3.2871 2.8526 6.0056 4.3980 3.2566 2.3479
α 4.3568 4.0180 3.9600 3.8154 3.1482 2.5704 2.2652 1.5560
γ 4.1065 3.2403 2.9083 2.8120 3.7580 1.6572 0.8231 0.7360
λ 4.4326 3.6422 3.1789 3.0286 4.1014 2.6645 2.1311 1.8689

as the sample size increases. Figures 8 and 9 display the histogram of the MLEs of the five param-
eters for sample sizes 50 and 500. We note that the dispersion for all estimates of the parameters
decreases when the sample size increases as expected.

10. Application: Melanoma data set with long-term survivors

In this section, the proposed model for survival data with cure fraction is applied to a real data set
on cancer recurrence. The data are part of a study on cutaneous melanoma (a type of malignant
cancer) for the evaluation of postoperative treatment performance with a high dose of a certain drug
(interferon alfa-2b) in order to prevent recurrence. Patients were included in the study from 1991 to
1995 and follow-up was conducted until 1998. The data were collected by Ibrahim et al. [7]. The
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Fig. 8. Histograms for the 10,000 simulated values of the MLE based in n = 50. (a) For a. (b) For b. (c) For α . (d) For γ .
(e) For λ .

survival time X is defined as the time until the patient’s death. The original sample size was n = 427
patients, 10 of whom did not present a value for the explanatory variable tumor thickness. When
such cases were removed, we obtain a sample of n = 417 patients. The percentage of censored
observations was 56%.
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Fig. 9. Histograms for the 10,000 simulated values of the MLE based in n = 500. (a) For a. (b) For b. (c) For α . (d) For
γ . (e) For λ .

In order to estimate the model parameters, we adopt the maximum likelihood method.We take
the estimates of α , γ and λ from the fitted MW mixture model as starting values for the numerical
iterative procedure. The computations were performed using the statistical software R. Table 2
lists the MLEs of the model parameters and the values of the Akaike information criterion (AIC).
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The results indicate that the KwMW mixture model has the smaller value of this statistic when
compared to that value of the MW mixture model. The LR statistic for testing the hypotheses H0: a=
b = 1 versus H1: H0 is not true, i.e. to compare the KwMW and MW mixture models, becomes
w = 2{−524.64− (−529.37)}= 9.46 (p-value= 0.008), which indicates that the KwMW mixture
model is superior to the MW mixture model in terms of model fitting. Figure 10 displays plots of
the empirical survival function and the estimated survival function for the KwMW mixture. Note
that the proportion of cured estimated by the KwMW mixture model (π̂KwMW = 0.4887) is more
appropriate than the MW mixture model (π̂MW = 0.5060). Further, the KwMW mixture model
provides a better fit to these data.

Table 2. MLEs of the model parameters for the melanoma data, the corresponding SEs (given in parentheses) and the
AIC statistic.

Model π a b α γ λ AIC
KwMW Mixture 0.4887 5.6169 1.3866 1.3103 0.6102 0.0003 1061.2

(0.0349) (0.2949) (0.0801) (0.0763) (0.0429) (0.00015)
MW Mixture 0.5060 (-) (-) 0.2401 1.7369 0.0006 1066.7

(0.0313) (-) (-) (0.0324) (0.0986) (0.0003)
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Fig. 10. Estimated survival function for the KwMW mixture model and the empirical survival for melanoma data.

11. Bivariate generalization

The KwMW distribution can be easily generalized to the bivariate and multivariate cases. Consider
the bivariate case for simplicity. Let G(x1,x2) denote a bivariate cdf on (0,∞)× (0,∞) with joint
pdf g(x1,x2), marginal pdfs gi(xi), i = 1,2 and marginal cdfs Gi(xi) for i = 1,2. For a > 0 and
b > 0, we define the cdf of the nine-parameter bivariate KwMW distribution as F(x1,x2) = 1− [1−
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Ga(x1,x2)]
b, where G(x1,x2) is the seven-parameter bivariate MW distribution given by

G(x1,x2) = 1+ exp{−[(α1xγ1
1 exp(λ1x1))

