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Abstract

Bounded commutative R`-monoids are a general-
ization of MV-algebras as well as of BL-algebras.
With the probability measure on the set of states
on bounded commutative `-monoids, we introduce
the satisfiability degrees of propositions as their av-
erage truth degrees. If we consider the probability
measure only on the set of state-morphisms, the
concept of satisfiability degrees will naturally in-
duce a similarity degree between two propositions
of any bounded commutative R`-monoid. Then we
can define a pseudo-metric on a bounded commu-
tative R`-monoid and study the properties of such
a metric space. Our result is an algebraic counter-
part as well as a generalization of the integrated
semantics for fuzzy logic.
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1. Introduction

States as the average truth degrees of propositions
in ÃLukasiewicz logic were introduced firstly on MV-
algebras by Mundici [10] roughly 40 years after in-
troducing MV-algebras by Chang [1] as an algebraic
counterpart of ÃLukasiewicz infinite-valued propo-
sitional logic. Because MV-algebras, M , are in-
tervals in unital lattice ordered groups (`-groups),
(G, u), due to Mundici’s representation theorem
[9], M = Γ(G, u) = {g ∈ G : 0 ≤ g ≤ u},
where u is a strong order unit, states on MV -
algebras can be defined as the restriction of nor-
malized positive group-homomorphisms to the in-
tervals M = Γ(G, u). This means that on any
MV-algebra we have a partial addition “+”. BL-
algebras have been introduced by Hájek [7] as al-
gebras of basic fuzzy logic containing all logics be-
hind fuzzy reasoning as special cases. Hence BL-
algebras are also a generalization of MV-algebras,
however, BL-algebras admit no partial addition.

The same problem arises also for bounded com-
mutative R`-monoids introduced by Dvurečenskij
[3] as a generalization of BL-algebras. Commuta-
tive R`-monoids are duals to commutative dually
residuated lattice ordered monoids (DR`-monoids)
which were introduced by Swamy [15] as a common
generalization of Brouwerian algebras and abelian
`-groups.

Luckily, Georgescu [6] has successfully intro-
duced the states (called Bosbach states there) on
BL-algebras which in case of MV-algebras coin-
cide with the notion of states for MV-algebra. In-
spired by Georgescu, Dvurečenskij [3] recently in-
troduced also the states on bounded commutative
R`-monoids and proved that every bounded com-
mutative R`-monoid admits at least a state. It
may happen that some bounded commutative R`-
monoid admits two more states, for instance, s1 and
s2, this gives rise to a question: which of s1(x) and
s2(x) should be taken as the average truth degree
of the proposition x ? Does there exist an effec-
tive method to average all the truth degrees s(x)
? The aim of the present paper is to give a posi-
tive answer to the question above. The idea behind
our calculus is very simple, for the case that the
set S(M) of states on M is finite, suppose that
S(M) = {s1, · · · , sn} and the set of truth degrees
of the proposition x is {si(x) | i = 1, · · · , n} =
{α1, · · · , αm}, then the probability of x taking the
truth degree αj is equal to kj

n where kj is the num-
ber of states whose value at x is αj . This suggests

that the average truth degree should be
m∑

j=1

αj · kj

n .

Following this idea, we shall consider the general
case later in the present paper.

The rest of the present paper is structured
as follows: In order to make the paper as self-
contained as possible, we shall recall in section 2
the representations of bounded commutative R`-
monoids and review some basic notions and con-
cepts such as states and state-morphisms that
shall be used throughout the paper. In section
3, as a generalization of the basic idea mentioned



above, we firstly consider the probability measure
µ on a nonvoid subset Ω of the set of all states
on a bounded commutative R`-monoid, and in-
troduce the concept of (Ω, µ)-satisfiability degrees
of propositions which is determined by Ω and
µ. Such a generalization is interesting since the
({s}, µ)-satisfiability degree of a proposition x is
just s(x) for any state s. In section 4, we con-
sider the case that Ω is set of all state-morphisms
on a bounded commutative R`-monoid M . The
(Ω, µ)-satisfiability degree of the distance function
d(x, y) = (x → y) ∧ (y → x) between two propo-
sitions x and y defined on M will naturally induce
a similarity measure between x and y. Then we
can define a pseudo-metric on M and study the
properties of this metric space. As an application,
we give in section 5 an example for ÃLukasiewicz
Lindenbaum algebra which shows that our result
can be viewed as an algebraic counterpart of the
integrated semantics proposed in [17] as well as a
non-trivial generalization of [17]. Section 6 is some
conclusion remarks.

