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Abstract. Moran's I statistic is the most popular test for spatial dependence. When spatial weights 

matrices are substantially varying over time, Moran's I test based on a time invariant spatial weights 

matrix may cause substantial bias. This paper first investigates Moran's I tests for spatial dependence in 

panel data models where spatial weights matrices can be time varying. Based on time varying and time 

invariant spatial weights matrices, the empirical size and power of Moran's I tests for spatial dependence 

are evaluated and compared. Monte Carlo results indicate that size of Moran's I tests based on time 

varying and misspecification of time invariant spatial weights matrices have not significant difference, 

especially compared with misspecification time invariant spatial weights matrices, power of Moran's I 

tests for spatial dependence with time varying spatial weights matrices is much higher. TV-Moran tests 

are superior to NTV-Moran tests with the misspecification of invariant spatial weights matrix, with larger 

power. 

Introduction 

Spatial econometrics is a subfield of econometrics that deals with spatial effects (Anselin, 1988). In 

recent several years, spatial econometrics are developed and applied in economics, regional science and 

geography (Brasili et al., 2012), agricultural economics (Druska and Horrace, 2004), public economics 

(Egger et al., 2005), transportation research (Frazier and Kockelman, 2005), good demand (Baltagi and 

Li, 2006), and so on. Both model estimation and identification are important in spatial econometric 

analysis. Hypothesis testing for spatial dependence is a common practice for the identification and 

estimation of a spatial econometric model. Moran’s I test statistic is a simple and popular test for spatial 

dependence (Moran, 1948, Cliff and Ord, 1973, 1981, Anselin, 1988). In panel data models with time 

invariant spatial weights matrices, Moran's I test statistic is as followed: 
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Where W is a NXN zero diagonal and row- normalized spatial weights matrix, e is the OLS residuals of 
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statistic is asymptotically normally distributed with the mean E(I) and variance V(I) defined by: 
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Where trace(.) is the trace of the matrix or the sum of diagonal elements. N is the sample size, T is the 

time period, and k is the rank of X or the number of independent variables.  
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Spatial weights matrix is a very important characteristic element of spatial econometric models and is 

cause of dispute in relation to what is it and how should it be specified. (Mur et al., 2011). It's exogenous 

and depends on the researchers' subjective judgment. In general, spatial weights matrices are based on 

contiguity or distances among regions, economic distances, social distances or demographic 

characteristics. In recent years, spatial weights matrices have received considerable attention afterward 

(Anselin, 2002, Anselin et al., 2008). Bhattacharjee and Jensen-Bulter (2006) propose a new 

methodology for estimation of spatial weights matrices which are consistent with an observed pattern of 

spatial auto-covariance, and for interpreting these estimated spatial weights to identify the real rather than 

hypothesized determinants of spatial interaction. Mur et al. propose a selection criterion of spatial weights 

matrices based on objective information existing in the data, which does not depend on the investigator's 

subjectivity: it is a measure of conditional entropy (Mur et al., 2011). Qu and Lee (2012) present the 

specification and estimation of the SAR (spatial autoregressive model) model with an endogenous spatial 

weights matrix, where endogeneity of spatial weights matrix comes from the correlation between error 

terms in its entries and the disturbances in the SAR outcome equation. Generally, spatial weights matrices 

are generally not changed over time. However, when elements of a spatial weights matrix are constructed 

from economic/ socioeconomic / trade characteristics of regions (or districts) in a panel or dynamic setting, 

these characteristics might be changing over time (Lee and Yu, 2012). Lee and Yu first investigate the 

quasi-maximum likelihood estimation of spatial dynamic panel data models where spatial weights 

matrices can be time varying, and find that QML estimate is consistent and asymptotically normal, 

however, when spatial weights matrices are substantially varying over time, a model misspecification of a 

time invariant spatial weights matrix may cause substantial bias in estimation (Lee and Yu, 2012). As we 

know, so far a spatial weights matrix is time invariant in almost kinds of tests for spatial dependence. 

Could a model misspecification of a time invariant spatial weights matrix also cause substantial bias in 

tests for spatial dependence?  

In this paper, we develop Moran's I tests, first propose Moran's I tests for spatial dependence in panel 

data models with time varying spatial weights matrices, and investigate the performance of the Moran's I 

tests from the view of size and power tests. Based on extensive Monte Carlo simulations of Moran’s I test 

statistic, we find that size of Moran's I tests with time varying and misspecification time invariant spatial 

weights matrices are similar. However, power of Moran's tests with time varying spatial weights matrices 

is much higher than one with time invariant spatial weights matrices.  

