
A Non-recursive Algorithm for 4-Peg Hanoi Tower
Jun Wang1 Junpeng Liu2 Guoying Yue1 Liangshan Shao2 Sukui Lu3

1Zhejiang Water Conservancy and Hydropower College, Hangzhou 310018, P. R. China
2Liaoning Technical University, Fuxin 123000, P. R. China

3Hebei University, Baoding 071102, P. R. China

Abstract
The compound relationship between different
moving-orders and different plates of 4-peg Hanoi
Tower problem is analyzed in this paper, which is
regarded as a new cross correlation pattern without
fixed span, not the abutting correlation pattern of
3-peg problem. It is rearranged to a binary and
hierarchical tree good for understanding and using. A
new idea to solve the 4-peg with a non-recursive
algorithm is proposed by forming an iteration path
with those nodes that are related to the target problem
directly and iterating according this path. By
abandoning the storage and computing of useless node,
the efficiency of the non-recursive algorithm is
improved great.

Keywords: 4-peg Hanoi Tower, Cross correlation,
Iteration path

1. Introduction

Hanoi Tower is an old mathematic problem, which is
firstly proposed in 1883 by Edouard Lucas, a France
mathematician. The algorithm to solve this problem
has been an essential model in computer fundamental
courses such as data structure, algorithm analysis and
so on. It have 3 pegs and there are n plates placed in
a small-to-big order on one peg which may call A. It
is required to move those all plates from A to anther
peg, which may call C, taking advantage of one pig
which may call B, at such a regulation that no big is
plated on a small plate at any time. Such a problem
has been solved well, including recursive [6] and
non-recursive [3]-[5] solutions. The model of
recursive algorithm of traditional Hanoi Tower is as
follows:

⎪
⎩

⎪
⎨

⎧

−
→

−
=

),,,1(

),,,1(
),,,(

3

3

3

CABnF
CA

BCAnF
　CBAnF (1)

Where n is the number of plates, A, B and C are
the 3 pegs and A→C means to move one plate from A
to C. It can be inferred that the moving order of n
plates from A to C can be formed by the moving order
of n-1 plates which means that if the moving order of
n-1 plates are given, the moving order of n plates can
be available by replacing some alphabet of moving
order of n-1 plates on some principle. Therefore,
non-recursive algorithm of Hanoi Tower with 3 pegs
takes good advantage of such feature and loops from 1
to n and replaces one by one to get the moving order
of n plates.

The 4-peg problem is just to insert one peg into
the traditional model and at the same regulation which
looks like figure 1. One more peg means by far less
moving steps from initial peg to target peg, but by far
more complex meanwhile. 3-peg problem has unique
moving order while 4-peg problem has not because
one more buffer peg means optional moving selection
and therefore different moving orders. But they are
equivalent with just different roles acting by different
peg. J.S.Frame propose one algorithm to solve this
problem in American Mathematic Monthly in 1941,
and in 2004, the algorithm is proved by YangKai and
XuChuan using mathematical induction in Acta
Scientiarum Naturalium Universitatis Pekinensis [1].
And afterward LiuDuo and DaiYiqi provide
mathematic prove of the minimum moving steps about
even more general problem with multi-pegs [2].

Fig. 1: The illustration of 4-peg Hanoi Tower.

2. Formula and Related Data

There have different moving orders for a 4-peg

problem with n plates but they are equivalent.
Therefore, we could list a formula to express the
problem with n plates as follows [1]:

⎪
⎩

⎪
⎨

⎧

−

−
=

),,,),((
),,),((

),,,),((
),,,,(

4

3

4

4

DCABnRnF
DCAnRF

BDCAnRnF
　DCBAnF (2)

 If we want to solve the problem with n plates,
firstly we should move the upper n-R (n) plates from A
to B with the buffer of C and D, then we move the rest
plates from A to D with C as a buffer, and last we
move the n-R (n) plates from B to D with the buffer of
A and C. R(n) is the core of the whole problem and the
moving step is minimum [1] when the following
formula is right that

