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Abstract
A method to solve linear fuzzy equations with a
symmetric matrix is proposed. Ignoring the sym-
metry leads to an overestimation of the solution.
Our method to find the solution of a system of lin-
ear fuzzy equations takes the symmetry of the ma-
trix into account and is based on parametric func-
tions. It is a practical algorithm using parametric
functions in which the variables are given by ele-
ments of the support of the fuzzy coefficients of the
system.
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1. Introduction
In this paper we search for a solution of the ma-
trix equation: Ãsymx̃ = b̃ for x̃ = [x̃k]n×1 where
Ãsym = [ãij ]n×n is a symmetric matrix with fuzzy
numbers as entries and b̃ = [b̃k]n×1 is a vector of
fuzzy numbers. Differently expressed,

n∑

j=1

ãij x̃j = b̃i, for 1 ≤ i ≤ n,

where fuzzy multiplication and addition based on
the extension principle of Zadeh are used. Taking
the α-levels of these equations we obtain systems
of linear interval equations:

n∑

j=1

[(aij)α, (aij)α][(xj)α, (xj)α] = [(bi)α, (bi)α],

for 0 < α ≤ 1 and 1 ≤ i ≤ n. The exact solution is
then given by

(x̃e)i(x) = sup{α | α ∈ [0, 1] and x ∈ [(xi)α, (xi)α]},

for all x ∈ R.

When this solution is entered into the system
the equations are satisfied. However, these inter-
val equations are hard to solve exactly and often
(xj)α and (xj)α do not generate a fuzzy number
(see [1]). Therefore the search for an alternative
solution has a solid ground. Buckley and Qu [1]
have already proposed a solution. We follow their
line of reasoning, although the solution can be ad-
justed a little bit and we consider the symmetry of
the matrix. A practical algorithm to obtain this so-
lution, where we take the symmetry into account, is
proposed here. The original method based on para-
metric functions for solving systems of linear fuzzy
equations with non-symmetric matrices is described
in [4] and [5].

2. Preliminaries
First we recall some definitions concerning fuzzy
numbers [3]. Let A be a fuzzy set on R. Then A is
called convex if

A(λx1 + (1− λ)x2) ≥ min(A(x1), A(x2)),

for all x1, x2 ∈ R and λ ∈ [0, 1]. If for x ∈ R it
holds that A(x) = 1, then we call x a modal value
of A. The support of A is defined as

suppA = {x | x ∈ R and A(x) > 0}.
For all α ∈ [0, 1], the α-level is defined as the set:

Aα =




{x | x ∈ R and A(x) ≥ α} if α > 0,

{x | x ∈ R and A(x) > 0} if α = 0.

A mapping f : R → R, or in particular f :
R → [0, 1], is called upper-semicontinuous when f
is right-continuous where f is increasing, and left-
continuous where f is decreasing.

Definition 1 [3]. A fuzzy number is defined as a
convex upper-semicontinuous fuzzy set on R with a
unique modal value and bounded support.



From now on fuzzy numbers will be denoted by
a lowercase letter with a tilde, e.g. ã, and a vector
of fuzzy numbers will be denoted as b̃. Sometimes
we will denote the i-th component of b̃ by b̃i. Crisp
numbers will be represented by a lowercase letter,
e.g. a, and vectors of crisp numbers will be denoted
as b = (b1, b2, . . . , bn)T . The notions of support
and α-level are extended componentwise for vectors
or matrices of fuzzy numbers. The arithmetic of
fuzzy numbers is based on Zadeh’s extension prin-
ciple. Let ã and b̃ be two fuzzy numbers, then the
sum of ã and b̃, denoted by ã ⊕ b̃, is given by, for
all z ∈ R,

(ã⊕ b̃)(z) = sup
z=x+y

min(ã(x), b̃(y)). (1)

Analogous definitions follow for the fuzzy multipli-
cation, subtraction and division. The fuzzy arith-
metic based on the sup-min convolution (see (1))
can also be calculated by interval arithmetic ap-
plied to the α-levels.