2. Preliminaries

Commutative DR`-monoids were introduced by
Swamy in [15] as a common generalization of com-
mutative lattice ordered groups and Brouwerian
algebras. Recently, it was shown in [11, 12, 13]
that also algebras of logics behind fuzzy reasoning,
namely MV-algebras and duals of BL-algebras, can
be regarded as particular cases of bounded com-
mutative DR`-monoids. In the paper we deal with
states on more general algebras than BL-algebras,
hence we use the duals of DR`-monoids called R`-
monoids [3].

A commutative R`-monoids is an algebra M =
(M ;¯,∨,∧,→, 1) of type 〈2, 2, 2, 2, 0〉 satisfying the
following conditions:

(i) (M ;¯, 1) is a commutative monoid,
(ii) (M ;∨,∧) is a lattice,
(iii) x¯ y ≤ z if and only if x ≤ y → z, for any

x, y, z ∈ M ,
(iv) M satisfies the identity ((x → y)∧1)¯x =

x ∧ y.

By [15], commutative R`-monoids form a va-
riety of algebras of the indicated type. It is well-
known that a commutative R`-monoid is bounded
if and only if it is lower bounded. In such a case, 1 is
the greatest element in M and the identity (iv) is of
the form (x → y)¯x = x∧y. Let us denote by 0 the
smallest element in the bounded R`-monoid M and

consider such R`-monoids, called bounded commu-
tative R`-monoids, as algebras M = (M ;¯,∨,∧,→
, 0, 1) of type 〈2, 2, 2, 2, 0, 0〉. Moreover, it is easy to
verify that every bounded commutative R`-monoid
is a distributive lattice.

By [13], BL-algebras (and hence also MV-
algebras) are special cases of bounded commuta-
tive R`-monoids. Namely, the class of BL-algebras
is the variety of bounded R`-monoids defined by
the identity (x → y) ∨ (y → x) = 1, and this
means by [16] that BL-algebras are exactly the
bounded R`-monoids which are representable as
subdirect products of linearly ordered R`-monoids.
On the other hand, the class of bounded commu-
tative R`-monoids is essentially larger than that of
BL-algebras (see Example 4.13 in [3]).

Define on any bounded commutative R`-
monoid M the unary operation ′ : M → M such
that x′ = x → 0 for each x ∈ M . Then, by [11, 12],
M is an MV-algebra if and only if M satisfies the
identity x′′ = x, for all x ∈ M .

One can consider on any R`-monoid M the dis-
tance function d(x, y) = (x → y)∧(y → x), for each
x, y ∈ M .

Proposition 2.1 (Swamy [15], Rach̊unek
and Slezák [14]). In any bounded commutative
R`-monoid M we have

(1) x ≤ y if and only if x → y = 1,
(2) x → (y ∧ z) = (x → y) ∧ (x → z),
(3) x → (y → z) = x¯ y → z,
(4) d(x, y) = (x ∨ y) → (x ∧ y).
(5) x ≤ x′′, x′ = x′′′,
(6) x¯ (y ∨ z) = (x¯ y) ∨ (x¯ z),
(7) x¯ (y ∧ z) = (x¯ y) ∧ (x¯ z).

Let M be a bounded commutative R`-monoid,
then a mapping s : M → [0, 1] is said to be a state
if for all x, y ∈ M ,

(i) s(x) + s(x → y) = s(y) + s(y → x),
(ii) s(0) = 0 and s(1) = 1.
It is easy to verify that if M is an MV-algebra,

then a mapping s : M → [0, 1] is a state if and
only if (i) s(1) = 1, and (ii) s(x⊕ y) = s(x) + s(y)
whenever x¯ y = 0, where x⊕ y = x′ → y.

We denote by S(M) the set of all states on M .
It is interesting to ask whether S(M) 6= ∅. The
authors of [3] has shown that S(M) is a nonempty
compact convex Hausdorff space.

