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Abstract

The initial-boundary value problem is investigated
for a generalized Boussinesq equation with the
quadratic nonlinearity. For small initial data and
homogeneous boundary conditions, its solution is
constructed in the form of a series which converges
absolutely and uniformly. The long time asymp-
totic expansion of the solution is acquired to show
the nonlinear effects of amplitude.
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1. Introduction

Boussinesq equation was first presented in [1] to
research the propagation of small amplitude’s long
wave on the surface of shallow water. From then
on, people have made a great deal of investigations
for the equation (see[2]-[4]). One of the classical
Boussinesq equations is written in the form

utt = −αuxxxx + uxx + β(u2)xx, (1)

where constant coefficients α and β depend on the
depth of fluid and the speed of waves. Clarkson [3]
established a general method to determine the ex-
act solutions of equation (1). Hirota deduced con-
servation laws and examined it’s numerical solu-
tions in literature [5]. Lai [9]-[10] studied the long
time behavior of solutions for nonlinear wave equa-
tions. Nakamura [6] studied the exponential decay
of the Boussinesq equation with spherical symme-
try.

Varlamov [7] considered the following Boussi-
nesq equation with initial-boundary assumptions

utt − 2butxx = −αuxxxx + uxx + β(u2)xx, (2)

where β ∈ R1, α and b are positive constants and
α > b2. Making use of the eigenfunction expan-
sion method in a ball, Varlamov [8] investigated a
long time asympotics of solution for a Boussinesq

equation similar to equation (2). Polat [11] consid-
ered the blow up phenomena of solutions for the
following Boussinesq equation with damping term

utt−uxx +δuxxxx−λuxxtt−ruxxt = β(u2)xx−γ2u,

where δ, λ, r, β and γ are constants, which satisfy
some assumptions.

The objective of this paper is to study the well-
posedness of the following generalized Boussinesq
equation with initial-boundary conditions

utt − auttxx − 2butxx + du = −cuxxxx + uxx +
β(u2)xx + hu2, (3)

where a > 0, b > 0, c > 0 d > 0, h and β are con-
stants and a+c > b2. Under some assumptions, the
existence and the uniqueness of solution for equa-
tion (3) are established. It will be shown that the
long time behavior of the solution in equation shows
the presence of damped oscillations decaying expo-
nentially in time as t → ∞. The methods for the
proof of our main theorem in this paper are based
on those of [7]. However, it should be emphasized
that the technique for proving uniqueness of the
solution is different from that presented in [7] in
which the time extension method was used.

2. Main result

The task of this paper is to consider the fol-
lowing generalized Boussinesq system with initial-
boundary conditions




utt − auttxx − 2butxx + du = −cuxxxx+
uxx + β(u2)xx + hu2,
u(0, t) = u(π, t) = 0,
uxx(0, t) = uxx(π, t) = 0,
u(x, 0) = ε2ϕ(x), ut(x, 0) = ε2ψ(x),

(4)

where a > 0, d > 0, b, c and ε are positive constants,
x ∈ (0, π), t > 0, h and β ∈ R1.

Definition 2.1: If u(0) = u(π) = u
′′
(0) =

u
′′
(π) = . . . = u2n−2(0) = u2n−2(π) = 0 and



u(2n)(x) ∈ L2(0, π), the function u(x) is said to
belong to the class C2n(0, π), n > 1.

Definition 2.2: The function u(x, t) defined
on [0, π] × [0,+∞) is said to be the classical solu-
tion of the problem defined by system (4), if u(x, t)
and its derivatives included in (4) are bounded and
continuous, and satisfy system (4).

