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Abstract

A new approach is presented to solve nonlinear con-
strained programming problems (NLCPs) by us-
ing particle swarm algorithm(PSO). It neither uses
any penalty functions, nor distinguish the feasi-
ble solutions and the infeasible solutions including
swarm. The new technique treats the NLCPs as
a bi-objective optimization problem, one objective
is the original objective of NLCPs, and the other
is the degree violation of constraints. As we pre-
fer to keep the ratio of infeasible solutions so as to
increase the diversity of swarm and avoid the de-
fect of conventional over-penalization, a new fitness
function is designed based on the second objective.
In order to make the PSO escape from the local
optimum easily, we also design a adaptively dy-
namically changing inertia weight. The numerical
experiment shows that the algorithm is effective.
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1. Introduction

Nonlinear constrained programming problems (NL-
CPs) are encountered in numerous applications.
Structural optimization, engineering design, eco-
nomic, allocation and location problems are just a
few of the scientific fields in which NLCPs are fre-
quently met. The key point in the NLCPs process
is how to deal with the constraints. The tradi-
tional methods usually convert the problem into
non-constrained problem to solve, such as [1],[2].
However, these methods demand the high quality
of the function, and they can only solve those bet-
ter quality functions.

Particle swarm algorithms (PSO)[3] originally
developed by Kennedy and Eberhart is a swarm
based algorithm. PSO is initialized with a swarm

of candidate solutions, each candidate solution is
called particle and move according the velocity-
location equation. PSO have been found to be fast
in solving nonlinear, non-differentiable and multi-
modal optimization problems. In the last years,
several important effort has been reported in the
literatures. Coath and Halgamuge[4] proposed the
feasible solutions method(FSM) and the penalty
function method(PFM) to handle constraints in
PSO. however, both of the two method have disad-
vantages. FSM demands all particles must be in-
clude in the feasible region, and the PFM required
careful fine tuning of the penalty function parame-
ters.

Recently, some genetic algorithm based on
the multiobjective optimization concepts have been
proposed to handle constraints[5],[6]. Its main ideal
is consider each constraints as an objective func-
tion, and transform the NLCPs into multiobjective
optimization problem with m+1 objectives, where
m is the number of the constraints of NLCPs. Then
using the Pareto dominance concepts of multiob-
jective optimization or Pareto ranking to select the
candidates individuals and consist the next swarm.
However, this method has a serious drawback ac-
cording to the following two case if all objectives are
considered as the same importance. one case is that
an feasible solution which is seen to the true opti-
mal solution of the NLCPs, but it has a small fitness
and be seen as a bad solution to delate according to
the the Pareto dominance or Pareto rank. However,
this solution should survive in the next generation.
The other case is that one infeasible solution which
is far away from the true optimal solution of the
NLCPs or the boundary of constraints, maybe its
has a very big fitness value to survive according to
the Pareto dominance or Pareto rank. However,
this solution should keep away from the next gen-
eration.

In this paper, the constraints of NLCPs are
firstly transformed into a degree violation and thus



the NLCPs is transformed into a bi-objective prob-
lem. In order to increase the diversity of popu-
lation and avoid the defect of conventional over-
penalization, a new fitness function is designed
based on the degree violation. and in order to make
the PSO escape from the local optimum easily, we
also design a adaptively dynamically changing in-
ertia weight. The numerical experiment shows that
the algorithm is effective.

2. Transformation of NLCPs

Consider the following nonlinear constrained pro-
gramming problems(1):

{
min

x∈D⊂[L,U ]
f(x)

s.t. gi(x) ≤ 0 i = 1 ∼ m
(1)

Where [L,U ] = {x = (x1, x2, · · · , xn)|li ≤ xi ≤
ui, i = 1 ∼ n} ⊂ Rn. D = {x|x ∈ [L,U ], gi(x) ≤
0, i = 1 ∼ m} is called feasible region and each
point is called a feasible point.

For the problem (1), it can be transformed into
the following bi-objective optimization problem (2):

minF (x) = (f1(x), f2(x)) (2)

Where f1(x) is objective function of the original
optimization problem (1), f2(x) = 1

m

∑m
i=1

ci(x)
c(x)+ε ,

ci(x) = max{0, gi(x)}, i = 1 ∼ m, c(x) =
max

1≤i≤m
{ci(x)}, ε > 0. It is obvious that to min-

imize the first objective function of optimization
problem (2) means to find a point x∗ so as to ob-
tain the optimal value of the problem (1). Since the
second objective function of problem (2) is defined
as the function of degree violation of constraints.
Thus, to minimize f2(x) means to search the point
x∗ in order to meet all the constraints. Therefore,
to minimize the two objectives of problem (2) si-
multaneously means to search for the point so as
to meet all the constraints and make the first ob-
jective f1(x) minimize.