Proposition 2.2(Dvurečenskij and
Rach̊unek [3]). Let s be a state on a bounded
commutative R`-monoid M . Then for any
x, y ∈ M ,

(1) s(x′) = 1− s(x),



(2) s(x′′) = s(x),
(3) if x ≤ y, then 1 + s(x) = s(y) + s(y → x),
(4) if x ≤ y, then s(x) ≤ s(y),
(5) s(x¯ y) = 1− s(x → y′),
(6) s(x) + s(y) = s(x¯ y) + s(y′ → x),
(7) s(d(x, y)) ≤ s(d(x → y, y → x)),
(8) s(d(x′, y′)) = s(d(x, y)),
(9) s(x′ → y′) = 1 + s(x)− s(x ∨ y),
(10) s(x′ → y′) = s(y′′ → x′′),
(11) s(x) + s(y) = s(x ∨ y) + s(x ∧ y),
(12) if x∨y = 1, then 1+s(x∧y) = s(x)+s(y).

The standard unit interval [0, 1] equipped with
the operations: x ¯ y = (x + y − 1) ∨ 0, x →
y = (1 − x + y) ∧ 1, x ∨ y = max{x, y} and
x ∧ y = min{x, y}, x, y ∈ M , becomes an MV-
algebra, called the standard MV-algebra.

A mapping s from M into the standard MV-
algebra [0,1] is said to be a state-morphism if, for
all x, y ∈ M we have

(i) s(x → y) = s(x) → s(y),
(ii) s(x ∧ y) = min{s(x), s(y)},
(iii) s(1) = 1,

It is straightforward that every state-morphism
on M is a state on M .

We denote by SM(M) the system of all state-
morphisms of M . The authors of [3] have also
shown that there is a one-to-one correspondence be-
tween SM(M) and MF(M) of maximal filters of
M . Due to Zorn’s lemma, MF(M) is nonempty,
hence SM(M) 6= ∅. For the details of filters of
bounded commutative R`-monoids, we refer to [3].

3. (Ω, µ)-satisfiability degrees
of propositions

Let M be a sounded commutative R`-monoid, Ω
be a nonempty subset of S(M). Note that ∅ 6=
SM(M) ⊆ S(M).

Suppose that A is a σ-algebra on Ω, µ is the
probability measure on Ω, then (Ω,A, µ) becomes
a probability measure space [8]. ∀x ∈ M , define
x : Ω → [0, 1] by x(x) = s(x), s ∈ Ω, then x is a
µ-integrable function on Ω for every x of M .

Definition 3.1. Let (Ω,A, µ) be a probability
measure space. ∀x ∈ M , then the integral

τΩ,µ(x) =
∫

Ω

x(s)dµ

is called the (Ω, µ)-satisfiability degree of the propo-
sition x. The subscripts Ω and µ will be omitted

if Ω = SM(M) and µ can be determined from the
context.

By the definition of integral, it is obvious that,
if Ω = {s1, · · · , sn} is finite, and µ is the evenly
distributed probability measure on Ω, then

τΩ,µ(x) =
m∑

j=1

αjµ(Σ(x, αj)) =
m∑

j=1

αj · |Σ(x, αj)|
n

,

where Σ(x, αj) = {s ∈ Ω | s(x) = αj}, αj ∈ Ω(x) =
{s1(x), · · · , sn(x)} = {α1, · · · , αm}. In particular,
if Ω is a singleton {s}, then τΩ,µ(x) = x(s)µ(Ω) =
s(x) even if µ is not evenly distributed.

Proposition 3.2. τΩ,µ has the following prop-
erties for x, y ∈ M .

(1) 0 ≤ τΩ,µ(x) ≤ 1,
(2) τΩ,µ(0) = 0, τΩ,µ(1) = 1,
(3) τΩ,µ(x′) = 1− τΩ,µ(x),
(4) τΩ,µ(x′′) = τΩ,µ(x),
(5) if x ≤ y, then τΩ,µ(x) ≤ τΩ,µ(y),
(6) τΩ,µ(x¯ y) = 1− τΩ,µ(x → y′),
(7) τΩ,µ(d(x′, y′)) = τΩ,µ(d(x, y)),
(8) τΩ,µ(x′ → y′) = τΩ,µ(y′′ → x′′),
(9) τΩ,µ(x)+τΩ,µ(y) = τΩ,µ(x∨y)+τΩ,µ(x∧y),
(10) τΩ,µ(x)+τΩ,µ(x → y) = τΩ,µ(y)+τΩ,µ(y →

