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Abstract
The L2-L∞ fuzzy filtering problem for a class of
nonlinear time-delay jump systems with uncertain
parameters is considered. By using the constructed
Lyapunov-Krasovskii function, a sufficient condi-
tion that the solution of the L2-L∞ fuzzy filter
existed is given and proved. The results are de-
rived by the form of linear matrix inequalities
(LMIs) and the design problem of L2-L∞ fuzzy fil-
ter is described as an optimization one. The pre-
sented fuzzy filter makes the error systems have ex-
ponentially stochastically stability and satisfy the
given L2-L∞ performance index. Simulation re-
sults demonstrate the validity of the proposed ap-
proaches.

Keywords: Time-delay jump systems, Uncertain,
Fuzzy filtering, L2-L∞ performance, Linear matrix
inequalities(LMIs).

1. Introduction
Since the Kalman filtering theory [1] has been in-
troduced in the early 1960s, the filtering problem
has been extensively investigated, whose objective
is to estimate the unavailable state variables (or
a linear combination of the states) of a given sys-
tem. But in Kalman filtering scheme, it has some
limitations in practical applications because it as-
sumes the system model be a certain well-posed
one and unknown inputs be Gaussian noise distur-
bances. During the past decades, the robust H∞
filtering technique [2]-[5] regains increasing interest
when the systems are described by uncertain mod-
els or have stochastic noise disturbances with un-
known statistics. Compared with the conventional
Kalman filtering, the noise sources in the H∞ fil-
tering setting are arbitrary signals with bounded
energy or average power, and the H∞ filter has
been shown to be much more robust to parame-
ter uncertainty in a control system. H∞ filtering

guarantees a prescribed bounded for the induced
L2 norm of the operator from the unknown noise
inputs to the filtering error, but in practical engi-
neering applications, the peak values of filtering er-
ror should be considered. This kind of performance
criterion firstly discussed in [6], but the L2-L∞ fil-
tering problem [7] [8] has received less attention.
Compared with H∞ filtering, the stochastic noise
disturbances are both assumed energy bounded in
these two filtering techniques, but L2-L∞ filtering
setting requires the L2-L∞ performance prescribed
bounded from unknown noise disturbances to fil-
tering error.

On the other hand, a lot of dynamical systems
have variable structures subject to random abrupt
changes, which may result from abrupt phenomena
such as sudden environment changes, subsystem
switching, system noises, failures occurred in com-
ponents or interconnections and executor faults,
etc. Markov jump systems (MJS) are special class
of hybrid systems with two components which are
the mode and the state in state vectors, may be em-
ployed to model the above problems. In MJS, the
dynamics of the jump modes and continuous states
are respectively modeled by a finite state Markov
chain and differential equations. Since the pioneer-
ing work of Krasovskii and Lidskii on quadratic
control [9] of MJS in the mid 1960s, MJS regain
increasing interest owing to the application of them
are more comprehensive, for instance, economic
systems [10], solar thermal receiver systems [11] and
communication systems [12], etc. The existing re-
sults about MJS cover a large variety of problems
such as stochastic stability [13] [14], stochastic con-
trollability [15] [16] and references therein. In re-
cent years, the filtering problem [17] [18] has gained
a great deal of attention, but L2-L∞ filtering prob-
lem for MJS has received less consideration.

It has been recognized that the time-delays,
parameter uncertainties and nonlinearities are in-
herent features of many physical process and of-
ten encountered in engineering systems, their pres-



ence must be considered in realistic stability anal-
ysis. Therefore, for the nonlinear systems with
time-delays and parameter uncertainties, it is nec-
essary to study the robust L2-L∞ filtering prob-
lem. For a class of linear time-invariant systems,
a robust guarantee L2-L∞ filter was designed in
[7]. The linear L2-L∞ design filtering problem was
tackled in [8] for the time-delay stochastic system.
In this paper, we discuss the L2-L∞ fuzzy filtering
problem for a class of nonlinear time-delay jump
systems with uncertain parameters. By means of
Takagi-Sugeno (T-S) fuzzy models [19], the fuzzy
filter is constructed, and the dynamics of filtering
error generator is also obtained. By using the con-
structed Lyapunov-Krasovskii function and linear
matrix inequalities (LMIs), a sufficient condition
that the solution of the L2-L∞ fuzzy filter existed
is given and proved, and the design problem of L2-
L∞ fuzzy filter is described as an optimization one.
The presented fuzzy filter makes the error systems
have exponentially stochastically stability and sat-
isfy the given L2-L∞ fuzzy filtering norm index.
Simulation results demonstrate the validity of the
proposed approaches.

