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Abstract  
In splice sites prediction, the information contained in 
false splice sites is often ignored, which has been 
recognized to be very valuable. In this paper, three 
novel encoding approaches, MCM with DTF, MCM 
with UTF and WAM with UTF, are described, all of 
which consider the information both in true and false 
splice sites. From the comparison with 5 other 
encoding methods, we can conclude: (1) SVM can 
benefit from the information contained in false splice 
sites as well as in true splice sites. (2) The 
performance of MCM with DTF and WAM with DTF 
is comparative, both of which give the better 
performance nearly in all cases. (3) The performance 
of binary vector encoding method is surprisingly good, 
the potential of which need to be further investigated.   
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1. Introduction 
Identification of protein coding genes in genomic 
DNA becomes an increasing important task in 
bioinformatics, often referred to as gene finding. For 
most eukaryotic genomes, a protein coding gene 
consists of a set of regions called exons, usually 
separated by other regions called introns. The 5’ 
boundary or donor site of these introns usually 
contains the dinucleotide GT (GU in pre-mRNA), 
while the 3’ boundary or acceptor site contains the 
dinucleotide AG. The occurrence of splice sites (i.e., 
donor and acceptor sites) in genomic sequences is an 
important characteristic for gene finding. It has been 
recognized that accurate prediction of higher 
eukaryotic gene structure largely depends on the 
ability to pinpoint the exact splice sites [23].  

Through the rapid sequencing of genes and their 
cognate transcripts, the number of experimentally 

confirmed splice sites has grown extensively, which 
makes it possible to predict splice sites based on 
machine learning approaches. Splice sites prediction 
can be divided into two subtasks: donor sites 
prediction and acceptor sites prediction, either of 
which can be formally stated as a binary classification 
problem: {donor site, non-donor site} and {acceptor 
site, non-acceptor site}. A number of computational 
methods have been developed to identify these splice 
sites, including stand-alone splice site finders and gene 
finders. Most of the latter have a modular structure, in 
which splice site predictor is a critical component [19].  

The Markov chain model (MCM) is a well-known 
tool for analyzing biological sequence data. Moreover, 
higher order MCMs are often considered to be more 
efficient in capturing possible interactions among 
nucleotides surrounding the splice sites [15]. However, 
with increasing order of the MCM, the number of 
model parameters increases exponentially (see further), 
which makes it impossible to obtain a stable 
estimation of parameters with the limited amount of 
training data. Because in order to estimate parameters 
of a k-order MCM, many occurrences of all possible (k 
+ 1)-mers must be appear in the training sequences. In 
other words, their direct implementations are 
practically prohibitive. However, in order to take 
advantage of the strengths of higher order MCMs, 
several approximation techniques and algorithms have 
so far been developed. Salzberg et al. [9]-[10] 
proposed an IMM (Interpolated Markov Model) 
approach, which utilized a linear combination of 
probabilities obtained from several lengths of 
oligomers (i.e., lower order MCMs) to make 
predictions, giving high weights to oligomers that 
occur frequently and low weighs to those that do not. 
Ohler and Reese [20] and Ohler et al. [21] put forward 
another IMM approach. NN (Neural Network) and 
SVM (Support Vector Machine), both of which are 
very effective methods for general-purpose pattern 



recognition, are capable of learning complex 
interactions of nucleotides by finding arbitrarily 
complex non-linear mapping. Ho and Rajapakse [17] 
and Baten et al. [4] have shown respectively that the 
higher order MCMs can be approached by NN and 
SVM with taking the outputs of low order MCMs as 
inputs.  

The SVM method was proposed initially by 
Vapnik and his co-workers [11]-[12], which is not 
only well-founded theoretically, but also has a number 
of interesting properties, including effective avoidance 
of overfitting and underfitting, the ability to handle 
large feature spaces, information condensing of the 
given data set, etc. Shortly after its introduction, its 
performance has already either matched or 
outperformed that of traditional machine learning 
approaches (e.g., NN) for a wide range of applications 
including splice sites prediction [2]-[7]. Currently, the 
SVM approach mainly deals with numerical data (with 
the exception of special kernel functions), so the DNA 
sequences must be encoded beforehand in some way. 
Thus the low order MCMs can also be viewed as pre-
processing step for the SVM. In addition, since there 
are two parts in the training data set: true splice sites 
and false splice sites, both of which are known prior. 
However, the information contained in false splice 
sites is often ignored, which has been recognized to be 
very valuable [1]-[2]. We are interested in how to 
make use of the information contained in the false 
splice sites as well as in the true splice sites. Motivated 
by [17] and [2], we accordingly design three novel 
encoding approaches: MCM with DTF, MCM with 
UTF, and WAM with UTF, all of which consider the 
information both in true and false splice sites. 