Definition 2 [2]. Given two intervals [x, x] ⊆ R
and [y, y] ⊆ R, the four elementary operations on
intervals are defined by

[x, x] op [y, y] = {x op y | x ∈ [x, x] and y ∈ [y, y]},
for op ∈ {+,×,−,÷}.

It is well-known that (ã ⊕ b̃)α = ãα + b̃α and
similarly for ⊗.

3. Solving systems of linear
fuzzy equations

First of all, we require that the matrix Ãsym of
fuzzy numbers is regular in the sense that the in-
verse matrix of A exists for all aij ∈ supp(ãij) with
aij = aji for all (i, j) ∈ {1, . . . , n}2.

Buckley and Qu[1] proposed to construct a set
of all crisp solutions corresponding to the crisp sys-
tems formed by the elements in a certain α-level.
They define the solution by, for all α ∈ [0, 1],

Ω(α) = {x | x ∈ Rn and (∃A = [aij ]n×n ∈ Rn×n)

(∃b = [bk]n×1 ∈ Rn)((∀(i, j, k) ∈ {1, 2, . . . , n}3)
(aij ∈ (ãij)α and bk ∈ (b̃k)α) and Ax = b)}

and for all x ∈ Rn,

x̃B(x) = sup{α | α ∈ [0, 1] and x ∈ Ω(α)}.

We see that x̃B is defined as a fuzzy set on Rn

and not as a vector of fuzzy numbers. The solution
x̃B(x) expresses to what extent the crisp vector x
is a solution of the system of linear fuzzy equations
Ãx̃ = b̃. We prefer to define the solution as a
vector of fuzzy numbers to avoid information loss.
Therefore we give a membership degree to every
component of the solution vector and then (x̃B)i(x)
expresses the degree to which x belongs to the fuzzy
set (x̃B)i, independent of (x̃B)j , for all j 6= i. We
thus define for all x ∈ R and for all i ∈ {1, 2, . . . , n}

(x̃B)i(x) = sup{α | α ∈ [0, 1] and
(∃x ∈ Ω(α))(x = xi)},

where xi denotes the i-th component of x. This
method is purely theoretical: in fact all crisp sys-
tems are solved. When all these systems have to
be solved, the computation time will be large. An
other drawback of this method proposed by Buck-
ley and Qu is that the symmetry isn’t taken into
account. In this paper we propose a practical algo-
rithm to compute the solution where the symme-
try is also taken into account. Instead of solving
all these crisp systems with a symmetric matrix,
we determine parametric functions with elements
of the support of the fuzzy numbers as variables of
these solutions.

3.1. Systems with one fuzzy co-
efficient

We first consider the case that we have to solve a
system of linear fuzzy equations in which exactly
one of the coefficients is a fuzzy number and the
other coefficients are crisp. The approach is dif-
ferent for a fuzzy non-diagonal or a fuzzy diagonal
element of the matrix or a fuzzy component of the
vector b̃.

3.1.1. The fuzzy coef f icient is a diagonal element
of the matrix Ã

First of all we consider that the fuzzy number is
a diagonal element of the matrix. Without loss
of generality we may assume that ã11 is a fuzzy
number. In order to obtain the solution x̃sym of
Ãsymx̃ = b̃, we have to solve the crisp systems
As(a11)x = b, where for all a11 ∈ ]a11, a11[ =
supp(ã11) where

As(a11) =




a11 a12 · · · a1n

a12 a22 · · · a2n

...
... . . . ...

a1n a2n . . . ann


 ,



x =




x1

x2

...
xn


 ,

b =




b1

b2

...
bn


 ,

where As(a11) is obtained by replacing ã11 with
a11 in the matrix Ãsym. We can solve all of these
systems through Cramer’s rule thanks to the non-
singularity of the crisp matrix As(a11), for all a11 ∈
supp(ã11). So we can write the solution for every
component as a quotient of two determinants. The
determinant of a matrix A is denoted as |A|.

xj =

j
↓∣∣∣∣∣∣∣

a11 · · · b1 · · · a1n

... . . . ... . . . ...
a1n · · · bn · · · ann

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣

a11 a12 · · · a1n

a12 a22 · · · a2n

...
... . . . ...

a1n a2n . . . ann

∣∣∣∣∣∣∣∣∣

.