In the sequel, the following notion will be
used: Rn denotes n-dimensional Euclidean space,
AT and A−1 denote the transpose and the inverse
of any matrix or vector, diag{A,B} denotes the
block-diagonal matrix of A and B, ‖ · ‖ denotes
the Euclidean norm of vectors, E{·} denotes the
mathematics statistical expectation of the stochas-
tic process or vector, Ln

2 [0,∞) is the space of n-
dimensional square integrable function vector over
[0,∞), I is the unit matrix with appropriate dimen-
sions, 0 is the zero matrix with appropriate dimen-
sions, ∗ means the symmetric terms in a symmetric
matrix.

2. Problem Formulation
Given a probability space (Ω, F, P ) where Ω is
the sample space, F is the algebra of events
and P is the probability measure defined on F .
Let the random form process {rt, t ≥ 0} be the
Markov stochastic process taking values on a finite
set M={1, 2, . . . , N} with transition rate matrix
Π={πrk, r, k ∈ M}, and define the following
transition probability from mode r at time t to
mode k at time t +4t as:

Prk = P (rt+∆t = k|rt = r)

=

{
πrk∆t + o(∆t), if r 6= k

1 + πrr∆t + o(∆t), if r = k

(1)

with transition probability rates πrk ≥ 0 for

r, k ∈ M , r 6= k and
N∑

k=1,k 6=r

πrk = −πrr, where

4t > 0 and lim
4t→0

o(4t)
4t → 0.

Consider a class of nonlinear stochastic MJS
described by T-S fuzzy model with time-delay and
uncertainties over the space (Ω, F, P ):
Subsystem i:
If µ1(t) is F i

1 , µ2(t) is F i
2, and · · · , µg(t) is F i

g, then
ẋ(t) = [Ai(rt) + ∆Ai(rt)]x(t)

+[Ahi(rt) + ∆Ahi(rt)]x(t− h) + Bi(rt)d(t)

y(t) = Ci(rt)x(t) + Di(rt)d(t)

z(t) = Li(rt)x(t)

x(ξ) = η(ξ), r(ξ) = r0, ξ ∈ [−h, 0], i = 1, 2, · · · , S
(2)

where x(t) ∈ Rn is the state, y(t) ∈ Rl is the
measured output, d(t) ∈ Lq

2[0,∞) is the unknown
input, z(t) ∈ Rp is the controlled output, h > 0
is the unknown delay constant, η(ξ) ∈ L2[−h, 0]
is a continuous vector-valued initial function, r0

is the initial mode. µ1(t), µ2(t), · · · , µg(t) are
the premise variables that depend on the states
in many cases. F i

j , i = 1, 2, · · · , S, j = 1, 2, · · · , g
are the fuzzy sets, S is the numbers of Subsystem
i. Ai(rt), Ahi(rt), Bi(rt) Ci(rt), Di(rt), Li(rt) are
known mode-dependent constant matrices with
appropriate dimensions.

In the above, ∆Ai(rt) and ∆Ahi(rt) are
uncertain matrices with appropriate dimensions
defined as follows:

[∆Ai(rt),∆Bi(rt)]

= Mi(rt)Fi(rt, t) [Ni(rt), Nhi(rt)]
(3)

where Mi(rt), Ni(rt), Nhi(rt) are known mode-
dependent matrices with appropriate dimensions
and Fi(rt, t) is the time-varying unknown matrix
function with Lebesgue norm measurable elements
satisfying FT

i (rt, t)Fi(rt, t)≤I. By using a singleton
fuzzifier, product inference and a center-average
defuzzifer [20], the following dynamic global model
can be obtained:

ẋ(t) =
S∑

i=1

hi(µ(t))[(Ai(rt) + ∆Ai(rt))x(t)