Theorem 2.3: If a > 0, c > 0, d > 0, a + c >
b2, ϕ(x) ∈ C6(0, π), ψ(x) ∈ C4(0, π), there is a ε0,
for any ε satisfying 0 < ε < ε0, problem (4) has a
unique classical solution expressed in the form

u(x, t) =
∞∑

N=1

εN+1u(N)(x, t), (5)

where u(N)(x, t) will be defined in the proof (see(23)
or (24)). Series (5) and its derivatives, which ap-
pear in problem (4), converge absolutely and uni-
formly. For x ∈ [0, π], t > 0, 0 < ε < ε0. The
problem (5) has the following asymtotics as t is suf-
ficiently large

u(x, t) = e−
b

1+a t[(A cos σt + B sinσt) sin x +

O(e[ ηb
1+a t])], (6)

where σ =
√

ac+a+c−b2+1+ad+d
1+a is a positive con-

stant, 0 < η < 3
1+4a .

For simplicity, throughout the paper, we de-
note by C any possitive constants independent of
t, which may depend on ϕ(x), ψ(x) and other con-
stants appearing in system (4).

3. Proof of Theorem 2.3

3.1. Existence of solution

We make an odd extension for x on [−π, 0], and rep-
resent u(x, t) in the form of Fourier series expressed
by

u(x, t) =
∞∑

n=−∞,n 6=0

ûn(t)einx, (7)

where

ûn(t) =
1
2π

∫ π

−π

u(x, t)einxdx,

from which we have û−n(t) = −ûn(t), n > 1.
In the sequel we shall denote the norm of the

space of functions belonging to L2(−π, π) for each
fixed t > 0,

‖ u(t) ‖=‖ u(t) ‖L2(−π,π)= (
∫ π

−π

| u(x, t) |2 dx)
1
2 .

It follows from (7) that

u(x, t) = 2i

∞∑
n=1

ûn(t) sin nx, (8)

ûn(t) =
1
iπ

∫ π

0

u(x, t) sin nxdx.

Noting the initial functions on [−π, π], which have
ϕ̂−n = −ϕ̂n, ψ̂−n = −ψ̂n, n > 1, we get

ϕ(x) =
∞∑

n=−∞,n 6=0

ϕ̂neinx, (9)

ψ(x) =
∞∑

n=−∞,n 6=0

ψ̂neinx. (10)

Furthermore on [0, π], we obtain




ϕ(x) = 2i
∞∑

n=1
ϕ̂n sinnx,

ϕ̂n = 1
iπ

∫ π

0
ϕ(x) sin nxdx,

ψ(x) = 2i
∞∑

n=1
ψ̂n sinnx,

ψ̂n = 1
iπ

∫ π

0
ψ(x) sin nxdx.

(11)

Integrating (11) and using the smoothness assump-
tion of initial data yield the following inequalities

| ϕ̂n |6 C1n
−6, | ψ̂n |6 C1n

−4, n > 1, (12)

where C1 is a positive constant.
Substituting (7), (9) and (10) into (4) gives rise

to the following Cauchy problem for ûn(t)




(1 + an2)û
′′
n(t) + 2bn2û

′
n(t)+

(cn4 + n2 + d)ûn(t)
= (−βn2 + h)p(ûn(t)),
ûn(0) = ε2ϕ̂n, û

′
n(t) = ε2ψ̂n,

(13)

where

p(ûn(t)) =
∞∑

g=−∞,g 6=0,n

ûn−g(t)ûg(t),

û−n(t) = −ûn(t), n > 1.

If n = 1, it has

p(û1(t)) = 2
∞∑

g=1
û−g(t)û1+g(t) (14)

= −2
∞∑

g=1
ûg(t)û1+g(t).

If n > 2, we have

p(ûn(t)) =
n−1∑
g=1

ûn−g(t)ûg(t)− 2
∞∑

g=1

ûg(t)ûn+g(t).



Setting Φn = εϕ̂n and Ψn = εψ̂n, we get the solu-
tion formula for problem (13) in the form

ûn(t) = εe
−bn2t

1+an2 {[cos(σnt) (15)

+
bn2

1 + an2

sin(σnt)
σn

]Φn +
sin(σnt)

σn
Ψn}

− βn2 − h

σn(1 + an2)
K,

(16)

where

K =
∫ t

0

exp[
−bn2

1 + an2
(t−τ)] sin[σn(t−τ)]p(ûn(t))dτ

σn =

√
acn6 + (a + c− b2)n4 + (1 + ad)n2 + d

1 + an2
,

in which we require a + c > b2, d > 0.