3. New multiobjective PSO al-
gorithm

3.1. PSO algorithm
PSO was initially proposed by Kennedy and Eber-
hart[3]. It is a population evolution based opti-
mization method inspired by the behavior of bird
flocks, which employs a swarm of particles to probe

the search space. In PSO, each individual (called
particle) is described by three main concepts: its
current location in the search space, a memory of
its best previous location and information regard-
ing the best location and information regarding the
best location ever attained by a topological neigh-
borhood of it. Suppose that Xid(t) is the present
position of i−th particle (termed as same as its
present location Xid(t)) in generation t, Pid(t) be
its own best previous position, and Pgd(t) be the
best position ever attained by the swarm. Then,
the particle Xid(t) is manipulated according to the
following velocity-location equations:

Vid(t + 1) = ω · Vid(t) + c1 · r1(Pid(t)−Xid(t))+

c2 · r2(Pgd(t)−Xid(t)) (3)

Xid(t + 1) = Xid(t) + Vid(t + 1), i = 1 ∼ N (4)

Where Vid(t) is the previous velocity, Vid(t + 1) is
the present velocity, Xid(t + 1) is the new position,
c1, c2 are realizations of uniformly distributed ran-
dom variables in [0,1]. The parameters c1 and c2

are called cognitive and social parameters. The pa-
rameter ω is called inertia weight and it is used to
control the trade-off between the global exploration
and the local exploitation ability of the swarm.

3.2. Selection operator
For particle x, we defined the new fitness function
as following:

F (x) =





f1(x) x ∈ D

max( p
N · fmin

1 + N−p
N ·

fmax
1 , f1(x)) + f2(x) x 6∈ D

(5)

Where N is the particle swarm size, p is the number
of feasible particles of current generation. fmin

1 and
fmax
1 is the smallest value and the biggest value of
feasible particles of current generation, respectively.
for any two particles, we can see from the fitness
function (5):

1. If the two particles are both feasible, then the
particle with a minimum value of the first ob-
jective function of problem (2) wins.

2. If both of the particles are infeasible, the par-
ticle with a minimum value of the second ob-
jective function of problem (2) wins.

3. If one is infeasible, the other is feasible. then
compare the deviation degree of The two par-
ticle far away from the fmin

1 , when the bigger



of the proportion of feasible particle, the big-
ger of the probability to choice the infeasible
in current particle swarm. On the contrary,
the bigger of the proportion of infeasible parti-
cle in current particle swarm, the bigger of the
probability to choice the feasible.

3.3. Self-adaptive variation of ω

From (3), It’s obvious that a large inertia weight
can make the PSO to explore the search space of
problem, while a small one tends to facilitates ex-
ploitation. Hence, the inertia weight is a very im-
portant parameter to balance the global and local
search. To evaluate the diversity of the swarm, we
defined a diversity measure as follows:

λ(t) =
∑N

i=1(f
t
i − (

PN
i=1 ft

i )

N )2

N · max
k∈{1,2,··· ,t}

{∑N
i=1(f

k
i − (

PN
i=1 fk

i )

N )2}
(6)

where f t
i present the fitness value of the i−th par-

ticle in t−th generation. The bigger the value of
λ(t), the better the diversity of the swarm is. the
smaller the value of λ(t), the more crowded the
swarm is. When the swarm become very crowded,
it is difficult for the algorithm to jump out from the
local optimal solution. Thus, we can define the self-
adaptive variation inertia weight based on the dy-
namic parameter λ(t) as ω(t) = gsize−t

(λ(t)+ε)·(gsize+0.4) ,
where gsize be the maximum generation of swarm, t
be the current generation. ε is a very small positive
number, It can be seen from the ω(t) that when
particle are crowded, that’s to say λ(t) is small,
ω(t) will become big in order to enhance the ability
of global search of the algorithm.

4. The multiobjective PSO al-
gorithm

Step1. (Initialization) Given the particle swarm
size N , randomly generate initial swarm p(0) in
[L,U ], and let t = 0.
Step2. (Update velocity and position)For each of
the particle in p(t), it was manipulated to find its
good position and velocity based on the new se-
lection operator in current generation. Then up-
date each particle’s velocity and position according
to the velocity-position equation and constitute a
temporary particle swarm c(t).
Step3. Utilize the crossover operator proposed in
[6] to generate the offspring of the particles in c(t).
Step4. (Crossover)Select N individuals by the se-
lection operator from p(t)

⋃
c(t) and constitute the

next particle swarm p(t+1), and use the best solu-
tion x′t = arg min

x∈D∩p(t)
f1(x) to replace the particle

which its fitness value is biggest in the p(t + 1), let
t = t + 1.
Step5. (Stop criterion)If t = T , the best particle in
p(t) is as the optimal and the algorithm is stopped;
otherwise, go to Step 2.