+[Ahi(rt) + ∆Ahi(rt)]x(t− h) + Bi(rt)d(t)]

y(t) =
S∑

i=1

hi(µ(t))[Ci(rt)x(t) + Di(rt)d(t)]

z(t) =
S∑

i=1

hi(µ(t))Li(rt)x(t)

x(ξ) = η(ξ), r(ξ) = r0, ξ ∈ [−h, 0], i = 1, 2, · · · , S
(4)



where µ(t) = [µ1(t), µ2(t), · · · , µg(t)]. And for
∀i = 1, 2, · · · , S,

hi(µ(t)) = ui(µ(t))/
S∑

i=1

ui(µ(t))

ui(µ(t)) =
g∏

j=1

F i
j (µj(t))

(5)

in which F i
j (µ(t)) is the grade of membership of

µj(t) in the fuzzy set F i
j . In this paper, we assume

ui(µ(t)) ≥ 0 and
S∑

i=1

ui(µ(t)) ≥ 0. Then we can
obtain the following conditions:

S∑
i=1

hi(µ(t)) = 1

1 ≤ hi(µ(t)) ≤ 1, i = 1, 2, · · · , S
(6)

Similar to the fuzzy observer design [21], we
now consider the following fuzzy filter for the
estimate of z(t):
Filter i:
If µ1(t) is F i

1 , µ2(t) is F i
2 , and · · · , µg(t) is F i

g, then
˙̂x(t) = Afi(rt)x̂(t) + Bfi(rt)y(t)

ẑ(t) = Lfi(rt)x̂(t)

˙̂x(0) = x̂(ϕ), i = 1, 2, · · · , S

(7)

and the dynamic global filter model can be con-
structed as

˙̂x(t) =
S∑

i=1

hi(µ(t))[Afi(rt)x̂(t) + Bfi(rt)y(t)]

ẑ(t) =
S∑

i=1

hi(µ(t))Lfi(rt)x̂(t)

˙̂x(0) = x̂(ϕ), t = 0, i = 1, 2, · · · , S
(8)

where x̂(t) ∈ Rn and ẑ(t) ∈ Rp respectively
represent the filter state and output, Afi(rt),
Bfi(rt) and Lfi(rt) are matrices to be determined.
Here, we first introduce the state estimate error
e(t) = x(t)−x̂(t) and output error z̄(t) = z(t)−ẑ(t),
and define x̄(t) = [xT(t), eT(t)]T. For notational
simplicity, hi(µ(t)), Ai(rt), x̄(t) and x(t − h) are
respectively denoted as hi, Ai(r), x̄ and xh, and
the other vectors and expressions are defined
similarly. Then we can get the following filtering
error dynamics from systems (4)-(8):

˙̄x =
S∑

i=1

hi

S∑
j=1

hj [Āij(r)x̄ + Āhi(r)Ex̄h + B̄ij(r)d]

z̄ =
S∑

i=1

hi

S∑
j=1

hjL̄ij(r)x̄

x̄(ξ) = [ηT(ξ), x̂T(ϕ)]T, ξ ∈ [−h, 0]
(9)

where
Āij(r) =

[
Ai(r) + ∆Ai(r) 0

Ai(r) + ∆Ai(r)−Afj(r)−Bfj(r)Cj(r) Afj(r)

]
,

Āhi(r) =

[
Ahi(r) + ∆Ahi(r)
Ahi(r) + ∆Ahi(r)

]
, E =

[
I 0

]
,

B̄ij(r) =

[
Bi(r)

Bi(r)−Bfj(r)Dj(r)

]
,

L̄ij(r) =
[

Li(r)− Lfj(r) Lfj(r)
]
.

Definition 1. The nonlinear jump system (4) is
said to be exponentially stochastically stable if,
for every system mode and every x̄(ξ) ∈ L2[−h, 0],
there exist scalars a > 0 and k > 0, such that

E ‖x̄(t)‖ ≤ ae−kt sup
−h≤ξ≤0

E‖x̄(ξ)‖ (10)

where k > 0 is called the degree of exponential
stability.

