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Abstract 
One generalized synchronization method for two new 
chaotic systems is established and the mathematical 
proof of this method is provided. Theoretical analyze 
and simulation results show that the method in this 
paper is effective. 
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1. Introduction  
Chaotic synchronization and control have held many 
authors interest in the past few decades [1]-[13].  Two 
types of current concepts of synchronization are the 
identical synchronization and generalized 
synchronization. The identical synchronization means 
the case where states of two systems are equal or 
asymptotically equal as time goes to infinity. The 
generalized synchronization means the case where 
states of two systems satisfy a functional relation or 
asymptotically satisfy a functional relation as time 
goes to infinity. Chaotic generalized synchronization 
has attracted great interest due to its theoretical 
challenge and its great potential applications in secure 
communications，chemical reactions，and modeling 
brain activity. 

Furthermore, more and more applications of 
chaos synchronization in secure communications make 
it much more important to synchronization two new 
different chaotic systems. 

In this paper, we proposed a generalized 
synchronization method of two new different chaotic 
systems. Our method doesn’t cancel all nonlinear 
information of response system. This is different with 
many investigated results [14]-[15]. Furthermore, we 
obtain the control law theoretically rigorous. 
Theoretical analyze and simulation results show that 
the method in this paper is effective. 

 

2. Generalized synchronization 
method between different chaotic 
systems 

Recently, two new chaotic systems have been reported 
[15]. They are the following system (1) and system (2). 
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System (1) and system (2) are chaotic systems. 
Their chaotic attractors are show as Fig.1 and Fig.2. 
They are different chaotic system [15]. 

      
Fig.1 Chaotic attractor of system (1). 

 
Fig.2 Chaotic attractor of system (2). 

In order to realize the chaotic synchronization 
between system (1) and system (2), we take system (1) 
as drive system, and system (2) as response system. 
Therefore, we define the drive and response system as 
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follows.  
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Where, we have introduced three control function 
)(),( 21 tutu and )(3 tu  for system (2). Our goal is to 

determine the control function )(),( 21 tutu and )(3 tu , 
and realize the synchronization between system (3) and 
system (4). Furthermore, we need not cancel all the 
nonlinear information in system (4), and will preserves 
partial nonlinear information for response system (4). 
This is different from many investigated results [14-15]. 

Now, we define the error 3,2,1, =−= ixye iii for 
system (3) and system (4). We can obtain the follow 
theorem. 

Theorem 1:  if we choose 
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and all the eigenvaules of matrix 
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C+ have negative real part, then the 

chaotic synchronization of system (4) and system (3) 
can be achieved. Where C is a suitable constant matrix. 

According to the above, the feedback function 
)(tu  don’t consist the nonlinear term of system (2), so 

we preserves partial nonlinear information for response 
system (4). 

Proof  
Subtracting Eq. (3) from Eq. (4), we can obtain the 

follow (5). 
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Certainly, 3,2,1,0 ==−= ixye iii is one fixed 
point of error dynamical system (5). The Jacobi matrix 
of (5) at this fixed point is as follow. 
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Because all the eigenvaules of matrix 
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C+ have negative real part, so the fixed 

point 3,2,1,0 ==−= ixye iii  is asymptotical stable. 
So, the zero solution of Eq. (5) is asymptotical stable. 
Namely, )3,2,1(0)(lim ==−

+∞→
ixy iit

. Therefore, the 

chaotic synchronization of system (4) and system (3) 
can be achieved.  □ 

If we take system (2) as drive system, and system 
(1) as response system. Therefore, we define the drive 
system (8) and response system (7) as follows. 
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Our goal is to determine the control function 
)(),( 21 twtw and )(3 tw , and realize the synchronization 

between system (7) and system (8). 
Now, we define the error 

YXe −= ( 3,2,1, =−= iyxe iii ) for system (7) and 
system (8). We can obtain the follow theorem. 

Theorem 2:  if we choose 
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and all the eigenvaules of matrix 
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D+ have negative real part, then the 

chaotic synchronization of system (7) and system (8) 
can be achieved. Where D is a suitable constant matrix. 

Proof 
Subtracting Eq. (8) from Eq. (7), we can obtain the 

follow (9). 
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Certainly, 3,2,1,0 ==−= ixye iii is one fixed 
point of error dynamical system (9). The Jacobi matrix 
of (9) at this fixed point is as follow. 
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Because all the eigenvaules of matrix  
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D+ have negative real part, so this 

fixed point is asymptotical stable. Namely, 
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t

. Therefore, the chaotic 

synchronization of system (7) and system (8) can be 
achieved.  □ 

According to Theorem 1, if we choose suitable 
constant matrix C , then the chaotic synchronization of 
system (4) and system (3) can be achieved. According 
to Theorem 2, if we choose suitable constant matrix D , 
then the chaotic synchronization of system (7) and 
system (8) can be achieved. 

3. Simulation results 
According to the above theorem, our goal is choose 
suitable constant matrix C or matrix D . Now, we take 
some case for example. 

3.1. System (1) as drive system 
According to the above theorem, we need all the 

eigenvaules of matrix 
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real part. So, there are many constant matrix C . 
Therefore, we can realize the chaotic synchronization 
between system (4) and system (3) easily. 
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chaotic synchronization of system (4) and system (3) 
can be achieved. The simulation result is shown as Fig.3. 
Fig.4 shows the simulation result for C = 
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 . Where the initial conditions are 

)1,6,4())0(),0(),0(( 321 =yyy and 

)1,3,3())0(),0(),0(( 321 −=xxx , and 2/1
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Fig.3: Chaotic synchronization simulation result between 
system (4) and system (3). 

     
Fig.4: Chaotic synchronization simulation result  between 
system (4) and system (3). 

3.2. System (2) as drive system 
According to the above theorem, we need all the 

eigenvaules of matrix 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−

400
0100
007/20

+ D have 

negative real part. So, there are many constant matrix 
D . Therefore, we can realize the chaotic 
synchronization between system (7) and system (8) 
easily. 
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the chaotic synchronization of system (7) and system (8) 
can be achieved. The simulation result is shown as Fig.5. 
Fig.6 shows the simulation result for D = 
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)7,8,4())0(),0(),0(( 321 =yyy . 
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Fig.5: Chaotic synchronization simulation result between 
system (7) and system (8). 

 

  
 Fig.6: Chaotic synchronization simulation result between 
system (7) and system (8). 

4. Conclusions 
One generalized synchronization method for two new 
different chaotic systems is established, and the 
mathematical proof of this method is provided. Our 
method doesn’t cancel all nonlinear information of 
response system, and we preserve partial nonlinear 
information for response system. This is different with 
many investigated results. Theoretical analyze and 
simulation results show that the method in this paper is 
effective. 
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