 

2. Markov chain model  
A MCM can be seen as a collection of states, in which 
observed state variables are drawn from the alphabet 
ΩDNA = {A, C, G, T}. The number of states is equal to 
the length of each sequence, and each state variable of 
the model corresponds to a nucleotide in the sequence. 
For convenience, let us consider a sequence of length l: 
s = (s1, s2, …, sl), where si ∈ ΩDNA, i = 1, …, l. Then 
the nucleotide si is a realization of the i th observed 
state variable of the MCM, and only state transitions 
from state i to state i + 1 are allowed. It emits symbols 
from the alphabet ΩDNA at each state, and then serially 
evolves form one state to the next state, where the 
emission probability of each symbol at each state is 
characterized by a position-specific probability 
parameter. Assume the MCM is of k th order, then the 
likelihood of the sequence s generated by the model M 
is  
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where P(s1, …, sk | M) is the independent probabilities 
of the oligomers of length k: (s1, s2, …, sk), and P(si | 
si-1, si-2, …, si-k, M) denotes the conditional probability 
of emitting a nucleotide at position i given k previous 
ones. Given n aligned sequences of length l (i.e., 
training data), the maximum likelihood (ML) 
estimation of the emission probability can be 
performed simply by counting the oligomers of length 
k + 1 and k in a set of training sequences:  
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where #(·) denotes the frequency of its argument in the 
training samples. That is, a k-order MCM can be fully 
expressed by a set of 4k + (l - k)×4k+1 parameters:  
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In this paper, the first order MCM is utilized to 
model position-specific dependencies among 
nucleotides surrounding the splice sites. The 
parameters in the first order MCM can be tabulated in 
a 16×l matrix, where the first column contains the 
independent probabilities of the four nucleotides, and 
all the remaining columns contain conditional 
probabilities. This matrix is referred to as a MCM 
matrix. 

 

3. Methods of encoding 
Two sample logo [24] figures shown in [4] suggest 
that there is a significant difference between vicinities 
of the true and false splice sites. That is, there exists 
some valuable information in false splice sites as well 
as in true splice sites, which has been pointed out by 
Yin and Wang [1] and Huang et al. [2] and validated 
in their computational experiments. However, the 
information contained in false splice sites is often 
ignored [4]. In what follows, we proposed three novel 
methods to make use of the information contained in 
false splice sites as well as in true splice sites.  
 

3.1. MCM with DTF  



According to Eq. 3, two MCM donor (resp. acceptor) 
matrices MT, MF can be derived from true and false 
donor (resp. acceptor) sites, respectively. Motivated by 
Huang et al. [2], an encoding matrix M is obtained by 
subtracting the false donor (resp. acceptor) sites matrix 
MF from the true donor (resp. acceptor) sites matrix 
MT, i.e., M = MT - MF. Then the training and testing 
data are encoded with this encoding matrix M. This 
encoding method is referred to as MCM with 
difference between the true and false sites (DTF).  

 

3.2. MCM with UTF  
After two MCM donor (resp. acceptor) matrices MT, 
MF are obtained, each sequence in training and testing 
data set is encoded both with MT and with MF. Then 
these two encoded sequences are concatenated as 
inputs for SVM. This encoding method is indicated as 
MCM with the union of the true and false sites (UTF).  