Now, we consider integral equation (16) by us-
ing perturbation technique. Firstly, we express
ûn(t), (n > 1) as a form of series about ε

ûn(t) =
∞∑

N=1

εN+1ξ̂(N)
n (t). (17)

Substituting (17) into (16) and equating the coef-
ficients of like powers of ε result in the following
formula.

When N = 0, we have

ξ̂(0)
n (t) = εe

−bn2t

1+an2 {[cos(σnt) +
bn2

1 + an2

sin(σnt)
σn

]Φn +
sin(σnt)

σn
Ψn}. (18)

When N > 1, we get

ξ̂(N)
n (t) =

βn2 + h

σn(1 + an2)

∫ t

0

exp[
−bn2

1 + an2
(t− τ)]

sin[σn(t− τ)]QN (ξ̂(j)
n (τ))dτ, (19)

where n > 1 and

QN (ξ̂(j)
n (τ)) = εn

n−1∑
g=1

N∑

j=1

ξ̂
(j−1)
n−g (τ)ξ̂(N−j)

g (τ)

−2
∞∑

g=1

N∑

j=1

ξ̂
(j−1)
n+g (τ)ξ̂(N−j)

g (τ),

ε1 = 0; εn = 1, if n > 2.
In order to state that formula (7) represents

the solution of problem (4), we need to prove that

the series

u(x, t) =
∞∑

n=−∞,n 6=0

einx
∞∑

N=0

εN+1ξ̂n

(N)
(t)

= 2i

∞∑
n=1

sinnx

∞∑

N=0

εN+1ξ̂(N)
n (t)

converges absolutely and uniformly. To do this, we
construct the following estimate for n > 1, t >
0, N > 0,

| ξ̂(N)
n (t) |6 CN (N + 1)−2n−6e−

b
1+a t, (20)

where C is a positive constant independent of
N, n, ε and t. We will use the induction method
to prove inequality (20).

When N = 0, form (18), we have

| ξ̂(0)
n (t) | 6 εe

−bn2t

1+an2 [(1 +
bn2

σn(1 + an2)
) | Φn |

+
1
σn

| Ψn |]

6 εn−6e−
b

1+a t.

Assuming that (20) is valid for all ξ̂n

(s)
(t) with 0 6

s 6 N − 1, we shall prove that (20) also holds for
s = N . According to [7], for any integer n > 1, g >
1, and g 6= n, we have

| n− g |−6 g−6 6 26n−6[g−6+ | n− g |−6]

j−2(N+1−j)−2 6 22(N+1)−2[j−2+(N+1−j)−2].

Using bn2

1+an2 > b
1+a (n 6= 0) and (19) leads to

|ξ̂(N)
n (t)| 6 C|β|(N + 1)−2n−6

×
∞∑

g=1

(g−6 + |n− g|−6)

×
N∑

j=1

Cj−1CN−j [j−2 + (N + 1− j)−2]

× | SN (n, t) |,

where

|SN (n, t)|

6 Ce
−bn2

1+an2 t
∫ t

0

exp(
bn2

1 + an2
− 2b

1 + a
τ)dτ

= Ce
− bn2

1+an2 t × |e
( bn2

1+an2− 2b
1+a )τ − 1

bn2

1+an2 − 2b
1+a

|

6 Ce−
b

1+a t. (21)



Therefore (20) holds.
For n > 2, we derive

bn2

1 + an2
> (1 + η)b

1 + a
,

where 0 < η < 3
1+4a . Furthermore, we get

| ξ̂n

(N)
(t) |6 CN (N + 1)−2n−6e−

1+ηb
1+a t. (22)

Substituting (17) into (8) and interchanging the or-
der of summation in the series, for x ∈ [0, π], t >
0, ε ∈ [0, ε0], we get

u(x, t) = 2i
∞∑

n=1

ûn(t) sin nx

= 2i
∞∑

n=1

sinnx
∞∑

N=0

εN+1ξ̂n

(N)
(t)