⎥
⎦

⎥
⎢
⎣

⎢ −+
=

2
11*8)(nnR

.
Then minimum step is

12*]
2

2)()([)(
2

+
+−

− nRnRnRn

That result has been mentioned in reference 2.
Some data of 4-peg problem are list in table 1 as
follows:

n F(n) R(n) MS CI

1 F(1,A,B,C,D) 1 1 F(1, A,B,C,D)=AD

2 F(2,A,B,C,D) 1 3
F(1,A,C,D,B),f(1,A,C,D),
F(1,B,A,C,D)

3 F(3,A,B,C,D) 2 5
F(1,A,C,D,B), f(2,A,C,D),
F(1,B,A,C,D)

4 F(4,A,B,C,D) 2 9
F(2,A,C,D,B), f(2,A,C,D),
F(2,B,A,C,D)

5 F(5,A,B,C,D) 2 13
F(3,A,C,D,B), f(2,A,C,D),
F(3,B,A,C,D)

6 F(6,A,B,C,D) 3 17
F(3,A,C,D,B), f(3,A,C,D),
F(3,B,A,C,D)

7 F(7,A,B,C,D) 3 25
F(4,A,C,D,B), f(3,A,C,D),
F(4,B,A,C,D)

8 F(8,A,B,C,D) 3 33
F(5,A,C,D,B), f(3,A,C,D),
F(5,B,A,C,D)

9 F(9,A,B,C,D) 3 41
F(6,A,C,D,B), f(3,A,C,D),
F(6,B,A,C,D)

… … … … …
Table 1: Sample Data of 4-peg Hanoi Tower.

MS is short for Moving Steps.
CI is short for Correlation Items.

3. Non-recursive Solution

As we all know, the moving orders of those that have
different initial, path and target, could be transformed
from one to another just by replacing some alphabets
according to some rule, which has been proved enough
in traditional 3-peg problem. Therefore, we could
regard those problems with same plates but different
origins and targets as one type of problem, called Fn in
order to simplify our problem. Similarly, we could use
fn to express those problems of 3-peg with n plates.
After table 1 could be simplified to table 2 as follows:

Target Correlation Target Correlation Target Correlation

F1 f1 F8 F5,f3 F15 F10,f5

F2 F1,f1 F9 F6,f3 F16 F11,f5

F3 F1,f2 F10 F6,f4 F17 F12,f5

F4 F2,f2 F11 F7,f4 F18 F13,f5

F5 F3,f2 F12 F8,f4 F19 F14,f5

F6 F3,f3 F13 F9,f9 F20 F15,f5

F7 F4,f3 F14 F10,f4 F21 F15,f6

Table 2: Correlation of Fn.

In fact, all the problems of 4-peg could be
transformed into 3-peg problems, but we couldn’t get
the direct formula because there have many relations
among 4-peg problems. So, the type of 4-peg problems
is far more difficult and complex than that of 3-peg
problems. In view of good solution of 3-peg problems,
we may take them in constant and now we get a
correlation table where Fn is the only variable. It’s an
iteration relationship in some form.

If R(n) is a parameter to 3-peg problems, R(n) is 1
all the time whatever n values, which means a direct
iteration relationship between problems with n plates
and those with n-1 plates. We may call it adjacent
correlation pattern. However, R(n)>1 and varies with n
in 4-pet problems, which means that Fn is not adjacent
to F(n-1) but F(n-R(n)) in the solving process of 4-peg
problems to work out the certain moving order. We
may call it a cross correlation pattern.

We take good advantage of the idea to solve 3-peg
problems to solve the 4-peg problems still and how to

make sure of and deal with R(n) are the key steps of
the whole algorithm. There are two possible ways in
detail as follows:

One is that forming an array of moving order
string useful to future calculation to save the middle
results of iteration. It is inferred in the formula of
F(n)=F(n-R(n))+f(R(n))+F(n-R(n)) that results among
one problem with n-R(n)+1 plates to that with n plates
should be prestored in the loop process because those
results must be used in the succedent iteration. And
therefore, an string array with at least R(n) elements is
needed.

In the iteration process, in the first time we may
work out that F1 is A D and we should save it
because it’s useful to F2 and F3; in the second time we
work out F2 and F3 with help of F1 and we must save
F2 and F3 and may abandon F1 because F2 is useful to
F4, F3 is useful to F5 and F6 and F1 is no longer
useful; and similarly we must save F4, F5 and F6 and
abandon F2 and F3. The rest may be deduced by
analogy. The cost of storage would become huge and it
is a difficult and time consuming job to decide which
should be stored and deleted and when should move
elements of the array, when we met with a little more
complex problem simply with much more plates.
Obviously it is not a efficient and feasible solution.

The other is just to try to make sure of correlation
items with the target problem and therefore transform
the cross correlation pattern to adjacent correlation
pattern.

In the view of cross correlation of iteration
process, and according to the formula ①, table 1 and
table 2, draw an arrow from the correlated node to the
target node and if we draw out all possible arrows, we
get a graphic as Fig 2 shows.

Fig. 2: Correlation Tree of Fn.

Nodes at each end of one arrow have a direct

correlation, which means that the moving orders of the

node that the arrow points could be iterated directly
from the moving order of the node that the arrow starts.
We can conclude from the Fig2 that Fn is a traditional
binary tree and there is only one margin between the
number of nodes in adjacent layer.