Definition 2. In the Euclidean space
{Rn × M × R+}, we introduce the stochas-
tic Lyapunov function of system (4) as
V (x(t), rt, t > 0)=V (x, r), the weak infinitesi-
mal operator of which satisfies

ΓV (x, t) = lim
∆t→0

1
∆t [EV (x(t + ∆t), rt+∆t, t + ∆t)

−V (x(t), r, t)]
(11)

Definition 3. Consider system (4) and (8), if there
exist the parameters Afi(r), Bfi(r) and Lfi(r) ,
and a positive scalar γ , such that the filtering er-
ror dynamic system (9) is exponentially stochasti-
cally stable and the output error satisfies the fol-
lowing cost function inequality for all admissible
d ∈ Lq

2[0,∞),

E‖z̄‖2∞ ≤ γ2E‖d‖22 (12)

where

E‖z̄‖2∞ = E
{

sup
t>0

[z̄Tz̄]
}
, E‖d‖22 = E

{∫∞
0

dTddt
}
,

then the filter (8) is said to be the robust L2-L∞
fuzzy filter for system (4).

Remark 1. In robust L2-L∞ fuzzy filtering, the un-
known noise d are assumed to be arbitrary deter-
ministic signals of bounded energy, and the problem
of this paper is to design an fuzzy filter that guar-
antees a prescribed bounded for the induced L2-L∞
norm of the operator from the unknown noise in-
puts to the output error , i.e. the designed robust
fuzzy filter is supposed to satisfy inequality (12)
with attenuation γ.



3. Design of Robust Jump L2-
L∞ Fuzzy Filter

Before proceeding with the study on filter design,
the following lemmas will be useful in designing
the expected L2-L∞ fuzzy filter for the nonlinear
MJS (4).
Lemma 1 [13]. Stochastically stable is equivalent
to nearly asymptotically stable.
Lemma 2 [22]. The stochastic nonlinear sys-
tem ẋ(t)=f(x(t), t) with f(0, t)=0 is globally
exponentially stochastically stable if, there exist
positive-definite function V (x, t) ∈ {Rn × R+} ,
and positive scalars λ1 > 0 , λ2 > 0, λ3 > 0, such
that

λ1‖x‖2 ≤ V (x, t) ≤ λ2‖x‖2 (13)

ΓV (x, t) ≤ −λ3‖x‖2 (14)

Theorem 1. For the given scalar γ>0, if there
exist a set of mode-dependent symmetric positive-
definite matrix P (r) and symmetric positive-
definite matrix Q, satisfying the following matrix
inequalities for all r ∈ M and 1 ≤ i ≤ j ≤ S,

Πij(r) =




Π1(r) Π2(r) Π3(r)
∗ −2Q 0
∗ ∗ −2I


 < 0 (15)

[L̄ij + L̄ji]T[L̄ij + L̄ji] < 4γ2P (r) (16)

where
Π1(r) = P (r)[Āij(r) + Āji(r)] + [Āij(r) + Āji(r)]T

× P (r) + 2ETQE +
N∑

r=1
πrkP (k),

Π2(r) = P (r)[Āhi(r) + Āhj(r)],
Π3(r) = P (r)[B̄ij(r) + B̄ji(r)].
Then the filtering error dynamic system (9) is
exponentially stochastically stable and the fuzzy
filter (8) is said to be the robust L2-L∞ fuzzy filter
for system (4) with attenuation γ.
Proof: Under the conditions of the theorem,
we first study the exponentially stochastically
stability of system (9). For the given symmetric
positive-definite matricx P (r), r ∈ k, define the
following Lyapunov-Krasovskii function

V (x̄, r, t) = x̄TP (r)x̄ +
∫ t

t−h

x̄T(τ)ETQEx̄(τ)dτ

Then along the solution of (9) with d = 0, ap-
plying definition 2, the weak infinitesimal operator

V (x̄, r, t) of (9) is given by

ΓV (x̄, r, t) = 1
2

S∑
i=1

hi

S∑
j=1

hj{x̄TP (r)[(Āij(r)

+Āji(r))x̄ + (Āhi(r) + Āhj(r))xh] + [(Āij(r)
+Āji(r))x̄ + (Āhi(r) + Āhj(r))xh]TP (r)x̄

