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 Abstract - High-dimensional covariance matrix estimation and 

its applications in the portfolio selection are increasingly becoming 

an important topic. However, classical statistical methods used to 

estimate the sample covariance matrix will lead to inverse covariance 

matrix biased. Based on this, we propose the high dimensional 

covariance matrix estimation via Bayesian Method, to ensure that the 

result of the inverse covariance estimation is unbiased. 

 Index Terms - covariance matrix estimation, portfolios, bayes, 

unbiasedness 

1.  Introduction 

 The theory of portfolio selection was presented by 

Markowitz in 1952[1]. It tells that portfolio variance is related 

to the eigenvalues of a covariance matrix, and optimal 

portfolio allocation is related to eigenvectors. Therefore, high-

dimensional covariance matrix estimation becomes an 

important topic in many areas, especially, in the financial 

research.  

The mean-variance model raised by Markowitz, is 

expressed as  
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where 
T

nRRRR ),,,( 21 
is a 1N  random vector 

involving n expected yields of risk assets in securities; R is 

the given expectation of the investment portfolio yield; S is a 

covariance matrix of the expected yields of risk assets in 

securities;

T

nxxxx ),,,( 21 
is a 1N  random vector 

involving n risk asset ratios in securities; 0R
is the risk-free 

asset yield; 0x
is the risk-free asset ratio 

If  0x
 is eliminated from (1), then (1) can be transformed 

into (2), that is 
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According to the Lagrange multiplier method, the first-order 

partial derivatives of L with respect to x is zero, that means 
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Then put the constraints (2) into it, and assume that  

neRRY 0
  

is excess yield of risk assets in securities, we can have optimal 

investment ratio for all risk assets in securities, that is 
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From (3), if Y , 0R
, R  have been given or can be 

obtained based on the sample data by simple addition and 

subtraction, then the optimal composition of the assets of a 

proportion of investment portfolios can be simply solved after 

having got the inverse covariance matrix. 

However, the classical statistical methods used to 

estimate the population covariance matrix use the sample 

covariance matrix. Although this estimation has more 

advantages, for example, one can ensure that there is no bias, 

but it will lead to inverse covariance matrix estimation biased. 

In addition, more and more domestic and foreign scholars 

attempt to estimate high-dimensional covariance matrix using 

various methods and techniques, which could solve the curse 

of dimensionality, but it cannot meet the requirement of 

unbiased. In recent years, many methods mentioned are mainly 

two ideas: one is to improve the sample covariance matrix, 

such as the use of convergence, eigenvalue decomposition 

method so as to construct a new covariance matrix, for 

instance, Guangzhi Cao, Charles A. Bouman have proposed in 

their paper[2]; the other is by strengthening the data structure 

to achieve the effect of dimensionality reduction, such as 

sparsity, compound symmetry, regression models, for 

example, Ming Yuan[3], Jianqing Fan, Yingying Fan, Jinchi 

Lv[4] have mentioned in their papers, and so on. Until 
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Bayesian estimator and empirical Bayesian estimator were 

proposed by Jushan Bai, Shuzhong Shi[2], methods mentioned 

above can’t guarantee the inverse covariance matrix estimation 

is unbiased. But unfortunately, some of the conclusions are not 

very appropriate. For example, Jushan Bai, Shuzhong Shi [2] 

thought that the posterior distribution of general covariance 

matrix in the prior distribution is assumed   
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we verify it and find that this posterior distribution should be  
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is a expectation, not the 

mode of maximum likelihood estimates based on the posterior 

distribution, which is proposed by Jushan Bai, Shuzhong 

Shi[2]. 

Therefore, this paper will represent high dimensional 

covariance matrix estimation via Bayesian method, then gives 

relevant evidence.  

2.  Sample Covariance Estimation 

 Sample covariance matrix is the unbiased estimator of 

general covariance matrix in theory with good property, so it’s 

often used to estimate the general covariance matrix directly. 

Let 
 '21 ,,, Ntttt XXXX 

 be an 1N -

dimensional random vector and assumed to represent the 

general mean and general covariance.  is assumed to be of 

full rank, and the rank is N. So sample mean and sample 

covariance can be defined as 
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Sample mean and sample covariance are respectively the 

unbiased estimators of general mean and general covariance, 

that is 

  XE ,   SE  

Although sample covariance is the unbiased estimator of 

general covariance in theory, meaning that its expected value 

is equal to the true covariance matrix, there are many short- 

comings using sample covariance to estimate the general 

covariance. When the number of samples are less than the 

number of cases (the number of indicators), the sample 

covariance matrix won’t be of full rank. At this point, the 

inverse sample covariance matrix does not exist, and this will 

bring inconvenience to the application of requiring inverse 

covariance matrix to estimate. Even if the number of samples 

is more than the number of cases (the number of indicators) 

with the sample covariance inverse matrix existing, the 

estimation of 
1S is Biased estimation of 

1 , that is 
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For the reasons above, in order to make the estimation of 

the inverse sample covariance matrix be the unbiased 

estimation of the inverse general covariance matrix, general 

covariance matrix will be estimated with Bayesian statistical 

method in the following. 