=
∞∑

N=0

εN+1u(N)(x, t), (23)

where

u(N)(x, t) = 2i
∞∑

n=1

ξ̂(N)
n (t) sin nx. (24)

Differentiating (18)-(19), for k = 1, 2, we have

∂k
t ξ̂(0)

n (t) =
k∑

l=0

cl
k(−1)l(

bn2

1 + an2
)le

−bn2t

1+an2 ×

∂k−l
t {[cos(σnt) +

bn2

1 + an2

sin(σnt)
σn

]Φn

+
sin(σnt)

σn
Ψn},

∂k
t ξ̂(N)

n (t) = − βn2 − h

σn(1 + an2)
×

∫ t

0

gk(n, t− τ)QN (ξ̂(j)
n (τ))dτ + Rk(n, t),

where

gk(n, t) =
k∑

l=0

cl
k(−1)l(

bn2

1 + an2
)le

−bn2

1+an2 t
σk−l

n

× sin[σnt +
(k − l)π

2
],

QN (ξ̂n

(j)
(τ)) is defined by (19) and cl

k are binomial
coefficients. Rk(n, t) are defined as follows

R1(n, t) = 0, R2(n, t) = −βn2 − h

1 + an2
QN (ξ̂(j)

n (τ)).

By the bounded properties of bn2

1+an2 and
βn2

σn(1+an2) and making the estimates similar to (20)
for n > 1, N > 0, t > 0, k > 0, 1, 2, we know that
the following inequalities hold

|∂k
t ξ̂(N)

n (t)| 6 CN (N + 1)−2nk−6e−
b

1+a t, (25)

|∂k
t û(N)

n (t)| 6 Cnk−6e−
b

1+a t. (26)

The uxxxx and uttxx are the highest order of
derivative terms appearing in system (4). Inequal-
ities (25) and (26) show that the derivatives of
u(x, t) in problem (4) are absolutely and uniformly
convergent. Thus, we know u(x, t) is a classical so-
lution of problem (4).

3.2. Uniqueness of the solution

Assuming that problem (4) has two classical solu-
tions u(1)(x, t) and u(2)(x, t), we shall prove that
u(1)(x, t) is equal to u(2)(x, t). Making an odd ex-
tension for the two solutions on (−π, 0], we notice
that the two solutions belong to space L2(−π, π).
According to Definition 2.2, for each fixed t > 0,
we have

max
x∈[−π,π]

|u(1)(x, t)| < ct, max
x∈[−π,π]

|u(2)(x, t)| < ct,

where ct is a constant depending on t.
Setting w(x, t) = u(1)(x, t)−u(2)(x, t) and mak-

ing an even extension for w(x, t) on . . . (−3π,−2π),
(−2π,−π), (π, 2π), (2π, 3π), . . ., from (4), we have

wtt − awttxx − 2bwtxx + dw = −cwxxxx + wxx

+β[w(x, t)(u(1)(x, t) + u(2)(x, t))]xx

+hw(x, t)[u(1)(x, t) + u(2)(x, t)],
w(x, 0) = wt(x, 0) = 0.

Taking the Fourier transform of w on (−∞,+∞),
namely,

ŵ(ξ, t) =
∫ +∞

−∞
w(x, t)e−iξxdx,

we obtain

(1 + aξ2)ŵ
′′
(ξ, t) + 2bξ2ŵ

′
(ξ, t) +

(cξ4 + ξ2 + d)ŵ(ξ, t) = (−βξ2 + h)f̂(ξ, t), (27)

where f̂(ξ, t) = w(u(1) + u(2))(x, t). It follows from
(27) that

ŵ(ξ, t) = − βξ2−h
σξ(1+aξ2)

∫ t

0
exp[− bξ2

1+aξ2 (t− τ)]

× sin[σξ(t− τ)]f̂(ξ, t)dτ, (28)



where

σξ =

√
acξ6 + (a + c− b2)ξ4 + (1 + ad)ξ2 + d

1 + aξ2
.