 

3.3. WAM with UTF  
The weight array method (WAM), closely related to 
first order MCM, was introduced for splice sites 
prediction by Zhang and Marr [26] on the basis of the 
weight matrix model (WMM) [22]. However, the 
WAM as an encoding method for splice sites 
prediction was first proposed by Baten et al. [4], 
initially referred to as WMM1. Here, we briefly 
introduce how to obtain a WAM matrix from the 
training data. Given n aligned sequences of length l, S1, 
S2, …, Sn, where Sk = (Sk1, Sk2, …, Skl), Ski ∈ ΩDNA, k 
= 1, …, n, i = 1, …, l. A 16×(l - 1) WAM matrix M is 
obtained as follows  
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Each element in this matrix indicates the number of 
times that a given dinucleotide is observed at a given 
position. Likewise, the encoding methods: WAM with 
DTF and WAM with UTF can be obtained, where the 
former was put forward by Huang et al. [2], initially 
called as PN with FDTF.  

4. Support vector machines  
The SVM has a strong theoretical root (Statistical 
Learning Theory, SLT), the basic idea of which is to 
represent the sample set with minor support vectors. In 

essence, training data first are mapped to a high 
(possibly infinite) dimensional feature space, and then 
an optimal linear function in this space is constructed 
according to Structural Risk Minimization (SRM) 
principle, not Empirical Risk Minimization (ERM) 
principle as in NN. This allows giving guarantees for 
the high performance on unseen data, i.e., good 
generalization ability. The key is a good choice of the 
so-called kernel function which implicitly defines the 
feature space and implements dot product operation of 
feature space in low dimensional input space. In what 
follows, a brief introduction is given. See [11]-[12] for 
more details.  

In fact, the SVM for binary classification problem 
can be expressed as a convex quadratic programming 
problem given by:  
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where xi ∈ Rn denotes an encoded donor (resp. 
acceptor) sites training example, yi ∈ {+1, -1} is the 
corresponding class, i.e., true (+1) or false (-1) donor 
(resp. acceptor) site, n is the number of training 
examples, K is the kernel function, C+ and C- are the 
cost we pay when misclassify a true and false donor 
(resp. acceptor) site, respectively, and α is a vector of 
Lagrange multipliers that needs to be optimized, each 
component of which corresponds to one particular 
training example. After the training process, only a 
small part of αis have non-zero values, whose 
corresponding training examples are called the support 
vectors.  

For splice sites prediction, the number of the false 
sites is often much more than that of the true sites. Let 
n+ and n- are the number of true and false donor (resp. 
acceptor) site sequences in training data set, 
respectively, then n = n+ + n-. In this paper, we set  
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n
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nC C
n
+
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where C is a penalty parameter preset by user. In this 
way, given C, we can assign a more cost for 
misclassification of a true donor (resp. acceptor) site 
sequence than for misclassification of a false donor 
(resp. acceptor) site sequence. In this paper, two 
separate SVM classifiers are constructed, one for 
donor sites and the other for acceptor sites.  

Once the vector of Lagrange multipliers α is 
known, then the decision function is given by  
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where SV is the set of support vectors, and θ(x) is +1, 
if x is greater than or equal to a certain threshold, -1 
otherwise.  

 

5. Material and data 
Like most other methods, the SVM also seeks for 
consensus motifs or features underlying surrounding 
the splice sites, by learning from sets of training data 
containing true and false splice sites. This implies that 
a task-specific data set must be constructed, which 
requires the selection of information sources that are 
considered to be relevant for splice sites recognized by 
a complex of proteins and small nuclear RNAs, known 
collectively as the spliceosome. However, for now, 
biochemical details of the mechanism of RNA-
splicing have not been understood completely, which 
limits features extraction from the viewpoint of 
biochemistry. In general, the selected features are 
adjacent nucleotides at fixed positions relative to the 
candidate splice site, i.e., l1 adjacent positions 
upstream and l2 adjacent positions downstream the 
candidate splice site as shown in Fig. 1. The total 
length l is l1 + l2 + 2.  

 

 
 

Fig. 1: The length of sequence around candidate donor and 
acceptor sites.   
 