By expanding the determinants in the numer-
ator and the denominator along the first row, we
can write each component of the solution using pa-
rameters c1j , c2j , c3 and c4:

xj = fj(a11) =
a11c1j + c2j

a11c3 + c4
. (2)

Due to this result, every solution can be written
using parametric functions with variable a11. Note
that c1j and c2j are dependent of j due to the fact
that the j-th column in the numerator contains the
components of b. On the other hand, the denom-
inator is the same for all j ∈ {1, . . . , n}, so c3 and
c4 are independent of j. Thus we propose the fol-
lowing method to solve Ãsymx̃ = b̃. First we com-
pute the determinant of the matrices As(a11) and
As(a11). The parameters c3 and c4 are obtained by
solving the following system of linear crisp equa-
tions: {

|As(a11)| = a11c3 + c4

|As(a11)| = a11c3 + c4.
(3)

We solve the crisp systems

As(a11)x = b, (4)
As(a11)x = b, (5)

and denote by
x = (x1, . . . , xn)T

and
x = (x1, . . . , xn)T

the solutions of (4) and (5) respectively. Then, for
all j ∈ {1, . . . , n}, we obtain c1j and c2j by solving
the following system of crisp equations:

{
xj |As(a11)| = a11c1j + c2j

xj |As(a11)| = a11c1j + c2j .
(6)

Consequently, all possible solutions for the crisp
systems As(a11)x = b, for all a11 ∈ supp(ã11),
can be obtained using (2). We define for all j ∈
{1, . . . , n} the fuzzy number x̃sym

j as:

x̃sym
j (x) = sup{ã11(a11) | a11 ∈ supp(ã11)

and x = fj(a11)},
for all x ∈ fj(supp(ã11)), and

x̃sym
j (x) = 0,

for all x ∈ R \ fj(supp(ã11)).

3.1.2. The fuzzy coef f icient is a component of the
vector b̃

When the fuzzy number is located in the right-hand
side of the system of linear fuzzy equations, i.e. ,
when we have for instance that b̃ = (b̃1, b2, . . . , bn),
one sees immediately that c3 = 0 and c4 = |A|. So
we only have to solve the systems

Ax = b(b1),

Ax = b(b1),

with b(b1) and b(b1) a crisp vector obtained by
replacing the fuzzy number b̃1 by the lower and
upper bound resp. of its support, and

{
xj |A| = b1c1j + c2j

xj |A| = b1c1j + c2j

to find c1j and c2j for j ∈ {1, . . . , n}. The function
fj is then given by, for all j ∈ {1, . . . , n},

fj(b1) =
b1c1j + c2j

|A| ,

and the solution x̃sym = (x̃1, . . . , x̃n)T is given by,
for all j ∈ {1, . . . , n},
x̃j(xj) = sup{b̃1(b1) | b1 ∈ supp(b̃1) and xj = fj(b1)},
for all xj ∈ f(supp(b̃1)), and

x̃j(xj) = 0,

for all xj ∈ R \ f(supp(b̃1)).



3.1.3. The fuzzy coef f icient is a non-diagonal ele-
ment of the matrix Ã

Now we assume that the fuzzy coefficient is a non-
diagonal element of the matrix Ãsym. Without loss
of generality, we may assume that the element on
the second column and the first row and conse-
quently on the first column and the second row is
the fuzzy number in Ã:



a11 ã12 · · · a1n

ã12 a22 · · · a2n

...
... . . . ...

a1n a2n . . . ann







x̃1

x̃2

...
x̃n


 =




b1

b2

...
bn


 .