Hence, we have

|ŵ(ξ, t)| 6 C

∫ t

0

| exp[
−bξ2

1 + aξ2
(t− τ)]f̂(ξ, t) | dτ

6 C[
∫ t

0

|f̂(ξ, t)|2dτ ]
1
2 . (29)

Using inequality (29) and the Parseval inequality
leads to

∫ +∞

−∞
| ŵ(ξ, t) |2 dξ 6

∫ +∞

−∞

∫ t

0

| f̂(ξ, t) |2 dτdξ

6 C

∫ t

0

‖ f̂(ξ, t) ‖2L2 dτ

6 C

∫ t

0

‖ w(x, t)(u(1)(x, t) + u(2)(x, t)) ‖2L2 dτ

6 C

∫ t

0

cτ ‖ w(x, t) ‖2L2 dτ.

By Growall’s inequality, we get w(x, t) = 0 (in
L2 ). Using the continuity of functions u1(x, t) and
u2(x, t) results in u1(x, t) = u2(x, t). It completes
the proof of uniqueness.

3.3. Long time asymptotics

In order to find the long time behavior of the con-
structed solution, we firstly determine a subtle as-

ymptotic û1(t). Since û1(t) =
∞∑

N=0

εN+1ξ̂
(N)
1 (t),

from (18) and (19), we get

ξ̂
(0)
1 (t) = e−

b
1+a t[A0 cos(σt) + B0 sin(σt)],

ξ̂
(N)
1 (t) = e−

b
1+a t [AN cos(σt)]+[BN sin(σt)], (30)

where

A(0) = εϕ̂1,

B(0) =
ε

σ
(

b

1 + a
ϕ̂1 + ψ̂1),

σ =
√

ac + a + c− b2 + 1 + ad + d

1 + a
,

A(N) =
β − h

σ(1 + a)

∫ t

0

e
b

1+a τ sin(στ)Sun
(τ)dτ,

B(N) =
β − h

σ(1 + a)

∫ t

0

e
b

1+a τ cos(στ)Sun
(τ)dτ,

Sun
(t) =

∞∑
g=1

N∑

j=1

ξ̂j−1
1+g(t)ξ̂(N−j)

g (t)N > 1,

where ξ̂(j)(t), j = 0, 1, . . . N −1 are defined by (18)
and (19).

For n > 2, N > 1, using a method similar to
that used in [8], it follows from (22) that there exists
a positive number η (0 < η < 3

1+4a ) such that

| R(N)
A (t) |6 Ce

−ηbt
1+a , | R(N)

B (t) |6 Ce
−ηbt
1+a .

(31)
Hence, as t is sufficiently large, we have proved that

2iû1(t) = e
−bt
1+a [A cos(σt) + B sin(σt)], (32)

where

A = 2i
∞∑

N=0

εN+1A(N),

B = 2i
∞∑

N=0

εN+1B(N),

in which A(N) and B(N) are defined by (30), and the
series A and B converge absolutely and uniformly
for ε ∈ [0, ε0]. Now, we have

u(x, t) = 2iû1(t) sin x + Ru(x, t), (33)

where

Ru(x, t) = 2i

∞∑
n=2

sinnx

∞∑

N=1

εN+1ξ̂(N)
n (t).

Using inequality (22) results in

|Ru(x, t)| 6 exp[
−(1 + η)bt

1 + a
]

×
∞∑

N=1

CNεN+1(N + 1)−2
∞∑

n=2

n−6,

6 C exp[
−(1 + η)bt

1 + a
]. (34)

It derives from (32), (33) and (34) that formula
(6) is valid. Thus, the proof of the theorem is com-
plete.

4. Conclusions

In conclusion, we would like to return the issue of
the smallness of initial data associated in problem
(4). Although this assumption is needed to show
the global-in-time existence for the problem, some
equations admit global-in-time solutions for large
initial data. Such solutions may have time decay
due to dissipation or dispersion. It is the time de-
cay that solutions will become small beginning from
some t = T and the asymptotics will be valid for
the large initial data as t tends to infinite.
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