NN269 data set1 was collected to develop and test 
algorithm for human splice sites identification in 
GENIE system [13]-[14]. It consists of 1324 
confirmed true donor sites, 1324 confirmed true 
acceptor sites, 4922 false donor sites and 5553 false 
acceptor sites collected from 269 human genes. Each 
of the false donor/acceptor sites also has GT/AG in the 
splicing site but is not a real splice site according to 
the annotation. The window size for a donor is 15 

                                                           
1 This data set is available at  
http://www.fruitfly.org/seq_tools/datasets/Human/GENIE_9
6/splicesets/. 

nucleotides (l1 = 7, l2 = 6), for an acceptor 90 
nucleotides (l1 = 68, l2 = 20). This data set is split into 
a training set and a testing set. The training data set 
contains 1116 true donor, 1116 true acceptor, 4140 
false donor and 4672 false acceptor sites. The testing 
data set contains 208 true donor, 208 true acceptor, 
782 false donor and 881 false acceptor sites. However, 
there is an ambiguity in splice.train-real.D (No.: 903, 
HSG17G_3388) and splice.train-false.D (No.: 358, 
HUMA1GLY2_3604), which are excluded from our 
experiments.  

Since the training data is limited, some rare events 
(positional dinucleotides) may be observed in the 
testing data but not in the training data. In order to 
avoid zero probabilities for these events, pseudo 
counts are introduced. In fact, they have a natural 
probabilistic interpretation as the parameters of 
Bayesian Dirichlet prior distributions on the 
probabilities for each state [16]. Though the pseudo 
counts should reflect our prior biases about the 
probability values, for simplicity, the observed 
frequency of each dinucleotide at each position is 
increased by 1/16 (the most plain prior knowledge) 
before used to estimate the corresponding probability 
parameters in MCM and WAM.  

 

6. Performance and assessment 
In order to assess prediction performance, receiver 
operator curve (ROC) analysis is used, which is a 
graphical representation of sensitivity (Se) and 
specificity (Sp) for a binary classification model. In 
this study, ROC is created from the false positive rate 
(on the x axis) and the sensitivity (on the y axis). The 
closer a curve follows the left-hand border and then 
the top of the border of the ROC plot is, the more 
accurate the classification model is [25].  

The sensitivity, also known as true positive rate 
(TPR), is the proportion of correct prediction of true 
sites. The specificity is the proportion of predicted 
sites that are actually true sites. The false positive rate 
(FPR) is the proportion of incorrect prediction of false 
sites. Formally, they are defined as  

, ,TP TP FPSe Sp FPR
TP FN TP FP FP TN
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where TP and TN are the number of the correctly 
predicted true and false splice sites, respectively, and 
FP and FN are similarly the number of the incorrectly 
predicted true and false ones, respectively. By varying 
the decision threshold used to map Eq. 8 onto a class, 
Sp and FPR can be calculated for all Se levels.   

7. Results and discussion 



7.1. Parameters optimization 
For the implementation of SVM, LIBSVM2 (version 
2.83) is utilized, which is a library for SVM. Here, we 
adopt the radial basis function (RBF) kernel function:  

( ) ( )2
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Now there are still two parameters, C [Eq. 7] and 
γ in the RBF kernel function [Eq. 10], which are 
unknown beforehand. A two-step grid search [18] is 
used to select the optimal parameters, and the Sp ratio 
at 5% false negative predictions (Se = 0.95) is used as 
the criterion to measure prediction performances. This 
measure is referred to as FN5% ratio [3]. First we do a 
coarse grid search using the following sets of values: 
C {2∈ -5, 2-3, …, 215} and γ {2∈ -15, 2-13, …, 23}. For 
all possible combinations (C, γ) the FN5% ratio is 
calculated using 10-fold cross validation. That is, the 
training data is randomly divided into 10 subsets of 
nearly equal size while preserving the class 
distribution. A model is induced 10 times, each time 
leaving out one of the subsets that is then used to 
calculate the FN5% ratio. An optimal pair (C*, γ*) is 
selected from this coarse grid search. In the second 
step, a fine grid search is conducted around (C*, γ*), 
with C {2∈ -1.75×C*, 2-1.5×C*, …, 21.75×C* } and γ 

{2∈ -1.75×γ*, 2-1.5×γ*, …, 21.75×γ*}.  
The final optimal parameter pair is selected from 

this fine grid search. In each grid search, especially in 
the fine grid search step, it is quite often the case that 
there are several pairs of parameters that give the same 
10-fold cross validation FN5% ratio. In this situation, 
we select the pair with the minimum number of 
support vectors. In addition, in the coarse grid search 
the optimal value for C or γ may be at the border of 
the search space. In this situation the search space for 
the parameter that is at the border is increased by the 
same step as described above (2±2) until no further 
improvement is observed.   

