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 Abstract - Recently, the Support Vector Machine (SVM) using 

Spatial Pyramid Matching (SPM) kernel has achieved remarkable 

successful in image classification. The classification accuracy can be 

improved further when combining the sparse coding with SPM. 

However, the existing methods give the same weight of patches of 

SPM at different levels. Clearly the discriminative powers of SPM at 

different levels are distinct and there are correlation relationships 

among the sparse coding bases vectors, which usually have negative 

influence on the classification accuracy. This paper assigns different 

weights to the patches at different levels of SPM, and then proposes a 

new spatial pyramid matching kernel. Furthermore, the Principle 

Component Analysis (PCA) is employed to reduce the dimension of 

the feature vectors in order to decrease correlation among vectors and 

speed up the SVM training process. The preprocessing can enhance 

the discriminative ability of the new kernel as well. Experiments 

carried out on Caltech101 and Caltech256 datasets show that the new 

SPM kernel outperforms the existing methods in terms of the 

classification accuracy. 

 Index Terms - Sparse coding, Spatial pyramid matching, 

Support vector machine, Image classification. 

1.  Introduction 

In recent years, Bag-of-Visual-Words (BoVW) model has 

been extremely popular in image classification. The method 

splits an image into several patches using different sampling 

techniques, and then represents the image as a group of 

disorder descriptors extracted from local patches. These 

descriptors are quantized into discrete “visual words”, which 

compose the dictionary of visual words. Through some 

statistics of all sample patches contained in the image, a 

compact histogram representation is calculated. Then various 

classification methods can be adopted to classify images. 

Traditional BoVW model consists of four stages: feature 

extraction, dictionary learning, image representation and 

image classification. In recent years, many extension works 

based on traditional BoVW model have been done.  

In feature extraction stage, it has been verified that dense 

sampling strategy outperforms coarse sampling method [1]. 

The comparison of various local descriptors in [2] has shown 

that SIFT [3] can achieve the best match performance under 

different transformation. Later, literature [4] confirmed that 

SIFT also exhibits excellent performance in object recognition 

field. 

In dictionary learning stage, generative models are 

proposed in [5-6] which are based on the co-occurrences of 

visual words, and discriminative models are used in [1,7] 

instead of traditional unsupervised K-means clustering method 

to learn the dictionary. In [8], the image features are 

represented using sparse coding, and a group of basis vectors 

are obtained by training the image features. These basis 

vectors constitute the dictionary. For the size of the dictionary, 

[9] has shown that a larger visual word dictionary performs 

better than smaller dictionary, and this is further be conformed 

in [10] where a large visual dictionary obtained by K-means 

clustering can get better classification performance. 

In image representation stage, literature [11] uses the space 

pyramid matching kernel (KSPM) to model the spatial position 

of local features, and then the image histogram representation 

is obtained. A sparse coding based space pyramid matching 

(ScSPM) method has been proposed in [8], together with max 

pooling strategy to pool features in various scale and locations 

in image space to obtain the final image encoding vectors. In 

the classification stage, support vector machine (SVM) is 

widely used due to its robustness to high dimensional feature 

and sparse data, and achieves better classification results in 

BoVW model. But the selection of SVM kernel function can 

affect the final classification performance to some extent. In 

[12], local features are used to design kernel function for the 

first time and achieve superior classification performance than 

global color histogram. The kernel functions that have been 

proved to be effective include histogram intersection kernel 

[13], generalized histogram intersection kernel [14], chi-

square kernel [15], the traditional RBF kernel and linear kernel 

[8]. The performance of the kernel function varies due to 

different experimental settings. Overall, the time complexity of 

nonlinear Mercer kernel is much higher than the linear kernel. 

Literature [8] proposed a linear kernel based method ScSPM 

that greatly reduced the time complexity, and achieved better 

results. 

These outreach efforts to BoVW model greatly enrich the 

study of image classification, among which ScSPM is one of 

the best classification methods. However, during the space 

pyramid creating procedure, different levels in space pyramid 

are not given different weights and there is a certain 

correlation between different levels, which may have an 

impact on the classification results. 

In this paper, inspired by the traditional KSPM, we 

propose an improved sparse coding based space pyramid 

matching algorithm (ScKSPM). Combining with BoVW 

model, we coding the extracted SIFT features, assign different 
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weight to sparse coding at different level and design a new 

spatial pyramid matching kernel for image classification. Since 

the higher dimension of feature vector can increase the 

computational complexity and the correlation between feature 

dimensions will have an impact on the classification results, 

we perform Principle Component Analysis (PCA) on feature 

set before taking SVM classification. The PCA process of 

image features can largely reduce the computation time and 

remove the correlation between feature dimensions. 

Experiments on Caltech101/256 and Pascal VOC 2006 dataset 

show that, the method based on new spatial pyramid matching 

kernel can achieve higher accuracy in the image classification. 