x).
Proof. From Proposition 2.2, the proof is

straightforward. Take the item (10) as an exam-
ple. ∀s ∈ Ω,

(x + x → y)(s) = x(s) + x → y(s)
= s(x) + s(x → y)
= s(y) + s(y → x)
= y(s) + y → x(s)
= (y + y → x)(x),

then we have

τΩ,µ(x) + τΩ,µ(x → y)
=

∫
Ω

x(s)dµ +
∫
Ω

x → y(s)dµ
=

∫
Ω
(x + x → y)(s)dµ

=
∫
Ω
(y + y → x)(s)dµ

=
∫
Ω

y(s)dµ +
∫
Ω

y → x(s)dµ
= τΩ,µ(y) + τΩ,µ(y → x).

It follows from the items (2) and (10) of Propo-
sition 3.2 that τΩ,µ is also a state on M . However, it
does not need to be a state-morphism on M , please
see the following example.

Example 3.3. (i) Let M be the diamond lat-
tice, i.e., M = {0, a, b, 1}, 0′ = 1, 1′ = 0, a′ = b, b′ =
a, a∨ b = 1, a∧ b = 0, then M is a Boolean algebra.



If define x ¯ y = x ∧ y, x → y = x′ ∨ y, x, y ∈ M ,
then M is also an MV-algebra. It is not diffi-
cult to verify that S(M) = {s : M → [0, 1] |
s(0) = 0, s(1) = 1, s(a)+s(b) = 1}, and SM(M) =
{s1, s2} where s1(a) = s2(b) = 1, s1(b) = s2(a) =
0, si(0) = 0, si(1) = 1, i = 1, 2. Clearly, there is
a one-to-one correspondence between S(M) and
[0, 1], hence we can identify S(M) with [0, 1].
Let µ1 be the Lebesgue measure on S(M), then
τS(M),µ1(a) =

∫
S(M)

a(s)dµ1 =
∫
[0,1]

xdx = 1
2 , and

similarly, τS(M),µ1(b) = 1
2 . Note that τS(M),µ1 ∈

S(M). Let µ2 be the evenly distributed proba-
bility measure on SM(M), then τSM(M),µ2(a) =
0×µ({s2}) + 1×µ({s1}) = 1

2 = τSM(M),µ2(b). We
also have τSM(M), µ2 ∈ S(M), but τSM(M), µ2 6∈
SM(M) even though each member of SM(M) is
a state-morphism since τSM(M), µ2 does not com-
mute with min-conjunction: τSM(M),µ2(a ∧ b) =
τSM(M),µ2(0) = 0.

(ii) We recall that for every linearly ordered
bounded commutative R`-monoid M,S(M) as a
singleton coincides with SM(M). Let M be
the standard MV-algebra and S(M) = {s}, then
τS(M),µ(x) = s(x) = x, x ∈ [0, 1].

(iii) As an application, we will give in section
5 a third example for ÃLukasiewicz Lendinbaum al-
gebra which shows that the result of the present
paper can be viewed as an algebraic counterpart of
integrated semantics for fuzzy logic proposed in [17]
as well as a generalization of [17].

τ has other interesting properties besides those
given in Proposition 3.2, which correspond to the
formal inference rules such as MP and HS in
ÃLukasiewicz infinite-valued propositional logic.

Proposition 3.4. Let x, y ∈ M, α, β ∈ [0, 1].
If τ(x) ≥ α, τ(x → y) ≥ β, then τ(y) ≥ α + β − 1.

Proof. Consider firstly the standard MV-
algebra [0,1], it is easy to check that

a + (a → b)− 1 ≤ b, a, b ∈ [0, 1].

Note that a¯b = (a+b−1)∨0 and a¯(a → b) ≤ b,
then the preceding inequality automatically holds.

∀x, y ∈ M, ∀s ∈ Ω = SM(M),

(x + x → y − 1)(s) = x(s) + x → y(s)− 1
= s(x) + s(x → y)− 1
= s(x) + (s(x) → s(y))− 1
≤ s(y) = y(s),

then

τ(y) =
∫
Ω

ydµ
≥ ∫

Ω
(x + x → y − 1)(s)dµ

=
∫
Ω

x(s)dµ +
∫
Ω

x → y(s)dµ− 1
= τ(x) + τ(x → y)− 1
≥ α + β − 1.

