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Abstract

The initial-boundary value problem is investigated
for a generalized Boussinesq equation with the
quadratic nonlinearity. For small initial data and
homogeneous boundary conditions, its solution is
constructed in the form of a series which converges
absolutely and uniformly. The long time asymp-
totic expansion of the solution is acquired to show
the nonlinear effects of amplitude.
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1. Introduction

Boussinesq equation was first presented in [1] to
research the propagation of small amplitude’s long
wave on the surface of shallow water. From then
on, people have made a great deal of investigations
for the equation (see[2]-[4]). One of the classical
Boussinesq equations is written in the form

Ut = —Ugaze + Uga + BU7) o, (1)

where constant coefficients o and 8 depend on the
depth of fluid and the speed of waves. Clarkson [3]
established a general method to determine the ex-
act solutions of equation (1). Hirota deduced con-
servation laws and examined it’s numerical solu-
tions in literature [5]. Lai [9]-[10] studied the long
time behavior of solutions for nonlinear wave equa-
tions. Nakamura [6] studied the exponential decay
of the Boussinesq equation with spherical symme-
try.

Varlamov [7] considered the following Boussi-
nesq equation with initial-boundary assumptions

Ut — Qbutm = —QUggzy + Ugz + 6(”2)$$7 (2)

where # € R', o and b are positive constants and
a > b%. Making use of the eigenfunction expan-
sion method in a ball, Varlamov [8] investigated a
long time asympotics of solution for a Boussinesq

equation similar to equation (2). Polat [11] consid-
ered the blow up phenomena of solutions for the
following Boussinesq equation with damping term

2 2
Ut — Ugy + (;U’EITT - Aummtt —TUggt = ﬂ(u )’I"I‘ -7 U,

where d, A\, r, 3 and 7 are constants, which satisfy
some assumptions.

The objective of this paper is to study the well-
posedness of the following generalized Boussinesq
equation with initial-boundary conditions

Uty — AUgtgar — 2butmx +du = —ClUgggy + Ugx +
ﬁ(uz)m + huza (3)

where a > 0, b >0, ¢>0d > 0,h and  are con-
stants and a+c > b%. Under some assumptions, the
existence and the uniqueness of solution for equa-
tion (3) are established. It will be shown that the
long time behavior of the solution in equation shows
the presence of damped oscillations decaying expo-
nentially in time as ¢ — oco. The methods for the
proof of our main theorem in this paper are based
on those of [7]. However, it should be emphasized
that the technique for proving uniqueness of the
solution is different from that presented in [7] in
which the time extension method was used.

2. Main result

The task of this paper is to consider the fol-
lowing generalized Boussinesq system with initial-
boundary conditions

Ut — QUttze — 20Uter + AU = —ClUgzea+

Uz + B(U?) 2z + hu?,

u(0,t) = u(m,t) =0, (4)
Uzm((),t) = umm(ﬂa t) =0,

u(z,0) = ep(x), ue(z,0) = €(z),

where a > 0,d > 0, b, c and ¢ are positive constants,
x € (0,m),t>0, hand 3 € R

Definition 2.1: If u(0) = u(r) = u (0) =
= u?"2(0) = w?"2%(r) = 0 and



u®)(2) € L*(0,7), the function u(x) is said to
belong to the class C?*(0,7), n > 1.
Definition 2.2: The function u(z,t) defined
n [0, 7] x [0,400) is said to be the classical solu-
tion of the problem defined by system (4), if u(x,t)
and its derivatives included in (4) are bounded and
continuous, and satisfy system (4).