+x̄T
N∑

r=1
πrkP (k)x̄}+ x̄TETQEx̄− xT

h Qxh =

1
2

S∑
i=1

hi

S∑
j=1

hj

[
x̄
xh

]T [
Π1(r) Π2(r)
∗ −2Q

][
x̄

xh

]

Obviously, by the Schur complement formula,
ΓV (x̄, r, t)<0 can be guaranteed by matrix in-
equality (15). This implies that there always exists
a scalar λ3 > 0, such that

ΓV (x̄, r, t) ≤ −λ3‖x‖2
Meanwhile, considering the Lyapunov-Krasovskii
function V (x̄, r, t), there will exist scalars λ1 > 0,
λ2 > 0, such that

λ1‖x‖2 ≤ V (x̄, r, t) ≤ λ2‖x‖2
Therefore, by Lemma 2 and Definition 1, we

have that system (9) is exponentially stochastically
stable. So dynamic error system (9) is exponen-
tially asymptotically stable according to Lemma 1.

Furthermore, we consider the L2-L∞ filtering
performance for dynamic error system (9) while
d 6= 0. In zero initial condition, for T > 0, we
introduce the following cost function for system
(9) by Definition 3,

J = E {V (x̄, r, t)} − E

{∫ T

0

dTddt

}

While define Z = [x̄T, xT
h , dT]T, we have

J = E
{

ΓV (x̄, r, t)− ∫ T

0
dTddt

}

<
∫ T

0

[
1
2

S∑
i=1

h2
i Z

TΠii(r)Z +
S∑

i=1

hihjZ
TΠij(r)Z

]
dt

By the Schur complement formula, J<0 holds
if Πij(r) . Therefore, it can be verified that

E{x̄TP (r)x̄} ≤ E{V (x̄, r, t)} < E

{∫ T

0

dTddt

}

On the other hand, we get

z̄Tz = 1
4

S∑
i=1

hi

S∑
j=1

hj

S∑
a=1

ha

S∑
b=1

hb

× x̄T[L̄ij(r) + L̄ji(r)]T[L̄ab(r) + L̄ba(r)]x̄ ≤
1
4

S∑
i=1

hi

S∑
j=1

hj x̄
T[L̄ij(r) + L̄ji(r)]T[L̄ij(r) + L̄ji(r)]x̄

Recall matrix inequality (15), for T > 0 , we
can see that



E{z̄Tz̄} ≤ γ2E{x̄TP (r)x̄)} < γ2E

{∫ T

0

dTddt

}

Obviously, E{z̄Tz̄} < γ2E
{∫∞

0
dTddt

}
holds

while T→∞ for any nonzero d ∈ Lq
2[0,+∞). This

completes the proof.
Remark 2. From Theorem 1, we can see clearly
that the matrix inequalities (14) (15) are unlikely
to resolve in practice for the uncertainties and
nonlinearities in the inequalities. In order to
obtain the robust L2-L∞ fuzzy filter of nonlinear
jump system (4), it is necessary to get the LMIs
optimized condition which without comprising the
uncertainties and nonlinearities by relative Lem-
mas. On the previous assumption, the following
Theorem 2 can be considered.
Theorem 2. For the given scalar γ > 0, if
there exist a set of mode-dependent symmetric
positive-definite matrix P (r) = diag{P1(r), P2(r)},
r ∈ k, symmetric positive-definite matrix Q, and
a set of mode-dependent matrices Āfi(r), B̄fi(r)
and L̄fi(r), r∈M , i = 1, 2, · · · , S, satisfying the
following LMIs
Λij(r) =


Λ1ij(r) Λ2ij(r) Λ3ij(r) Λ4ij(r)
∗ Λ5ij(r) 0 0
∗ ∗ −2I 0
∗ ∗ ∗ −[αij(r) + αji(r)]I




< 0,

1 ≤ i ≤ j ≤ S
(17)[

P (r) Λ6ij(r)
∗ 4γ2I

]
> 0 (18)

where
Λ1ij(r) =[

Λ11ij(r) + Λ11ji(r) ∗
Λ12ij(r) + Λ12ji(r) Λ13ij(r) + Λ13ji(r)