 

7.2. Performance comparison  
In this paper, we totally consider 8 encoding methods: 
MCM [4], MCM with DTF, MCM with UTF, WAM 
[4], WAM with DTF [2], WAM with UTF and 4-bit 
[7]-[8], 16-bit [6] binary vector encoding. MCM and 
WAM encoding method only consider the information 
contained in true donor (resp. acceptor) sites. Apart 
from 4-bit binary vector encoding, the other methods 
consider explicitly the dependencies between adjacent 
nucleotide positions. One of reasons that 4-bit binary 

                                                           
2 LIBSVM is available at  
http://www.csie.ntu.edu.tw/~cjlin/libsvm/. 

vector encoding is included is that it is simple and 
commonly used. For MCM and WAM encoding 
methods, although Baten et al. [4] reported their 
performances in NN269 data set, we have re-
conducted the experiment with the same setting as in 
[4], and the performance obtained has a very large gap 
with theirs. We have contacted with Baten, and he has 
said that there should not be any problem, but he has 
promised to check whether he has uploaded the right 
code. Before we get his response, here we only give 
our obtained results.   
 

 
 
Fig. 2: Comparison of performance for different encoding 
methods in donor sites prediction.  
 

 
 
Fig. 3: Comparison of performance for different encoding 
methods in acceptor sites prediction.  
 

Fig. 2 and Fig. 3 show the comparison for 
different encoding methods in donor and acceptor sites 
prediction. With the exception of binary vector 
encoding approaches (including 4-bit and 16-bit), the 
performances of MCM and WAM encoding methods 
are the worst ones, and the performances of MCM 
with DTF, MCM with UTF and WAM with DTF are 



the best ones. That is, SVM can benefit largely from 
the information contained in the false splice sites. 
According to [4], the performance of MCM encoding 
method is better than that of WAM encoding method, 
because WAM only takes into account the observed 
frequencies of pair of nucleotides and do not 
necessarily model the dependencies between 
nucleotides, which is again justified in acceptor sites 
prediction. However, it is not so for donor sites 
prediction. Maybe the difference is related to the 
optimal context lengths around the candidate splice 
site, i.e., l1 and l2 (see above), which are not 
completely identical for each encoding method [2]-[3]. 
The performance of MCM with UTF is better than that 
of WAM with UTF nearly in all cases. The 
performance of MCM with DTF matches that of 
WAM with DTF in all cases. In some case, the 
performance of MCM with UTF is better than those of 
MCM with DTF and WAM with DTF.  

Generally speaking, it will greatly contribute to 
the prediction performance to take explicitly into 
account of the dependences among adjacent positions 
in the splice sites. However, for 4-bit binary vector 
encoding method, its performance is surprisingly good, 
which is possibly one of the reasons why it is 
commonly used. Furthermore, 16-bit binary vector 
encoding method does not show an obvious advantage. 
Maybe the number of the training data is inadequate 
relative to the dimension of input space, especially for 
the acceptor sites prediction (5788 vs. 1440).   

 

8. Conclusions 
From the above comparison of the performances, it is 
not difficult to see that the false splice sites can help 
improve the splice sites identification, which is again 
justified. Whether for donor sites prediction or for 
acceptor sites prediction, MCM with DTF and WAM 
with DTF should be good but not the best choices. It is 
still necessary to study other ways that make use of the 
information contained in the false splice sites as well 
as in the true splice sites. However, since the 
computational complexity of binary vector encoding 
methods is much smaller than that of others, and their 
performance is surprisingly good, their potentials need 
to be further investigated. In addition, it is also 
possible that the performances can be improved by 
combining more properties of sequences that affect the 
mechanism of RNA-splicing, e.g., compositional 
information, coding potential, etc.   
 

Availability  

The source codes used in implementing the present 
methods are available from the authors upon request 
for academic use.   
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