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Abstract 
The compound relationship between different 
moving-orders and different plates of 4-peg Hanoi 
Tower problem is analyzed in this paper, which is 
regarded as a new cross correlation pattern without 
fixed span, not the abutting correlation pattern of 
3-peg problem. It is rearranged to a binary and 
hierarchical tree good for understanding and using. A 
new idea to solve the 4-peg with a non-recursive 
algorithm is proposed by forming an iteration path 
with those nodes that are related to the target problem 
directly and iterating according this path. By 
abandoning the storage and computing of useless node, 
the efficiency of the non-recursive algorithm is 
improved great. 
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1. Introduction 

Hanoi Tower is an old mathematic problem, which is 
firstly proposed in 1883 by Edouard Lucas, a France 
mathematician. The algorithm to solve this problem 
has been an essential model in computer fundamental 
courses such as data structure, algorithm analysis and 
so on. It have 3 pegs and there are n plates placed in 
a small-to-big order on one peg which may call A. It 
is required to move those all plates from A to anther 
peg, which may call C, taking advantage of one pig 
which may call B, at such a regulation that no big is 
plated on a small plate at any time. Such a problem 
has been solved well, including recursive [6] and 
non-recursive [3]-[5] solutions. The model of 
recursive algorithm of traditional Hanoi Tower is as 
follows: 
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Where n is the number of plates, A, B and C are 
the 3 pegs and A→C means to move one plate from A 
to C. It can be inferred that the moving order of n 
plates from A to C can be formed by the moving order 
of n-1 plates which means that if the moving order of 
n-1 plates are given, the moving order of n plates can 
be available by replacing some alphabet of moving 
order of n-1 plates on some principle. Therefore, 
non-recursive algorithm of Hanoi Tower with 3 pegs 
takes good advantage of such feature and loops from 1 
to n and replaces one by one to get the moving order 
of n plates. 

The 4-peg problem is just to insert one peg into 
the traditional model and at the same regulation which 
looks like figure 1. One more peg means by far less 
moving steps from initial peg to target peg, but by far 
more complex meanwhile. 3-peg problem has unique 
moving order while 4-peg problem has not because 
one more buffer peg means optional moving selection 
and therefore different moving orders. But they are 
equivalent with just different roles acting by different 
peg. J.S.Frame propose one algorithm to solve this 
problem in American Mathematic Monthly in 1941, 
and in 2004, the algorithm is proved by YangKai and 
XuChuan using mathematical induction in Acta 
Scientiarum Naturalium Universitatis Pekinensis [1]. 
And afterward LiuDuo and DaiYiqi provide 
mathematic prove of the minimum moving steps about 
even more general problem with multi-pegs [2]. 

 
Fig. 1: The illustration of 4-peg Hanoi Tower. 

2. Formula and Related Data 

There have different moving orders for a 4-peg 



problem with n plates but they are equivalent. 
Therefore, we could list a formula to express the 
problem with n plates as follows [1]: 
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 If we want to solve the problem with n plates, 
firstly we should move the upper n-R (n) plates from A 
to B with the buffer of C and D, then we move the rest 
plates from A to D with C as a buffer, and last we 
move the n-R (n) plates from B to D with the buffer of 
A and C. R(n) is the core of the whole problem and the 
moving step is minimum [1] when the following 
formula is right that 
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That result has been mentioned in reference 2. 
Some data of 4-peg problem are list in table 1 as 
follows: 

n F(n) R(n) MS CI 

1 F(1,A,B,C,D) 1 1 F(1, A,B,C,D)=AD 

2 F(2,A,B,C,D) 1 3 
F(1,A,C,D,B),f(1,A,C,D),
F(1,B,A,C,D) 

3 F(3,A,B,C,D) 2 5 
F(1,A,C,D,B), f(2,A,C,D),
F(1,B,A,C,D) 

4 F(4,A,B,C,D) 2 9 
F(2,A,C,D,B), f(2,A,C,D),
F(2,B,A,C,D) 

5 F(5,A,B,C,D) 2 13
F(3,A,C,D,B), f(2,A,C,D),
F(3,B,A,C,D) 

6 F(6,A,B,C,D) 3 17
F(3,A,C,D,B), f(3,A,C,D),
F(3,B,A,C,D) 

7 F(7,A,B,C,D) 3 25
F(4,A,C,D,B), f(3,A,C,D),
F(4,B,A,C,D) 

8 F(8,A,B,C,D) 3 33
F(5,A,C,D,B), f(3,A,C,D),
F(5,B,A,C,D) 

9 F(9,A,B,C,D) 3 41
F(6,A,C,D,B), f(3,A,C,D),
F(6,B,A,C,D) 

… … … … … 
Table 1: Sample Data of 4-peg Hanoi Tower. 

MS is short for Moving Steps. 
CI is short for Correlation Items. 

3. Non-recursive Solution 

As we all know, the moving orders of those that have 
different initial, path and target, could be transformed 
from one to another just by replacing some alphabets 
according to some rule, which has been proved enough 
in traditional 3-peg problem. Therefore, we could 
regard those problems with same plates but different 
origins and targets as one type of problem, called Fn in 
order to simplify our problem. Similarly, we could use 
fn to express those problems of 3-peg with n plates. 
After table 1 could be simplified to table 2 as follows: 

 

Target Correlation Target Correlation Target Correlation

F1 f1 F8 F5,f3 F15 F10,f5 

F2 F1,f1 F9 F6,f3 F16 F11,f5 

F3 F1,f2 F10 F6,f4 F17 F12,f5 

F4 F2,f2 F11 F7,f4 F18 F13,f5 

F5 F3,f2 F12 F8,f4 F19 F14,f5 

F6 F3,f3 F13 F9,f9 F20 F15,f5 

F7 F4,f3 F14 F10,f4 F21 F15,f6 

Table 2: Correlation of Fn. 
 