It is noteworthy that, the dimension reduction process before 

performing SVM classification can improve the performance 

of new proposed kernel and reduce the computation time. 

2.  Sparse Coding Presentation of Image 

Given a set of nature images, in order to get a more precise 

presentation of image, Olshausen & Field (1996) [16] 

proposed a method called sparse coding. This method is based 

on the assumption that every single image I(x,y) in the image 

set can be represented in terms of a linear superposition of (not 

necessarily orthogonal) basis functions, ( , )x y : 

( , ) ( , )i i

i

I x y a x y                         (1) 

The image code is determined by the choice of basic 

functions i , and each image has different coefficient vector 

a .  

Combined with the extraction of SIFT descriptor for each 

image in the image set, we denote the set of SIFT features 

extracted from the whole image set by X, i.e.
 

1[ ,..., ]T M D

MX x x    . Hence, the problem of seeking 

the basic functions can be further quantified as an optimization 

problem as described below: 

 2

,
1
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M

m m m

m

x a a
 


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where xm represent the mth feature in the feature set,  is the 

basis function set, am is the coefficient vector corresponding to 

the mth feature and 
ma denotes the L1-norm of vector am. 

Honglak Lee et.al has given an efficient algorithm to solve the 

above optimization problem in [17]. 

3. Spatial Pyramid Matching Kernel 

In the feature extraction phase, we represent an image as a 

set of descriptors, and then we can compute a single feature 

vector based on some statistics of the descriptors codes. In 

traditional KSPM, all the feature vectors representing the 

whole image set are quantized into M different discrete 

features using traditional clustering methods, and the 

quantization is based on the assumption that feature vectors 

match with each other only when they are of the same type. 

Then the spatial pyramid is built by split the image into 

different spatial level. Then combine with the pyramid match 

kernel [18], various weights are assigned to feature vectors in 

different spatial level. Put these entire piece together, we 

obtain the feature vector of the input image.  

Yang et.al presented a sparse coding based spatial pyramid 

matching model which is different from the traditional SPM. 

They constructed a linear spatial pyramid matching kernel. In 

the feature extraction phase, a group of sparse coding for the 

image set is obtained. Based on the traditional SPM process, a 

spatial pyramid is built. Then the max pooling strategy [19] is 

adapted to pool features in each level. The final feature vector 

of the input image is obtained by linearly combine the pooling 

vectors.  

4. An Improved Spatial Pyramid Matching Algorithm 

Based on Sparse Coding  

In this paper, we proposed an improved spatial pyramid 

matching algorithm based on sparse coding (ScKSPM for 

short). The model is illustrated in Fig. 1.  

 

Fig. 1   The model of ScKSPM 

Given a input image set, we extract SIFT features for each 

image using dense sampling method in feature extraction 

phase, and get the sparse coding dictionary using methods 

described in section 2. Then we use the max pooling strategy 

to pool the sparse coding set. Let X is the feature vectors and 

let A be the sparse coding matrix obtained by equation 2. 

Suppose the basis vector set   in the training stage is 

obtained and fixed, we use the pooling function described 

below to calculate the image feature. 

1 2max{ , ,..., } (3) j j j Mjz a a a  

where z is the feature of image, zj is the j-th element of z, aij is 

the matrix element at i-th row and j-th column of A, and M is 

the number of local descriptors in the region. 

Similar to the procedure to build traditional spatial 

pyramid, we split the image space into l level and assign 

various weights to each level, e.g. the weight of l-th level is 

1

2L l
, where L represents the total number of levels in image 

space. For different location in different space level, we 

calculate the pooling feature for each grid. Comparing to 

calculate the mean value of the feature vectors in each grid, 

feature vectors calculated by max pooling function can be 

more robust to local transformation. For the feature vector zi 

representing image Ii, we adopt the improved space pyramid 

matching kernel 
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where z represents the max pooling feature of image Ii at (s-t)-

th segment of l-th level, D is the dimension of final feature 

vector z, and M is the dimension of feature vector in each 

segment of pyramid space. The spatial pyramid matching 

kernel is proved to be Mercer kernel in [18]. When adopting 

M basis vectors and L level space pyramid, the resulting vector 

has dimensionality 
0
4

L l

l
M

 . During the experiment in 

section V, a larger dictionary is adopted, where M=2048 and 

L=2, and then the dimension of the feature vector z is 43008. 

Taking the high computational complexity and the correlations 

existed among feature dimensions into account, we perform 

PCA to feature vector z, in order to reduce the kernel 

computation time and remove the correlations among feature 

dimensions. 

5. Experiments and Performance Analysis 

A.  Experiment settings 

 In this paper, we perform experiments on Caltech-101[20] 

and Caltech-256[21]. We use Dense-SIFT in feature extraction 

procedure. Each image is densely sampled to extract SIFT 

feature. The sample region is 16*16, and the step is 6 pixels. 