Fig. 3: The Flow Chat of Nun-recursive Algorithm to 4-peg
Problems.

If we want to work out the moving order of F19,
we should take good advantage of the iteration path: 1,
3, 6, 10, 14, 19, which may be easily figure out from
Fig2. Therefore, we could use F1 to iterate F3 and then
use F3 to iterate F6 and so on and so forth and at last

i=1, k=2

Input number of plates: n

i+k<n

i+=k, k++

m=i+k-n, m=1
a[k-1]=n, j=k-2

j>-1

m>0

a[j]=n-k+1
m--

a[j]=n-k

n=a[j]
k--, j--

i=1 rst=AD

i<a.length

Output rst

Get the
array of
Iteration
path to
Fn

Y

Y

N

Y

N

N

tp1=rst.replace(‘B’,’T’)
tp1=tp1.replace(‘C’,’D’)
tp1=tp1.replace(‘D’,’B’)
tp1=tp1.replace(‘T’,’C’)
tp2=result.replace(‘A’,’T’)
tp2=tp2.replace(‘B’,’A’)
tp2=tp2.replace(‘T’,’B’)
rst= tp1+tp2+
hanio(R(n)),’A’,’C’,’D’)

Y

N

Iterate
from
F1 to
Fn

F1 F2 F4 F7 F11 F16

F3 F5 F8 F12 F17

F6 F9 F13 F18

F10 F14 F19

F15 F20

F21

2 3 4 5 61

we can work out F19 by only 5 iterations.
So, in this paper, our idea is that firstly try to find

out the iteration path from F1 to Fn and store the mark
number into an array, and then loop to iterate from the
first element of the array to the last and the moving
order of Fn is just the result. The key step of this
algorithm is to find the iteration path of target problem.
We know from Fig.2 that the correlation of Fn is an
upper triangular matrix and we can make sure of the
exact position of one node by the character of the
upper triangular matrix and construction rule of nodes.

The flow chat of solving 4-peg problems with
nun-recursive algorithm is shown in Fig3.Fulfill the
algorithm in Java and we get our prospective results
same to reference 1 and 2 exactly.

We plot the time consuming to calculate and the
number of disks in one figure so as to compare the
efficiency of the Non-recursive algorithm, NA for
short, to the traditional algorithm, TA for short. In
view of the strong power of current computer, which
makes such problems with few disks solve in far less
than 1ms, we regard the total time of 1000 running
times for the same problem as comparison criteria.
Take time as vertical axis and number of disks as
horizontal axis, and we get a time-consuming plotting
as Fig.4 shows.

Fig. 4: Contrast Plotting of TA and NA.

As we may see easily from the contrast plotting
that the non-recursive algorithm saves running time
great much and the more complicated the problem is
and the more running time it saves. It is because the
non-recursive algorithm works follow the iteration
path, omitting such operations to middle nodes with no
influence to the result.

4. Conclusions

In this paper, one new method is proposed to solve
4-peg Hanoi Tower problems in recursive algorithm
which takes good advantage of special features of
4-peg problems. It requires firstly find the iteration
path. And then loop to iterate in a cross iteration way
according to the iteration path to work out the moving
order with n plates. And in this way, we needn’t iterate
from 1 to n for the cross iteration and we only need to
iterate n-R(n) times at most, which is much less than n
and therefore much less storage and calculating of
useless nodes.

Acknowledgement

This work is partially supported by National Nature
Science Foundation of China (Grant No. 70572070),
Zhejiang Provincial Natural Science Foundation
(Grant No. 2006C33057) and Hebei Provincial Natural
Science Foundation (Grant No. 072135115).

References

[1] K. Yang and C. Xu, The Preliminary Probe of
4-Peg Hanoi Tower, Acta Scientiarum Naturalium
Universitatis Pekinensis(Natural Science Edition),
1:99-106, 2004.
[2] D. Liu and Y.Q. Dai, Study of Hanoi Tower
Problem with Multi Pegs, Acta Scientiarum
Naturalium Universitatis Pekinensis(Natural Science
Edition), 1:99-102, 2006.
[3] S.L. Tao, A Profound Inquiry Into The Hanoi
Problem, Journal of Panzhihua University（Natural
Science Edition）, 3:34-41, 1994.
[4] R.L. Shi, A Fast Iterative Algorithm for Solving
the Towers of Hanoi Problem, Journal of ChangSha
Railway University, 9:39-43, 1995.
[5] N. Qiu, A Non recursive Algorithm of Hanoi
Tower, Journal of ZheJiang ShuRen University.
3:117-118, 2005.
[6] Z.C. Li and J. Su, P.D. Java, China Railway
Publishing House, BeiJing, 51-52, 2004..