5. Simulation results

5.1. Test Functions

Test Problem F1([7])
min f(x) = (x1 − 10)2 + (x2 − 20)2.
Subject to: g1(x) = (x1−5)2 +(x2−5)2−100 ≥ 0,
g2(x) = (x1 − 6)2 + (x2 − 5)2 − 82.81 ≤ 0, 13 ≤
x1 ≤ 100,0 ≤ x2 ≤ 100. The best known solution
is f∗ = −6961.81388.
Test Problem F2([7])
min f(x) = (x1 − 10)2 + 5(x2 − 12)2 + x4

3 + 3(x4 −
11)2 + 7x2

6 + x4
7 − 4x6x7 − 10x6 − 8x7.

Subject to: g1(x) = 127 − 2x2
1 − 3x4

2 − x3 − 4x2
4 −

5x3 ≥ 0, g2(x) = 196− 23x1− 3x2
2− 6x2

6− 8x7 ≥ 0,
g3(x) = 282 − 7x1 − 3x2 − 10x2

3 − x4 + x5 ≥ 0,
g4(x) = −4x2

1 − x2
2 + 3x1x2 − 5x6 + 11x7 ≥ 0,

−10 ≤ xi ≤ 10,i = 1, 2, · · · , 7. The best known
solution is f∗ = 680.63005.
Test Problem F3([8])

max f(x) = |
nP

i=1
cos4(xi)−2

nQ
i=1

cos2(xi)

s
nP

i=1
ix2

i

|.

Subject to: g1(x) = 0.75−
n∏

i=1

≤ 0, g2(x) =
n∑

i=1

xi−
0.75n ≤ 0, n=20,0≤ xi ≤ 10(i = 1, 2, · · · , n). The
global maximum is unknown; the best reported so-
lution[10] is f∗ = −0.803619. Constraint g1 is close
to being active(g1 = −10−8).
Test Problem F4([8])
max f(x) = sin3(2πx1)sin(2πx2)

x3
1(x1+x2)

.

Subject to: g1(x) = x2
1 − x2 + 1 ≤ 0, g2(x) =

1 − x1 + (x2 − 4)2 ≤ 0, 0 ≤ x1, x2 ≤ 10. the best
reported solution is f∗ = −0.095825.
Test Problem F5([8])
min f(x) = ex1x2x3x4 .
Subject to: 6x2

1 + x2
2 + x2

3 + x2
4 + x2

5 − 10 = 0,
x2x3 − 5x4x5 = 0, x3

1 + x23 + 1 = 0,−2.3 ≤ xi ≤
2.3, i = 1, 2,−3.2 ≤ xi ≥ 3.2(i = 3, 4, 5). the best
reported solution is f∗ = 0.0539498.



5.2. Result and comparison
In the simulation, we termed our approach as
MOPSO, The particle swarm size N = 200, c1 =
c2 = 0.5, r1, r2 ∈ rand[0, 1]. For each problems, the
best reult(B.R), the mean(M.) and the worst re-
sult(W.R) obtained by MOPSO in all 20 runs were
recorded. All the result obtainted by MOPSO was
compared with the existing ones obtainted from the
refrences [6], [7], [8] and [9] in table 1.

Pr. Opt. Met. B.R M. W.R
MOPSO 0.7523 0.7545 0.7586
Ref.[7] -6961.837 -6961.774 -6961.456

F1 -6961.81 Ref.[8] -6961.814 -6875.940 -6350.262
Ref.[9] -6961.814 -6961.813 -6961.810
Ref.10] N.A. N.A. N.A.
MOPSO 0.7523 0.7545 0.7586
Ref.[7] 680.636 68.683 680.876

F2 680.630 Ref.[8] 680.630 680.656 680.763
Ref.[9] 680.630 680.631 680.634
Ref.[10] N.A. N.A. N.A.
MOPSO 0.7523 0.7545 0.7586
Ref.[7] N.A. N.A. N.A.

F3 -0.8036 Ref.[8] -0.803515 -0.781975 -0.726288
Ref.[9] -0.803376 -0.793281 -0.769291
Ref.[10] -0.787933 -0.751301 -0.689747
MOPSO 0.7523 0.7545 0.7586
Ref.[7] N.A. N.A. N.A.

F4 -0.0958 Ref.[8] -0.095825 -0.095825 -0.095825
Ref.[9] -0.095825 -0.095825 -0.095825
Ref.[10] -0.095825 -0.095825 -0.095825
MOPSO 0.7523 0.7545 0.7586
Ref.[7] N.A. N.A. N.A.

F5 0.0539 Ref.[8] 0.053945 0.054179 0.056224
Ref.[9] N.A. N.A. N.A.
Ref.[10] N.A. N.A. N.A.

Table 1: Comparison of the best, mean and worst re-
sults among MOPSO and other algorithms in difrence
reference [6], [7], [8] and [9] for each test problems. N.A.
represents the coresponding result is not available.

6. Conclusions
In this paper, we first transform the nonlinear con-
strained programming problem into a bi-objective
optimization problem, and then a new multiobjec-
tive PSO algorithm which dose not requires the use
of a penalty function is proposed. The numerical
simulations on five test problems also indicate the
effectiveness of the proposed algorithm.
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