]
,

Λ11ij(r) = P1(r)Ai(r) + AT
i (r)P1(r) + Q

+ 1
2

N∑
r=1

πrkP1(r) + αij(r)NT
i (r)Ni(r),

Λ12ij(r) = P2(r)Ai(r)− Āfj(r)− B̄fj(r)Cj(r),

Λ13ij(r) = Āfj(r) + ĀT
fj(r) + 1

2

N∑
r=1

πrkP2(k),

Λ2ij(r) =



[P1(r)[Ahi(r) + Ahj(r)] + αij(r)NT
i (r)Nhi(r)

+αji(r)NT
j (r)Nhj(r)]

P2(r)[Ahi(r) + Ahj(r)]


,

Λ3ij(r) =[
P1(r)[Bi(r) + Bj(r)]

P2(r)[Bi(r) + Bj(r)]− B̄fi(r)Di(r)− B̄fj(r)Dj(r)

]
,

Λ4ij(r) =

[
P1(r)[Mi(r) + Mj(r)]
P2(r)[Mi(r) + Mj(r)]

]
,

Λ5ij(r) =
−2Q + αij(r)NT

hi(r)Nhi(r) + αji(r)NT
hj(r)Nhj(r),

Λ6ij(r) =[
[Li(r) + Lj(r)]T − [L̄fi(r) + L̄fj(r)]T

L̄T
fi(r) + L̄T

fj(r)

]
.

Then the filtering error dynamic system (9) is
exponentially stochastically stable and the fuzzy
filter (8) is said to be the robust L2-L∞ fuzzy
filter for system (4) with attenuation γ. The
corresponding L2-L∞ fuzzy filter of the form (8)
will be constructed by:

Afi(r) = P−1
2 (r)Āfi(r), Bfi(r) = P−1

2 (r)B̄fi(r),
Lfi(r) = L̄fi(r)

(19)
Proof: For the further convenient analysis, we set

P (r) = diag{P1(r), P2(r)}, Āfi(r) = P2Afi(r),

B̄fi(r) = P2Bfi(r), L̄fi(r) = Lfi(r)

where P1(r), P2(r), r ∈ M are mode-dependent
symmetric positive-definite matrices. Substitute
the above matrices into matrix inequalities (14)
and (15), use some changes of variables, and recall
following matrix inequality [23],

HFE + ETFTHT ≤ ε−1HHT + εETE

where ε > 0 is a real scalar and H, F , E are real
matrices of appropriate dimensions with ‖F‖ ≤ I.
Matrix inequalities (14) and (15) can be easily
changed into the LMIs (17) and (18). Therefore,
the L2-L∞ filtering problem can be solved by using
MATLAB LMI Control Toolbox. This completes
the proof.
Remark 3. For the further convenient analysis,
mode-dependent matrix P (r) is selected as a
diagonal one, so it will bring some conservative
performances. To overcome it, P (r) can be
selected as full order matrix, and the solution of
fuzzy filter will be quite difficult and require the
further research. On the other hand, Theorem
2 guarantees the positive-definite performance of
P (r), thus the L2-L∞ fuzzy filter parameters can
be easily presented by solving LMIs (17) and (18).



Remark 4. To obtain an optimized L2-L∞ fuzzy
filtering performance against unknown inputs and
system uncertainties, the attenuation lever γ can
be reduced to the minimum possible value such
that LMIs (17) and (18) are satisfied. The LMIs
optimization problem can be described as follows:

min
Āfi(r),B̄fi(r),L̄fi(r),P1(r),P2(r),Q,ρ

ρ

s.t. LMIs (17) and (18)with ρ = γ2
(20)

4. Numerical Example
Considering a class of nonlinear stochastic MJS
described by T-S fuzzy model with time-delay and
uncertainties parameters given by:
Subsystem 1: If x2(t) is F1, then