Corollary 3.5. (i) If τ(x) = τ(x → y) = 1,
then τ(y) = 1,

(ii) If τ(x → y) ≥ α, τ(y → z) ≥ β, then τ(x →
z) ≥ α + β − 1.

Proof. (i) It follows from Proposition 3.4 that
τ(y) ≥ τ(x) + τ(x → y)− 1 = 1 + 1− 1 = 1, hence
τ(y) = 1.

(ii) We also note that x → y = x → y on Ω =
SM(M). Then ∀s ∈ Ω,

x → y(s) = s(x → y)
= s(x) → s(y)
≤ (s(y) → s(z)) → (s(x) → s(z))
= y → z(s) → x → z(s)
= (y → z) → (x → z)(s),

thus τ(x → y) ≤ τ((y → z) → (x → z)).
Now, from (i) we have

τ(x → z) ≥ τ(y → z) + τ((y → z) → (x → z))− 1
≥ τ(y → z) + τ(x → y)− 1
≥ α + β − 1.

Proposition 3.6. Let x, y, z ∈ M, 0 ≤ ε < 1.
If τ(x → y) ≥ 1− ε, τ(x → z) ≥ 1− ε, then

τ(x → y ∧ z) ≥ (1−
√

2ε)2,

where we require that both E1 = {s ∈ Ω |
x → y(s) < 1−√2ε} and E2 = {s ∈ Ω | x → z(s) <
1−√2ε} be µ-measurable, i.e., E1, E2 ∈ A.

Proof. Let d1 = µ(E1) and d2 = µ(E2), then

τ(x → y) =
∫
Ω

x → y(s)dµ
=

∫
E1

x → y(s)dµ +
∫
Ω−E1

x → y(s)dµ

≤ d1(1−
√

2ε) + 1− d1

= 1− d1

√
2ε.

By assumption, 1 − d1

√
2ε ≥ 1 − ε, then we have

d1 ≤
√

1
2ε. Similarly, d2 ≤

√
1
2ε. Moreover, on

Ω − (E1 ∪ E2), x → y(s) ≥ 1 − √
2ε, x → y(s) ≥

1−√2ε, therefore

x → (y ∧ z)(s) = (x → y) ∧ (x → z)(s)
= (x → y ∧ x → z)(s)
= x → y(s) ∧ x → z(s)
≥ 1−√2ε.



On the other hand,

µ(Ω− (E1 ∪ E2)) ≥ µ(Ω)− µ(E1)− µ(E2)
= 1− d1 − d2

≥ 1− 2
√

1
2ε

= 1−√2ε.

Therefore

τ(x → y ∧ z) ≥ ∫
Ω−(E1∪E2)

x → y ∧ z(s)dµ

≥ (1−√2ε)2.

With τ, we can define a similarity degree be-
tween two propositions.

Definition 3.7. Define η : M ×M → [0, 1] as
follows

η(x, y) = τ(d(x, y)) = τ((x → y) ∧ (y → x)),

then η is a similarity measure.

The reason for η to be a similarity measure lies
in the next proposition.

Proposition 3.8. η has the following proper-
ties.

(1) η(x, x) = 1,
(2) η(x, y) = η(y, x),
(3) η(x′, y′) = η(x, y),
(4) η(x, z) ≥ η(x, y) + η(y, z)− 1.
Proof. (1) and (2) are trivial. (3) follows from

(7) of Proposition 3.2. We need only to prove (4).
In the standard MV-algebra [0,1], a, b, c ∈

[0, 1], we have

((a → b) ∧ (b → a) + (b → c) ∧ (c → b)− 1) ∨ 0
= ((a → b) ∧ (b → a))¯ ((b → c) ∧ (c → b))
= (a → b)¯ (b → c) ∧ (a → b)¯ (c → b)

∧(b → a)¯ (b → c) ∧ (b → a)¯ (c → b)
≤ (a → b)¯ (b → c) ∧ (c → b)¯ (b → a)
≤ (a → c) ∧ (c → a).