(7)
To find the solution considering the symmetry

of the matrix, we have to solve

As(a12)x = b,

where

As(a12) =




a11 a12 · · · a1n

a12 a22 · · · a2n

...
... . . . ...

a1n a2n . . . ann


 ,

for all a12 ∈ ]a12, a12[ = supp(ã12).
Analogous to the previous case, all these crisp

systems can be solved by Cramer’s rule because
each real symmetric matrix As(a12) for all a12 ∈
supp(ã12) is regular. So we can write each compo-
nent as the quotient of two determinants:

xj =

j
↓∣∣∣∣∣∣∣

a11 · · · b1 · · · a1n

... . . . ... . . . ...
a1n · · · bn · · · ann

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣

a11 a12 · · · a1n

a12 a22 · · · a2n

...
... . . . ...

a1n a2n . . . ann

∣∣∣∣∣∣∣∣∣

.

By expanding these determinants along the first
row, each component of the solution can be written
using 6 parameters c1j , c2j , c3j , c4, c5 and c6:

xj = fsym
j (a12) =

a2
12c1j + a12c2j + c3j

a2
12c4 + a12c5 + c6

. (8)

Each solution of As(a12)x = b can be expressed
using the parametric functions with a12 as variable.
First the determinants of the matrices As(a12),

As((ã12)1) and As(a12) are calculated. The val-
ues of the parameters c4, c5 and c6 can be found
through the following system of linear equations:





|As(a12)| = a2
12c4 + a12c5 + c6

|As((ã12)1)| = (ã12)21c4 + (ã12)1c5 + c6

|As(a12)| = a2
12c4 + a12c5 + c6.

Thereafter the crisp systems:

As(a12)x = b, (9)
As((ã12)1)x = b, (10)

As(a12)x = b, (11)

are solved with for example Gaussian elimination.
The solutions of (9), (10) and (11) are denoted as

x = (x1, . . . , xn)T ,

(x)1 = ((x1)1, . . . , (xn)1)T

and
x = (x1, . . . , xn)T

respectively. The values of the parameters c1j , c2j

and c3j are obtained as the solution of the following
system of linear equations:




xj |As(a12)| = a2
12c1j + a12c2j + c3j

(xj)1|As((ã12)1)| = (ã12)21c1j + (ã12)1c2j + c3j

xj |As(a12)| = a2
12c1j + a12c2j + c3j .

In that way all the possible solutions of the lin-
ear systems As(a12)x = b, for all a12 ∈ supp(ã12)
are calculated by (8). We define for all j ∈
{1, . . . , n} the fuzzy number x̃sym

j as:

x̃sym
j (x) = sup{ã12(a12) | a12 ∈ supp(ã12)

and x = fsym
j (a12)},

(12)

for all x ∈ fsym
j (supp(ã12)), and

x̃sym
j (x) = 0,

for all x ∈ R \ fsym
j (supp(ã12)).

3.2. Systems with two fuzzy co-
efficients

In this section we consider a system of two fuzzy
coefficients F̃n1 and F̃n2. The approach differs for
a fuzzy diagonal or fuzzy non-diagonal element of
the matrix Ã or a fuzzy component of the vector b̃.
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Fig. 1: Solving systems with two fuzzy coefficients.

3.2.1. The second fuzzy coef f icient is a diagonal
element of the matrix Ã

Assume the second fuzzy number is a diagonal ele-
ment of the matrix Ã. We first fix the second fuzzy
number on the lower bound of its support. In that
way we can find the solutions for the systems corre-
sponding to the lower line of the rectangle in Figure
1 by the method described in Section 3.1. Analo-
gously we fix the second fuzzy number on the upper
bound of its support and find the solutions for the
upper line in Figure 1. Thereafter we fix arbitrarily
the first fuzzy number on Fn∗1 ∈ supp(F̃n1) and let
Fn2 ∈ supp(F̃n2) vary. So, again, we obtain a sys-
tem with only one fuzzy number, but this time the
fuzzy number is F̃n2. Thus we are looking for the
solution of the crisp systems corresponding to the
points on the vertical thin line in Figure 1. Simi-
larly as we did before, we can obtain the solution
of the crisp system As(Fn∗1, Fn2)x = b as

xj = f∗j (Fn2) =
Fn2c

∗
1j + c∗2j

Fn2c∗3 + c∗4
(13)

for all j ∈ {1, . . . , n} and Fn2 ∈ supp(F̃n2). We
find the parameters c∗3 and c∗4 by solving the system