ẋ = [A1(r) + M1(r)F1(r, t)N1(r)]x+
[Ah1(r) + M1(r)F1(r, t)Nh1(r)]xh + B1(r)d

y = C1(rt)x + D1(r)d

z = L1(r)x

where

A1(1) =

[
2 4

−4.5 −5

]
, A1(2) =

[
−5 −1.6
2.1 −4

]
,

Ah1(1) =

[
−0.4 0.2
−0.1 −0.3

]
, B1(1) =

[
0.2
0.4

]
,

Ah1(2) =

[
−0.1 0.5
0.2 −0.3

]
, B1(2) =

[
0.3
−0.2

]
,

M1(1) = M1(2) =

[
0

0.2

]
,

N1(1) = N1(2) =
[

0.2 0.1
]
,

L1(1) = L1(2) =
[

0.1 −0.3
]
,

Nh1(1) = Nh1(2) =
[

0.1 0.2
]
,

C1(1) = C1(2) =
[

0.2 0.3
]
,

D1(1) = D1(2) = 0.1;
Subsystem 2: If x2(t) is F2, then

ẋ = [A2(r) + M2(r)F2(r, t)N2(r)]x+
[Ah2(r) + M2(r)F2(r, t)Nh2(r)]xh + B2(r)d

y = C2(rt)x + D2(r)d

z = L2(r)x

where

A2(1) =

[
−2.5 −0.8
0.5 −3.2

]
, A2(2) =

[
−5 1
2 −7

]
,

Ah2(1) =

[
−0.3 0.5
−0.2 −0.3

]
, B2(1) =

[
0.3
0.1

]
,

Ah2(2) =

[
0.1 0
0 0.2

]
, B2(2) =

[
0.3
0.1

]
,

M2(1) = M2(2) =

[
−0.1
0.1

]
,

N2(1) = N2(2) =
[

0.1 0.2
]
,

L2(1) = L2(2) =
[ −0.1 0.2

]
,

Nh2(1) = Nh2(2) =
[

0.1 −0.2
]
,

C2(1) = C2(2) =
[ −0.2 0.2

]
,

D2(1) = D2(2) = 0.2.

The membership functions are selected as

h1(x2(t)) =
−x2(t) + 3

6
, h2(x2(t)) =

x2(t) + 3
6

and the transition rate matrix is defined by

Π =
[ −2 2

1 −1

]
.

By solving the LMIs optimization problem
(20), the L2-L∞ optimized value γ = 0.0536, and
the fuzzy filter matrices are respectively as follows:

Af1(1) =

[
1.5270 3.1885
−5.8188 −6.7746

]
,

Af1(2) =

[
−6.0080 −3.0694
2.4240 −3.4464

]
,

Bf1(1) =

[
2.4858
4.8549

]
, Bf1(2) =

[
5.0145
−1.8132

]
,

Lf1(1) =
[

0.0901 −0.2800
]
,

Lf1(2) =
[

0.0883 −0.2977
]
,

Af2(1) =

[
−1.9640 −0.8875
−0.0878 −4.1463

]
,

Af2(2) =

[
−5.1533 1.3868
2.1576 −7.3695

]
,

Bf2(1) =

[
1.5549
0.7841

]
, Bf2(2) =

[
−0.9597
1.1310

]
,

Lf2(1) =
[ −0.0894 0.1879

]
,

Lf2(2) =
[ −0.0886 0.1996

]
.

Assume the unknown inputs are random
bounded noise (altitude is from -0.3 to 0.3), the
initial condition of states about the original system



and filtering system are respectively x1=xf1=1.0
and x2=xf2=0.8. Thus, the simiple simulation re-
sults about jump mode, system states (real state
and estimate state), and controlled output signals
are shown in Fig.1-Fig.4.

Fig. 1: Jump mode

Fig. 2: System state x1

Fig. 3: System state x2

5. Conclusions
In the paper, we have addressed the design of L2-
L∞ fuzzy filter for the nonlinear jump system with

Fig. 4: Controlled output signals z(t)

time-delay and uncertainties. It ensures exponen-
tially stochastically stable for the overall dynamic
error system and a prescribed bound on the gain
from the unknown noise to the estimation error.
By selecting the appropriate Lyapunov-Krasovskii
function and applying matrix transformation and
variable substitution, the main results are provided
in terms of LMIs form. Simulation example demon-
strates the contribution of the main results.
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