Then ∀x, y, z ∈ M , it is easy to check that

(x → z) ∧ (z → x) = (x → z) ∧ (z → x)
≥ ((x) → y) ∧ (y → x)

+y → z) ∧ (z → y)− 1
= (x → y) ∧ (y → x)

+(y → z) ∧ (z → y)− 1,

and so

η(x, z) =
∫
Ω

(x → z) ∧ (z → x)(s)dµ

≥ ∫
Ω

(x → y) ∧ (y → x)(s)dµ

+
∫
Ω

(y → z) ∧ (z → y)(s)dµ− 1
= η(x, y) + η(y, z)− 1.

4. BCR` metric space

Definition 4.1. Define ρ : M × M → [0, 1] as
follows:

ρ(x, y) = 1− η(x, y).

Then, from Proposition 3.8, ρ is a pseudo-metric
on M. (M, ρ) is said to be a BCR` metric space.

Consider the set [0, 1]M consisting of all func-
tions f : M → [0, 1]. There are several ways
to introduce topologies on [0, 1]M , e.g., the point
wise convergence topology, the uniform conver-
gence topology, and the compact topology, etc.
(see[4]). One can introduce a metric on [0, 1]Mas
well as follows, i.e., for x, y ∈ M , define

ρ∗(x, y) =
∫

Ω

| x− y | dµ.

It is obvious that ρ∗ : M ×M → [0, 1] is a pseudo-
metric on M . An interesting question is: what is
the relation between ρ∗ and ρ ? the following the-
orem gives a positive answer, ρ∗ = ρ.

Theorem 4.2. ρ∗ = ρ.
Proof. ∀x, y ∈ M, ∀s ∈ Ω = SM(M),

(x → y) ∧ (y → x)(s)
= ((x → y) ∧ (y → x))(s)
= (s(x) → s(y)) ∧ (s(y) → s(x))
= (1− s(x) + s(y)) ∧ (1− s(y) + s(x))
= 1− | s(x)− s(y) |
= 1− | x− y | (s),

thus we have 1− (x → y) ∧ (y → x) =| x− y |, and

ρ∗(x, y) =
∫
Ω
| x− y | dµ

=
∫
Ω
(1− (x → y) ∧ (y → x))(s)dµ

= 1− ∫
Ω

(x → y) ∧ (y → x)(s)dµ
= 1− η(x, y)
= ρ(x, y).

The proof is completed.

Note that the operation-preserving property of
state-morphisms plays a crucial role in the proof of
Theorem 4.2, hence Theorem 4.2 does not hold for
Ω 6⊆ SM(M) in general.

In the sequel we shall show that all the opera-
tions ′,¯,∨,∧ and → are all uniformly continuous
with respect to ρ. To do so, we need a lemma.

Lemma 4.3. Let x, y, u, v ∈ M, α, β ∈ [0, 1].
If η(x, u) ≥ α, β(y, v) ≥ β, then η(x → y, u → v) ≥
α + β − 1.



Proof. In the standard MV-algebra
[0, 1], a, b, c ∈ [0, 1], we have

a → b ≤ (b → c) → (a → c),

and similarly,

b → a ≤ (a → c) → (b → c).

Thus,

(a → b) ∧ (b → a)
≤ ((b → c) → (a → c)) ∧ ((a → c) → (b → c)).

Using the inequality above, we get that,
∀x, y, u ∈ M ,

(x → u) ∧ (u → x)
≤ ((u → y) → (x → y)) ∧ ((x → y) → (u → y)).

It follows that

τ(((u → y) → (x → y)) ∧ ((x → y) → (u → y)))
≥ τ((x → u) ∧ (u → x)),

i.e.,
η(x → y, u → y) ≥ η(x, u) ≥ α.

Similarly,

η(u → y, u → v) ≥ η(y, v) ≥ β.

By Proposition 3.8(4) we have

η(x → y, u → v) ≥ η(x → y, u → y)
+η(u → y, u → v)− 1

≥ α + β − 1.

Theorem 4.4. Let (M, ρ) be a BCR` metric
space. Then the operations ′,¯,∨,∧ and → are all
uniformly continuous with respect to ρ.

Proof. It follows from Proposition 3.2(7) that

ρ(x′, y′) = 1− τ(d(x′, y′))
= 1− τ(d(x, y))
= ρ(x, y).