In fact, all the problems of 4-peg could be 
transformed into 3-peg problems, but we couldn’t get 
the direct formula because there have many relations 
among 4-peg problems. So, the type of 4-peg problems 
is far more difficult and complex than that of 3-peg 
problems. In view of good solution of 3-peg problems, 
we may take them in constant and now we get a 
correlation table where Fn is the only variable. It’s an 
iteration relationship in some form. 

If R(n) is a parameter to 3-peg problems, R(n) is 1 
all the time whatever n values, which means a direct 
iteration relationship between problems with n plates 
and those with n-1 plates. We may call it adjacent 
correlation pattern. However, R(n)>1 and varies with n 
in 4-pet problems, which means that Fn is not adjacent 
to F(n-1) but F(n-R(n)) in the solving process of 4-peg 
problems to work out the certain moving order. We 
may call it a cross correlation pattern. 

We take good advantage of the idea to solve 3-peg 
problems to solve the 4-peg problems still and how to 



make sure of and deal with R(n) are the key steps of 
the whole algorithm. There are two possible ways in 
detail as follows: 

One is that forming an array of moving order 
string useful to future calculation to save the middle 
results of iteration. It is inferred in the formula of 
F(n)=F(n-R(n))+f(R(n))+F(n-R(n)) that results among 
one problem with n-R(n)+1 plates to that with n plates 
should be prestored in the loop process because those 
results must be used in the succedent iteration. And 
therefore, an string array with at least R(n) elements is 
needed. 

In the iteration process, in the first time we may 
work out that F1 is A D and we should save it 
because it’s useful to F2 and F3; in the second time we 
work out F2 and F3 with help of F1 and we must save 
F2 and F3 and may abandon F1 because F2 is useful to 
F4, F3 is useful to F5 and F6 and F1 is no longer 
useful; and similarly we must save F4, F5 and F6 and 
abandon F2 and F3. The rest may be deduced by 
analogy. The cost of storage would become huge and it 
is a difficult and time consuming job to decide which 
should be stored and deleted and when should move 
elements of the array, when we met with a little more 
complex problem simply with much more plates. 
Obviously it is not a efficient and feasible solution. 

The other is just to try to make sure of correlation 
items with the target problem and therefore transform 
the cross correlation pattern to adjacent correlation 
pattern. 

In the view of cross correlation of iteration 
process, and according to the formula ①, table 1 and 
table 2, draw an arrow from the correlated node to the 
target node and if we draw out all possible arrows, we 
get a graphic as Fig 2 shows. 

Fig. 2: Correlation Tree of Fn. 

 
Nodes at each end of one arrow have a direct 

correlation, which means that the moving orders of the 

node that the arrow points could be iterated directly 
from the moving order of the node that the arrow starts. 
We can conclude from the Fig2 that Fn is a traditional 
binary tree and there is only one margin between the 
number of nodes in adjacent layer. 

 
Fig. 3: The Flow Chat of Nun-recursive Algorithm to 4-peg 
Problems. 
 

If we want to work out the moving order of F19, 
we should take good advantage of the iteration path: 1, 
3, 6, 10, 14, 19, which may be easily figure out from 
Fig2. Therefore, we could use F1 to iterate F3 and then 
use F3 to iterate F6 and so on and so forth and at last 
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we can work out F19 by only 5 iterations. 
So, in this paper, our idea is that firstly try to find 

out the iteration path from F1 to Fn and store the mark 
number into an array, and then loop to iterate from the 
first element of the array to the last and the moving 
order of Fn is just the result. The key step of this 
algorithm is to find the iteration path of target problem. 
We know from Fig.2 that the correlation of Fn is an 
upper triangular matrix and we can make sure of the 
exact position of one node by the character of the 
upper triangular matrix and construction rule of nodes. 

The flow chat of solving 4-peg problems with 
nun-recursive algorithm is shown in Fig3.Fulfill the 
algorithm in Java and we get our prospective results 
same to reference 1 and 2 exactly. 

We plot the time consuming to calculate and the 
number of disks in one figure so as to compare the 
efficiency of the Non-recursive algorithm, NA for 
short, to the traditional algorithm, TA for short. In 
view of the strong power of current computer, which 
makes such problems with few disks solve in far less 
than 1ms, we regard the total time of 1000 running 
times for the same problem as comparison criteria. 
Take time as vertical axis and number of disks as 
horizontal axis, and we get a time-consuming plotting 
as Fig.4 shows. 

 

 

Fig. 4: Contrast Plotting of TA and NA. 
 

As we may see easily from the contrast plotting 
that the non-recursive algorithm saves running time 
great much and the more complicated the problem is 
and the more running time it saves. It is because the 
non-recursive algorithm works follow the iteration 
path, omitting such operations to middle nodes with no 
influence to the result. 

4. Conclusions 

In this paper, one new method is proposed to solve 
4-peg Hanoi Tower problems in recursive algorithm 
which takes good advantage of special features of 
4-peg problems. It requires firstly find the iteration 
path. And then loop to iterate in a cross iteration way 
according to the iteration path to work out the moving 
order with n plates. And in this way, we needn’t iterate 
from 1 to n for the cross iteration and we only need to 
iterate n-R(n) times at most, which is much less than n 
and therefore much less storage and calculating of 
useless nodes. 
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