In the image sparse coding stage, we random choose 50000 

SIFT descriptors which are extracted in feature extraction 

procedure and use these chosen descriptors as training sample. 

Using equation 2, we get the basis vector set  , which 

contains 2048 basis vectors. We perform PCA before SVM 

classification; only remain the first 1024 dimensions. In the 

multi-class classification stage, we adopt one-vs-one 

classification strategy. The accuracy is the average of the 

classification accuracy for each class. We perform the 

experiment for 5 times, and take the mean of all these 5 

experiment results as the final result. We use LIBSVM [22] as 

our SVM classifier. 

We realize the improved spatial pyramid matching kernel 

ScKSPM and carry out comparisons with the existing SPM 

methods on Caltech-101 and Caltech-256. The methods used 

for comparison are: (1) KSPM: the popular nonlinear kernel 

SPM that uses spatial pyramid histograms and Chi-square 

kernels; (2) LSPM: the simple linear SPM that uses linear 

kernel on spatial pyramid histograms; (3) ScSPM: the linear 

SPM that use linear kernel on spatial pyramid pooling of SIFT 

sparse codes. Some of our presented results are drawn from [8]. 

Also, we further compare the performance and the running 

time of ScKSPM with or without PCA. 

B. Performance comparison of SPM methods 

 We followed the common experiment setup for Caltech-

101, training on 15 and 30 images per category respectively 

and testing on the rest. For Caltech-256 dataset, we train on 15, 

30, 45, and 60 images per category respectively and test on the 

rest. Detailed comparison results are shown in Table 1 and 

Table 2. 

As shown in Table 1 and Table 2, along with the increase 

of the number of training samples, the classification 

performance of these SPM methods have different degrees of 

improvement. For different data sets, the performances of 

these methods are also different. Over all, the KSPM method 

that uses Chi-square kernels outperforms LSPM method that 

based on linear kernel, while ScSPM that uses linear kernel on 

sparse codes achieves a much better performance than the 

former two SPM methods. Our ScKSPM method outperforms 

the ScSPM method by more than 3 percent. In the cases of 45 

and 60 training images per category, KSPM and LSPM was 

not tried due to its very high computation cost for training. 

TABLE I    Classification accuracy (%) comparison on Caltech-101 

Numbers of 

training samples 

SPM methods 

KSPM LSPM ScSPM ScKSPM 

15 56.44 53.23 67.0 67.64 

30 63.99 58.81 73.2 73.90 

TABLE II    Classification accuracy (%) comparison on Caltech-256 

Numbers of 

training samples 

SPM methods 

KSPM LSPM ScSPM ScKSPM 

15 23.34 13.20 27.23 29.75 

30 29.51 15.45 34.02 36.60 

45 — — 37.46 38.36 

60 — — 40.14 41.97 

C. PCA dimension reduction 

In this section, we examine the impact of PCA process on 

the performance of sparse coding vector extracted in feature 

extraction stage by comparing the performance and the 

running time of ScSPM and ScKSPM before and after PCA 

process. We conduct the experiments on Caltech-101, where 

we randomly select 30 images from each class for training. 

The classification results are shown in Table 3. 

TABLE III    The influence of PCA on the classification accuracy (%) 

comparison on Caltech-101 

 
ScSPM ScKSPM 

no PCA 73.2 71.0 

PCA 71.7 73.9 

From Table 3 we can see that, the PCA process harms the 

classification performance of ScSPM with linear kernel. In the 

contrary, the performance of ScKSPM has been improved for 

nearly 3% by performing PCA process. That indicates through 
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the dimensional reduction process in PCA, the correlation 

among dimensions in feature vector have been removed, which 

benefits the calculation of kernel function proposed in this 

paper. It is worth noting that, the PCA process can 

significantly reduce the calculation time of both methods. We 

implement all method on the same machine and see that, on 

Caltech-101, the calculation time of ScKSPM with PCA 

process is 15min, which is comparable to ScSPM with linear 

kernel. 

6.  Conclusion and Future Work 

 In this paper, based on sparse coding, we proposed a 

novel spatial pyramid matching kernel for image classification. 

We assign different weights for sparse coding vectors in 

different levels in image representation stage and then adopt 

SVM with the proposed kernel function for image 

classification. The experiments on Caltech101 and Caltech256 

datasets show that the proposed kernel function performs 

better than previous kernel functions. Further, we show that 

through PCA process, we can significantly reduce the running 

time of the kernel computation time and improve the 

performance of proposed kernel function. That indicates the 

basis vectors extracted in feature extraction stage correlate 

with each other, while the PCA process can remove this 

correlation and further improve the classification of the 

proposed kernel function. 

 We conducted experiments on traditional datasets to 

check the performance of our proposed kernel function. 

However, for large scale web dataset, the huge number of 

images and rich visual information make us not only consider 

the accuracy of classification, but also the classification 

efficiency. Efficient methods for feature extraction and sparse 

coding training should be further investigated in the future. 
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