1
δ +(α2xγ2

2 exp(λ2x2))
1
δ ]δ}

−exp[−α1xγ1
1 exp(λ1x1)]− exp[−α2xγ2

2 exp(λ2x2)], (11.1)

for αi > 0, γi > 0 and λi ≥ 0 for i = 1,2 and the parameter 0 < δ ≤ 1 measures the association
between X1 and X2. If these random variables are independent then δ = 0. The bivariate MW density
function can be expressed as

g(x1,x2) = − 1
δx1x2

{(γ1 +q1)(γ2 +q2)exp(−q1 −q2)(p1)
1
δ (p2)

1
δ ×

exp{q2 − [(p1)
1
δ +(p2)

1
δ ]δ +q1}{(δ −1)[(p1)

1
δ +(p2)

1
δ ]δ−2

−δ [(p1)
1
δ +(p2)

1
δ ]2δ−2}, (11.2)

where pi = αi xγi
i eqi and qi = λi xi. The marginal pdf’s gi(x) and cdf’s Gi(x) (for i = 1,2) are given

by gi(xi) = αi xγi−1
i (γi + λixi)eλixi exp{λixi −αix

γi
i } and Gi(xi) = 1− exp{−αix

γi
i exp(λixi)}. The

marginal pdf’s fi(x) and cdf’s Fi(x) (for i = 1,2) are fi(x) = abgi(x)Gi(x)a−1 [1−Gi(x)a]b−1 and
Fi(x) = 1− [1−Gi(x)a]b, where gi(x) and Gi(x) are given before.

We hope to provide a comprehensive mathematical treatment of the bivariate and multivariate
KwMW distribution in a future paper.

12. Conclusions

In this paper, we study some new mathematical properties not investigated by Cordeiro et al. [4]
of the Kumaraswamy modified Weibull (KwMW) distribution. This broader class of distributions
is quite flexible in analyzing positive data and includes several special models discussed in the
literature such as the Kumaraswamy Weibull, generalized modified Weibull, exponentiated Weibull,
exponentiated exponential, Kumaraswamy modified exponential, generalized modified Rayleigh,
generalized modified exponential, Rayleigh and Weibull distributions (see Figure 1). We derive a
power series expansion for the KwMW quantile function. We provide new explicit expressions for
the ordinary and incomplete moments, quantile moments, mean deviations, Bonferroni and Lorenz
curves and generating function. Our formulas related with the KwMW are manageable, and with the
use of modern computer resources with analytic and numerical capabilities, may turn into adequate
tools comprising the arsenal of applied statisticians. Simulation results were performed to show the
consistence of the new distribution. We define a KwMW mixture model for survival data with long-
term survivors. The practical relevance and applicability of the current models are demonstrated by
means of one real data set. Finally, we also propose a new bivariate KwMW distribution.
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Appendix A. Quantile function

Using the logarithmic expansion for z ∈ (0,1) in (5.5) log(1− z)− z∑∞
k=0

zk

k+1 , we obtain

t = α−1
∞

∑
k=0

(
∑∞

j=0 v j u j
)k+1

(k+1)
.

Based on equations (5.1) and (5.2), we can write

t = α−1
∞

∑
k, j=0

ck+1, j u j

(k+1)
=

∞

∑
j=0

p j u j,

where p j = α−1 ∑∞
k=0 ck+1, j/(k+ 1) (for j ≥ 0) and the quantities ck+1, j (for j = 1,2, . . .) can be

determined from the v′js by ck+1, j = ( j v0)
−1 ∑ j

m=1[(k + 2)m − j]vm ck+1, j−m and ck+1,0 = vk+1
0 .

Then, from equation (5.3), we obtain

Q(u) =
∞

∑
i=1

ai

(
∞

∑
j=0

p j u j

)i/γ

.

Further, we can expand a power quantity Aλ in Taylor series as Aλ = ∑∞
k=0(λ )k (A − 1)k/k! =

∑∞
r=0 fr Ar, where fr =∑∞

k=r(−1)k−r
(k

r

)
(A)k/k! and (A)k =A(A−1) . . .(A−k+1) is the descending

factorial. Then, we can write Q(u) as

Q(u) =
∞

∑
i=1

∞

∑
r=0

ai gr,i

(
∞

∑
j=0

p j u j

)r

,

where gr,i = ∑∞
k=r(−1)k−r

(k
r

)
(i/γ)k/k! Finally, using again (5.1) and (5.2), we obtain (5.6).
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