This shows that ′ : M → M is uniformly continuous
with respect to ρ.

Now, let ρ(x, u) ≤ ε, ρ(y, v) ≤ ε. Then
η(x, u) ≥ 1 − ε and η(y, v) ≥ 1 − ε, by Lemma
4.3,

η(x → y, u → v) ≥ (1− ε) + (1− ε)− 1 = 1− 2ε.

Therefore ρ(x → y, u → v) ≤ 2ε which indicates
the uniform continuity of →.

Next, we turn to prove the uniform continu-
ity of ∨. It is not difficult to check the following
inequalities

x → u ≤ x ∨ y → u ∨ y,

and

u → x ≤ u ∨ y → x ∨ y, x, y, u ∈ M.

Then η(x∨ y, u∨ y) = τ((x∨ y → u∨ y)∧ (u∨ y →
x∨y)) ≥ τ((x → u)∧(u → x)) = η(x, u). Similarly,
we have η(u ∨ y, u ∨ v) ≥ η(y, v).

From Proposition 3.8(4), we get

η(x ∨ y, u ∨ v) ≥ η(x ∨ y, u ∨ y)
+η(u ∨ y, u ∨ v)− 1,

≥ η(x, u) + η(y, v)− 1.

which is equivalent to

ρ(x ∨ y, u ∨ v) ≤ ρ(x, u) + ρ(y, v).

Therefore ∨ is uniformly continuous with respect
to ρ.

As analogues of the proof for ∨, we can prove
the uniform continuities of ∧ and ¯ respectively. It
is left to the reader as an exercise.

The next theorem reveals the relationship be-
tween the metric completeness of M as a metric
space and the countable completeness of M as a
lattice.

Theorem 4.5. If the BCR` metric space
(M, ρ) is metric complete, then M , as a lattice, is
countable complete.

Proof. Let (M, ρ) be a complete metric space,
and ∆ = {x1, x2, · · · } be a subset of M . Put

yn =
n∨

i=1

xi, then y1, y2, · · · is an increasing se-

quence. It follows from Proposition 3.2(5) that
τ(y1), τ(y2), · · · is a non-decreasing sequence of the
unit interval [0,1], hence it is a Cauchy sequence.
Observe that

yn → ym = 1M , ym → yn = 1− ym + yn

whenever n ≤ m. As a consequence, we have

ρ(ym, yn)
= 1− η(ym, yn)
= 1− τ((ym → yn) ∧ (yn → ym))
= 1− ∫

Ω
((ym → yn) ∧ (yn → ym))(s)dµ

= 1− ∫
Ω
(ym → yn)(s)dµ

= 1− ∫
Ω
(1− ym + yn)(s)dµ

=
∫
Ω

ym(s)dµ− ∫
Ω

yn(s)dµ
= τ(ym)− τ(yn),



which means that y1, y2, · · · is a Cauchy sequence
in (M, ρ). Let y be the limit point of this sequence.
Fix a number n, we have yn = yn ∧ (yn+k), k =
1, 2, · · · . By the continuity of ∧, the following holds:

yn = lim
k→∞

(yn ∧ yn+k) = yn ∧ ( lim
k→∞

yn+k) = yn ∧ y.

Thus yn ≤ y, and y is an upper bound of Σ =
{y1, y2, · · · }. Suppose that z is a upper bound of
Σ, then

y = lim
n→∞

yn = lim
n→∞

(yn∧z) = ( lim
n→∞

yn)∧z = y∧z,

which entails that y ≤ z. Up to now, we have shown
that y = supΣ ∈ M . It is trivial that sup Σ =
sup∆. Similarly inf ∆ ∈ M . This concludes the
proof.

5. An application

As an application, we give an example for
ÃLukasiewicz Lindenbaum algebra which shows that
the result of the paper can be viewed as an alge-
braic counterpart of the integrated semantics for
fuzzy logic proposed in [17] as well as a general-
ization of [17]. We recall only the notions that
shall be used later. For the representation of
ÃLukasiewicz infinite-valued propositional logic, we
refer to [7, 2, 5].