Theorem 2.3: If a > 0,¢ > 0,d > 0,a+ ¢ >
b2, o(z) € C%(0,7),¢(x) € CH0, ), there is a &,
for any e satisfying 0 < € < g, problem (4) has a
unique classical solution expressed in the form

Z NN (1), (5)

N=1

where u) (2, t) will be defined in the proof (see(23)

r (24)). Series (5) and its derivatives, which ap-
pear in problem (4), converge absolutely and uni-
formly. For x € [0,7],t > 0,0 < € < &. The
problem (5) has the following asymtotics as ¢ is suf-
ficiently large

u(z,t) = e_l%at[(A cosot + Bsinot)sinz +
O], (6)

ac+atc—b2+1+ad+d

where o = e

stant, 0 < n < 1+4a

For simplicity, throughout the paper, we de-
note by C any possitive constants independent of
t, which may depend on ¢(z), ¥(z) and other con-
stants appearing in system (4).

is a positive con-

3. Proof of Theorem 2.3

3.1. Existence of solution

We make an odd extension for 2 on [—m, 0], and rep-
resent u(x,t) in the form of Fourier series expressed
by

o0

’UJ($, t) = Z an(t)eincv, (7)

n=—o00,n#0

where

1 [" ;
Un(t) = %/ u(z,t)e™ dx,

from which we have u_,(t) = —u,(t),n > 1.

In the sequel we shall denote the norm of the
space of functions belonging to L?(—,7) for each
fixed t > 0,

T

|w4wn=nuunua,mﬂ=</”|1uat>ﬁdw%.

—T

It follows from (7) that

oo

=2 Z U, (t) sinnx, (8)

us
- u(z,t) sin ned.
1 Jo

Noting the initial functions on [—7, 7], which have

(’5771 = _S/Enﬂ/}fn = —VYn,N P> 1; we get
p@)=" > fne, (9)
n=—o00,n#0
)= Y e (10)
n=—oo,n#0

Furthermore on [0, 7], we obtain

o0
o(x) = 2i Z Pn sinnz,

n == fo (p x) sin nadx, (11)
w( ) =2i Z U sin na,
O fo x) sinnzdz.

Integrating (11) and using the smoothness assump-

tion of initial data yield the following inequalities
|G IS~ [ dnl<Cin™, nz1, (12)

where (' is a positive constant.
Substituting (7), (9) and (10) into (4) gives rise
to the following Cauchy problem for ,,(t)

(14 an?)u, () + 2000, (t)+

(cn® +n® + d)iin(t)
= (~Bn? + Wp(an(t). (13)
Un(0) = €28, U, (t) = €24y,
where
p(in(t) = g (8119 (1),
g=—00,97#0,n
Gon(t) = —Tn(t), n>1.
If n =1, it has
p®) = 25 @ ,(i,lt)  (14)

g

=1
= 2 El Ug (t)U144(2)-
g:

If n > 2, we have

- 070 =23 s



Setting &, = €@, and ¥,, = E’(Zru we get the solu-
tion formula for problem (13) in the form

Ga(t) = eetrant {[cos(ont) (15)
n bn? i sin(ant)]q)n . sin(op,t) v,
1+an On On
B pBn? —h
on(l4 an?)
(16)
where

7)] sinfo, (t—7)|p(w,(t))dr

¢ 2
—bn
K= T (e
/0 exp[l + anz(
VaenS + (a+c—b%)nt +
1+ an?

(I1+ad)n?+d

b

Op —

in which we require a 4+ ¢ > b2,d>0

Now, we consider integral equation (16) by us-
ing perturbation technique. Firstly, we express
Un(t),(n = 1) as a form of series about ¢

Z EN-HZ(N (17)

N=1

Substituting (17) into (16) and equating the coef-
ficients of like powers of € result in the following
formula.

When N = 0, we have

E,(LO) (t) =ee an? {[cos(o,t) +

bn?  sin(o,t) sin(opt)
—)0, + ———=V, }. 1
14+an? o, [n + On } (18)
When N > 1, we get
AN (4 pBn?+h / —bn?
& (1) on( tand) J, expl— 5 (¢ = 7)]
sinfo, (t — 7)]Qn (£ (7))dr, (19)
where n > 1 and
n—1 N
N (é\(]) ) =én nj gl) g(N J)( )
g=1 j=1
oo N
,QZZ&Jﬂ:) E(N ])( ),
g=1j=1

e1=0;e, =1,ifn > 2.
In order to state that formula (7) represents
the solution of problem (4), we need to prove that

the series
oo oo
u(x,t) — § ein® § :EN+1
n=—o00,n#0 N=0

24 Z sin na Z eNFLEN) (1)
n=1 N=0

converges absolutely and uniformly. To do this, we
construct the following estimate for n > 1, ¢t >
0, N >0,

| EM () |[< CN(N + 1) 2 S Tt (20)

where C is a positive constant independent of
N,n,e and t. We will use the induction method
to prove inequality (20).