{
f l

denom(Fn∗1) = Fn2c
∗
3 + c∗4

fu
denom(Fn∗1) = Fn2c

∗
3 + c∗4.

(14)

where f l
denom(Fn∗1) and fu

denom(Fn∗1) are the de-
nominators of the parametric functions for respec-
tively the lower (l) and the upper (u) bound of the
support of F̃n2, with the first fuzzy number as vari-
able and evaluated in the fixed value Fn∗1. Then,
for all j ∈ {1, . . . , n}, we obtain c∗1j and c∗2j by solv-
ing the following system:

{
f l

num,j(Fn∗1) = Fn2c
∗
1j + c∗2j

fu
num,j(Fn∗1) = Fn2c

∗
1j + c∗2j .

where f l
num,j(Fn∗1) and fu

num,j(Fn∗1) are the nu-
merators of the j-th component of the paramet-
ric functions for respectively the lower (l) and the
upper (u) bound of the support of F̃n2, with the
first fuzzy number as variable and evaluated in the
fixed value Fn∗1. Consequently, all possible solu-
tions for the crisp systems A(Fn∗1, Fn2)x = b, for
all Fn2 ∈ supp(F̃n2), can be obtained using (13).
This approach can be used independently of the
place of the first fuzzy number; it doesn’t matter if
the first fuzzy number is a diagonal or non-diagonal
element of the matrix Ã or a component of the vec-
tor b̃.

3.2.2. The second fuzzy number is a non-diagonal
element of the matrix Ã

Let us assume that the second fuzzy number is a
non-diagonal element of the matrix Ã. We first fix
the second fuzzy number on the lower and the upper
bound of its support. In that way we can find the
solutions for the lower and upper line of the Figure
1. We also fix the second fuzzy number on its modal
value. Thereafter the parametric functions with the
second fuzzy number as variable and a fixed first
fuzzy number are calculated by using the earlier
obtained parametric functions. We first solve the
following system of linear equations:





f l
denom(Fn∗1) = Fn2

2c∗4 + Fn2c
∗
5 + c∗6

fm
denom(Fn∗1) = (F̃n2)21c

∗
4 + (F̃n2)1c∗5 + c∗6

fu
denom(Fn∗1) = Fn2

2
c∗4 + Fn2c

∗
5 + c∗6;

where f l
denom(Fn∗1), fm

denom(Fn∗1) and f l
denom(Fn∗1)

are the denominators of the parametric functions
for respectively the lower (l) bound of the support,
the modal value (m) and the upper (u) bound of
the support of F̃n2, with the first fuzzy number
as variable and evaluated in the fixed value Fn∗1.
Thereafter we calculate the parameters c∗1j , c∗2j and
c∗3j by solving the following system:





f l
num,j(Fn∗1) = Fn2c∗1j + Fnc∗2j + c∗3j

fm
num,j(Fn∗1) = (F̃n)21c

∗
1j + (F̃n)1c∗2j + c∗3j

fu
num,j(Fn∗1) = Fn

2
c∗1j + Fnc∗2j + c∗3j

where f l
num,j(Fn∗1), fm

num,j(Fn∗1) and f l
num,j(Fn∗1)

are the numerators of the j-th component of the
parametric functions for respectively the lower (l)
bound of the support, the modal value (m) and the
upper (u) bound of the support of F̃n2, with the
first fuzzy number as variable and evaluated in the



fixed value Fn∗1. The function f∗j is then given by,
for all j ∈ {1, . . . , n},

f∗j (Fn2) =
(Fn2)2c∗1j + Fn2c

∗
2j + c∗3j

(Fn2)2c∗4 + Fn2c∗5 + c∗6
,

for all Fn2 ∈ supp(F̃n2).