3.   Bayesian Statistical Method 

 Bayesian statistics[3,4] is one of statistical inference 

theories. Different from classical statistics, the theoretical 

principles of Bayesian statistics are prior probability and 

posterior distribution. Bayesian statistics make use of both 

posterior information provided by the sample and prior 

information given by human’s subjective judgments to 

estimate the probability of an event. However, it uses only 

information provided by the sample (namely posterior 

information) to estimate an event’s probability in classical 

statistics[5]. 

In section 2, we have proven that the estimation for 

inverse covariance matrix is biased when using the classical 

statistical method to estimate the high dimensional covariance 

matrix. For the differences between Bayesian statistics and 

classical statistics, we take Bayesian statistics method to 

estimate the population covariance matrix in this section, and 

prove that the estimate for inverse covariance matrix is 

unbiased. 

We use the following notation.  

 '21 ,,, Ntttt XXXX 
is a 1N  random vector and 

satisfies multivariate normal distribution. The population mean 

and covariance matrix are given by 
  tXE

, and 

    
'

 tt XXE
. 

According to the characters of Wishart distribution[6], if  
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we conclude that 
),1(~)1(  TWST N . Therefore, we 

have the following density function: 
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For the convenience of calculation, we assume the prior 

distribution of the population mean,


, satisfies normal 

distribution, and the prior distribution of the population 

inverse covariance matrix, 
1

 , satisfies Wishart  

distribution[2].  

We denote 
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,  

then the prior distribution of   satisfies  
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and its density function is: 
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Applying Bayesian formula to estimate the posterior of  , we 

have 
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The denominator of expression (4) is an integration，and the 

numerator is the product of two density functions. From the 

exponential degree, we have 
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From the part of det , we have 
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and 
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which can be simplified as 
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Therefore, Wishart  distribution ensures the estimate for 

inverse covariance matrix is unbiased，namely 
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From the expression (5), we can gain the Bayesian estimates 

for the high dimensional covariance matrix and inverse 

covariance matrix, which are expressed as follows: 
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Chen uses EM (Expectation Maximization) algorithm[7-8] to 

simplify the calculation. If we express the factor structure of 

  as 
 '

, where   is a diagonal matrix, and 

express the parameters as 
),(  

, the number of 

parameters cuts down sharply and its degree decreases from 

2
)1( nn

 of   to n of  . When using simulation, such as 

MCMC (Markov Chain Monte Carlo), to estimate  , denoted 

as 
 , the estimate for covariance matrix is: 
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So we can use the express (8) to estimate the population 

covariance matrix.  

4.   Conclusions 

 This paper corrects the improper conclusion given by 

Jushan Bai, Shuzhong Shi [2] with a rigorous prove. Using 

Bayesian methods, we not only gain the estimators for the high 

dimensional covariance matrix and inverse covariance matrix, 

but also prove this method ensures the unbiased estimators. 

Bayesian statistics method can be viewed as a special case of 

compression methods. From the expression (8) in section 3, 

Bayesian estimator ̂  is a compression estimate to target 

)( *
. The Bayesian statistics method present in this paper 

can be applied in the research on security markets. After 

getting the estimator of the inverse covariance matrix through 

Bayesian statistics method and taking the estimator into 

expression (3) in section 1, we’ll gain the best proportion of 

composition of assets for some portfolio selection easily. 

 However, despite the rich theoretical researches, there are 

still rare empirical studies in domestic securities markets, for 

obtaining prior distribution (prior information) has much 

trouble. The Bayesian method presented in this paper can 

overcome the difficulties when the sample covariance matrix 

was not full rank, and ensure the estimator is unbiased 

223



meanwhile. However, there are still rare studies on the test of 

the Bayesian estimator and how to solve the unstable problem 

in out-of-sample testing. Hence the questions above are the 

important research areas in the future. 
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Appendix 

 Proof of the inverse covariance estimation is biased using 

the inverse sample covariance matrix. 

In the normal distribution assumption, the expectation of 

inverse covariance matrix 
1S can be calculated as follows: 

If  
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Hence the inverse covariance estimation is biased using the 

inverse sample covariance matrix. 
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