When N = 0, form (18), we have

2 2
SO | < eertmEil4

) [ n |

1
On

b
< en e~ Tral,

Assuming that (20) is valid for all fAn(S) (t) with 0 <
s < N — 1, we shall prove that (20) also holds for
s = N. According to [7], for any integer n > 1,9 >
1, and g # n, we have
[n—g| g7 <2 g™+ [n—g |7
<2 (N+1) 22+ (N+1-5) 7).

Using lf‘% > ?ba(n # 0) and (19) leads to

€M (1)) <

o0
x> (g7 +In—gI7%
g=1

C|B|(N +1)"2n"5

N
x Y CITICNTITR 4 (N 1 - 5) 7]

j=1
X ‘ SN(n,t) |7
where
|Sn(n, t)]
o2y (T bn? 2b
< Cetran?’ exp(———= — ——71)d
/0 Xp(1+an2 1—|—aT) g
: -y,
_ _bn t e 1+an a T —
= (e 1+an?” x | RS |
1+an? 1+a
< Ce Tt (21)



Therefore (20) holds.
For n > 2, we derive
bn® (L4
1+an?2” 1+4a

i

where 0 < n < . Furthermore, we get

1+4
~ (N 1

16 < OV (V4 1) 20 L (22)

Substituting (17) into (8) and interchanging the or-

der of summation in the series, for z € [0,7],t >
0,e € [0,e0], we get

u(z,t) = 2i Z Uy, (t) sinnx
n=1

where
u™) (z,t) = 2 Z N (¢) sin na. (24)

Differentiating (18)-(19), for & = 1,2, we have

k 2 —bn2t
k(0 l 2
(95() Zo 1+an2)€1+m x
bn? nt
OF ~H[cos(ont) + n”_sin(ont) )]q)n

14+an? o,
sin(o,t
+¥\Ijn}7

On

n? —h
A ) =~

/O gr(n,t — P)ONED (F))dr + Re(n, 1),

where
k 2 2
L bn et
Z cx(— 1 + anQ) erten®oy
1=0
k—
X Sin[ant —+ %],

Qn (f/;l(]) (7)) is defined by (19) and ¢}, are binomial
coefficients. Ry (n,t) are defined as follows

B’ —h

Rl(n,t) = 0, 1 + n2

R2 (n, t) =

Qn(ED (7).

By the bounded properties of % and
2

% and making the estimates similar to (20)
forn > 1,N > 0,t > 0,k > 0,1,2, we know that

the following inequalities hold
OFE (0] < V(N + 1) Pnk0em Tt (25)

0k ()| < Cnk—Se~THat, (26)

The ugprr and Uy, are the highest order of
derivative terms appearing in system (4). Inequal-
ities (25) and (26) show that the derivatives of
u(z,t) in problem (4) are absolutely and uniformly
convergent. Thus, we know u(z,t) is a classical so-
lution of problem (4).

Uniqueness of the solution

Assuming that problem (4) has two classical solu-
tions uM)(z,t) and u(® (x,t), we shall prove that
uM(z,t) is equal to u®(x,t). Making an odd ex-
tension for the two solutions on (—, 0], we notice
that the two solutions belong to space L?(—m, 7).
According to Definition 2.2, for each fixed ¢t > 0,
we have

max [uV)(z,t)] < ¢, max |[u®(z,1)] < ¢,
T€[—7,m) r€[—7,m)

where ¢; is a constant depending on t.