3.2.3. The second fuzzy number is a component of
the vector b̃

When the second fuzzy number is located in the
right-hand side of the system of linear fuzzy equa-
tions, i.e. , when we have for instance that b̃ =
(b̃1, b2, . . . , bn), one sees immediately that c∗3 = 0
and c∗4 = |A| = f l

denom(Fn∗1) = fu
denom(Fn∗1). Then

we have to calculate the values for the parameters
c∗1j and c∗2j by using the numerators of the para-
metric functions for the first fuzzy coefficient:

{
f l

num,j(Fn∗1) = Fn2c
∗
1j + c∗2j

fu
num,j(Fn∗1) = Fn2c

∗
1j + c∗2j

for j ∈ {1, . . . , n}. The function f∗j is then given
by, for all j ∈ {1, . . . , n},

f∗j (Fn2) =
Fn2c

∗
1j + c∗2j

f l
denom(Fn∗1)

,

for all Fn2 ∈ supp(F̃n2).
The solution x̃sym

j is obtained similarly as in
(12) in all the three cases (Subsection 3.2.1, 3.2.2
and 3.2.3).

3.3. Systems with more than
two fuzzy coefficients

Clearly, the procedure proposed in Subsection 3.2
can be extended to systems with more than two
fuzzy coefficients. In Figure 2 the method is illus-
trated for 3 fuzzy coefficients. First we calculate
all the parametric functions and solutions for the
front and the back face of the cube. Thereafter
we obtain the parametric functions and solutions
corresponding to the lines between the front and
the back face of the cube by using the parameters
obtained earlier.

Example 1 . Consider the following system of lin-
ear fuzzy equations:

Ãx̃ = b̃

Fn1

Fn2

Fn3

Fn
1 Fn1

Fn
3

Fn3

Fn
2

Fn2

(Fn∗

1, Fn
2
, Fn

3
)

(Fn∗

1, Fn∗

2, Fn
3
)

(Fn∗

1, Fn2, Fn3)

(Fn∗

1, Fn2, Fn
3
)

(Fn∗

1, Fn
2
, Fn3)

(Fn∗

1, Fn∗

2, Fn3)

Fig. 2: Solving systems with three fuzzy coefficients.
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Fig. 3: Solutions for the system of Example 1 with
the symmetry of the matrix Ã taken into account
(full line) and without taking the symmetry into
account (interrupted line).

where Ã =
0
BB@

1 (3 / 4 / 5) (4 / 5 / 6) 0
(3 / 4 / 5) −4 (1 / 4 / 6) (0 / 1 / 3)
(4 / 5 / 6) (1 / 4 / 6) 2 5

0 (0 / 1 / 3) 5 3

1
CCA ,

b̃ =




1
1
1
1


 .

This system has a symmetric matrix Ã. The
solution for this system is obtained on the one hand
without taking the symmetry into account and on
the other hand taking the symmetry into account.
The difference in solution for both approaches is
shown in Figure 3. When the symmetry is not taken
into account, the solution is an overestimation.



4. Conclusion
In this paper we have proposed a method to solve
n×n systems in which some (or all) coefficients are
fuzzy and in which we take the symmetry of the ma-
trix Ã into account. While in the method of Buck-
ley and Qu for every element in the support of each
fuzzy number the corresponding crisp n×n system
is solved, in our method only the crisp n × n sys-
tems corresponding to the bounds of each support
and the modal value of each fuzzy number must
be solved, and the other necessary solutions for the
combinations of the lower and the upper bounds
of the considered α-level are obtained by evaluat-
ing parametric functions. By considering the sym-
metry of the matrix Ã, the obtained solution is a
better solution, there is no overestimation. As an
interesting side-effect we find that the computation
time is considerably reduced.
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