The ÃLukasiewicz propositional calculus has the
set S of propositional variables p1, p2, · · · , connec-
tives &, → and the truth constant 0 for 0. The
set F (s) of all well-formed formulas is defined in
the obvious way: each propositional variable is a
formula; 0 is a formula; if ϕ,ψ are formulas, then
so are ϕ&ψ and ϕ → ψ. Further connectives are
defined as follows:

• ϕ ∧ ψ is ϕ&(ϕ → ψ),
• ϕ ∨ ψ is (ϕ → ψ) → ψ,
• ¬ψ is ϕ → 0.

The truth degree set of ÃLukasiewicz infinite-
valued logic is the standard MV-algebra [0,1]. An
evaluation of propositional variables is a mapping e
assigning to each propositional variable p its truth
degree e(p) ∈ [0, 1]. This extends uniquely to the
evaluation of all formulas as follows

e(0) = 0,
e(ϕ → ψ) = e(ϕ) → e(ψ),
e(ϕ&ψ) = e(ϕ)¯ e(ψ).

The set of all evaluations is denoted by Ω.

Each formula ϕ can induce a truth degree func-
tion, denoted by ϕ, in a natural way: suppose
that ϕ is generated by the propositional variables
p1, · · · , pn, then the value of ϕ is, for each n-tuple
(x1, · · · , xn) of truth degrees, given by

ϕ(x1, · · · , xn) = e(ϕ)

for any evaluation e satisfying e(pi) = xi for all
i = 1, · · · , n.

The integral

τ∗(ϕ) =
∫

[0,1]n
ϕ(x1, · · · , xn)dx1 · · · dxn

is said to be the tautological degree of ϕ [17].
In the sequel we shall prove that τ∗ is just a

special function defined from ÃLukasiewicz Linden-
baum algebra into the unit interval [0,1] in the sense
of Definition 3.1.

Two formulas ϕ and ψ are said to be logically
equivalent, denote by ϕ ≈ ψ, if e(ϕ) = e(ψ) for
any evaluation e ∈ Ω. It is routine to check that
≈ is a congruence with respect to the logical con-
nectives ¬,& and →. This suggests that the quo-
tient algebra F (S)/ ≈ with the induced operations
[ϕ]¯[ψ] = [ϕ&ψ] and [ϕ] → [ψ] = [ϕ → ψ] becomes
an MV-algebra.

Let Xn = [0, 1], µn be the Lebesgue measure

on Xn. Let X =
∞∏

n=1
Xn be the Cartesian product

of X ′
ns, and µ be the infinite product of µ1, µ2, · · ·

[8].
Let e ∈ Ω, then e is uniquely determined by

its restriction e | S. Assume that v(pk) = ek(k =
1, 2, · · · ), then −→e = (e1, e2, · · · ) ∈ X. Conversely,
∀−→e = (e1, e2, · · · ) ∈ X, there exists a unique eval-
uation e such that e(pk) = ek(k = 1, 2, · · · ). That
is to say, there is a one-to-one correspondence be-
tween Ω and X, hence we can identify Ω with X.

It is easy to verify that ∀e ∈ Ω, e is a state
morphism on F (S)/ ≈. Define [ϕ](e) = e(ϕ), e ∈ Ω,
then [ϕ] = ϕ on Ω, and so

τΩ,µ([ϕ]) =
∫
Ω

[ϕ](e)dµ =
∫

X
ϕ(e)dµ

=
∫
[0,1]n

ϕ(x1, · · · , xn)dx1 · · · dxn

= τ∗(ϕ).

This shows that our result is a non-trivial gener-
alization of [17]. Furthermore, the integrated se-
mantics is established only from the logical point of
view, while our result is established from the alge-
braic point of view, hance our result can be viewed
as an algebraic counterpart of the integrated se-
mantics for fuzzy logic.



6. Conclusions

In the paper we have introduced the concept of sat-
isfiability degrees of propositions in bounded com-
mutative R`-monoids with the intent of capturing
the notion if average degree of truth of a propo-
sition, which, to some extent, improves Mundici’s
theory. With this concept, we naturally introduced
a pseudo metric on every bounded commutative R`-
monoid, and it is important that we proved all the
operations are uniformly continuous with respect to
this metric. The integrated semantics is a special
case of our result, hence, our idea can be adapted
to fuzzy logic to introduce the concept of tautolog-
ical degrees of formulas with the parameter µ and
to do graded reasoning as done in [18].
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