Setting w(x,t) = uM (z,t)—u® (z,t) and mak-
ing an even extension for w(z,t) on ... (—3m, —2m),
(=27, —7), (m, 27), (27, 37), .. ., from (4), we have

Wy — QWitze — 20Wiee + AW = —CWezpe + Wae
+Bw(w, 1) (M (2, 1) + u® (2, )]z

+hw(z, ) [uM (z,t) + u® (x,1)],

w(z,0) = wi(x,0) = 0.

Taking the Fourier transform of w on (—oo, +00),
namely,

w(,t) = /+Oo w(zx,t)e” % dx,
we obtain
(14 a€®)D (€,t) + 2062 (&,1) +
(ct + € + d)w(e, t) = (—BE + ) f(E,1), (27)

where f(f, t) = w(u® +u®)(z,
(27) that

t). It follows from

’L/U\(& t) = gﬁﬁf;}gz fo €x p 1+a§2 (t T)]
x sinfog(t — 7)|f(¢, t)dr,  (28)



where

Vacgs +

(@t c— et
1+ ag?

(1+ad)é2+d
O¢ = .

Hence, we have

—b¢? ~
Tt Lar

@ < C / | exp

e / Fle.[2dn]?. (29)

Using inequality (29) and the Parseval inequality
leads to

+00 +oo t
m 2 ge < £(&,1) |2 drd
/m B ) P de [w/olf(ﬁt)l vt
t o~
<c [ 17 I ar

t
<cC / | w(z, ) (@ (2, £) + u® (z, 1) |22 dr
0

t
< C’/ cr || w(z,t) ||2L2 dr.
0

By Growall’s inequality, we get w(z,t) = 0 (in
L?). Using the continuity of functions u!(x,t) and
u?(x,t) results in u'(z,t) = u?(z,t). It completes
the proof of uniqueness.

3.3. Long time asymptotics

In order to find the long time behavior of the con-
structed solution, we firstly determine a subtle as-

Since uy(t) = > ENHaN)(t)v
N=0
from (18) and (19), we get

ymptotic Uy ().

£0(t) = e T2t [A° cos(ot) + B sin(at))],

b

M) (1) = e~ et [AN cos(ot)]+ [BY sin(at)], (30)

where

A(O) = 6(517
b o~
BO  — € o
0_(1 +a§01 +¢1)7
.o Vacta+c—b0+1+ad+d
= 1+a ’
—h t
o a) Jo
—h t
B _ (ﬁ1+)/ e cos(07) Sy, (T)dr,
a

Sun(t) = ZZ£1+g é\(N j)( )N = ]-7

g=1j=1

where g(j)(t), i=0,1,...
and (19).
For n > 2, N > 1, using a method similar to

that used in [8], it follows from (22) that there exists

N —1 are defined by (18)

a positive number 1 (0 < n < 1+4 ) such that
I RM@) 1< cemie, | R () |< CeTia

(31)
Hence, as t is sufficiently large, we have proved that

2iuy (t) = eTF [A cos(ot) + Bsin(at)], (32)
where
A=2i Yy Nt AN
N=0

B =2i Z N+ W)
N=0

in which AN) and B(N) are defined by (30), and the
series A and B converge absolutely and uniformly
for € € [0, e9]. Now, we have

u(z,t) = 24U () sinx + Ry (z,t), (33)
where
R, (z,t) =2i Z sin na Z eNFLEWN) (4,
n=2 N=1
Using inequality (22) results in

—(1+n)bt

Ru 7t <
(B, )] < expl =

]
Sy

! (34)

% Z ONeNFU(N 4 1
N=1
—(1+n)bt
1+a
It derives from (32), (33) and (34) that formula
(6) is valid. Thus, the proof of the theorem is com-
plete.

< Cexpl

4. Conclusions

In conclusion, we would like to return the issue of
the smallness of initial data associated in problem
(4). Although this assumption is needed to show
the global-in-time existence for the problem, some
equations admit global-in-time solutions for large
initial data. Such solutions may have time decay
due to dissipation or dispersion. It is the time de-
cay that solutions will become small beginning from
some t = T and the asymptotics will be valid for
the large initial data as t tends to infinite.
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