In the next section, we investigate Moran's I tests for spatial dependence in panel data models with time 

varying spatial weights matrices, including its' form and properties. Section 3 presents the design of 

Monte Carlo experiments for Moran's I tests. Simulation results are summarized in tables and graphs. The 

conclusion is given in Section 4. 

Moran's I Tests for Spatial Dependence 

The spatial autoregressive model (SAR) is a standard tool to analyze data with spatial correlation. The 

spatial error autoregressive model (SEAR) is also one kind of spatial econometric models. When spatial 

weights matrices are time invariant, SAR follows that: 
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When spatial weights matrices in panel data models are changed over time, Eq. (2) becomes: 
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where the NTXNT time varying spatial weights matrix W is as followed, 
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TtWt   is a NN   row-normalized spatial weight matrix with zero diagonal in the 

t-th period, and when spatial weights matrices is time invariant, the sub-matrix tWWW
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Therefore, when spatial weights matrices are changed over time, Moran's I tests for spatial dependence 

in panel data models becomes: 
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Where the residual MYYXXXXIe NT   )')'(( 1 . In this case, the matrix M is still a real 

symmetric idempotent matrix, and spatial weights matrix W is still row standardized, which is similar to 

the cross sectional case (Cliff and Ord, 1973, 1981). Tiefelsdorf (2000) derives approximations of 

Moran's I's distribution by its moments when the disturbance vector   is independent and identically 

distributed (i.i.d) random variables. Furthermore, we can develop asymptotic distribution of Moran's I 

tests from cross sectional data models and panel data models with invariant spatial weights matrices to 

panel data models with time varying spatial weights matrices. Moran's I statistic in Eq. (5) is asymptotic 

normal distributed, and then its' expectation and variance follow that: 
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We can obtain the standardized Moran’s I statistic and its' distribution by using the z-transformation of 

Moran's I: 
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When spatial weights matrices are substantially varying over time, tests for spatial dependence based 

on Eq. (1) may be bias, and Eq. (8) should be reasonably used. In the next section, we further investigate 
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the performance of Moran's I tests for spatial dependence with time varying spatial weights matrices and 

the bias of Moran's I tests for spatial dependence with the misspecification of invariant spatial weights 

matrices. 

Monte Carlo Simulation 

In this section, based on Moran's I tests for spatial dependence in panel data models with time varying 

spatial weights matrices (Eq. (8)), their size and power computed from Monte Carlo experiments are used 

to evaluate the performance of the tests. 

Given a known probability distribution of a test statistic, its P-value is the probability of the test 

accepting the null hypothesis. Using P-value for hypothesis testing is simple and more informative for 

empirical size and power evaluation (Davidson and MacKinnon, 1999, 2006, Lin et al., 2011). 

Given the null hypothesis of spatial independence, the alternatives under consideration include a 

spatial autoregressive model (SAR) and a spatial error autoregressive model (SEAR). For different 

purposes of the study, the data generating process may assume a structure of the basic null model or any 

of the alternative models. To study the size of Moran's I tests, the data is generated from the basic linear 

model assuming no spatial correlation. Two alternative models are used to generate data with spatial 

dependence with time varying spatial weight matrices in order to study the power of Moran's I tests. 

Namely, the SAR and SEAR model is respectively defined by:   XWYY , and 

  WuuuXY , . X is an NTX3 matrix, generated from independent uniformly distribution in 

[0, 1].   is an NTX1 vector, generated from independent normal distribution N(0,1). When the null 

hypothesis of spatial independence is true, uXY   , namely, 0  . The alternative hypothesis 

model (SAR) is true, 9.0,,2.0,1.0,1.0,,8.0,9.0-   , and another alternative hypothesis model 

(SEAR) is true, 9.0,,2.0,1.0,1.0,,8.0,9.0-   . The significant level is 0.05. For time varying 

spatial weights matrices, we choose an alternating pattern. Any element of the t-th spatial weights matrix 

tW  is randomly drawn from 0 and 1. All these weights matrices are row-normalized and zero diagonal. 

We also compare size and power of Moran's I tests for spatial dependence with time varying spatial 

weights matrices (TV-Moran) and no time varying spatial weights matrices (NTV-Moran) based on 500 

times Monte Carlo experiments.  

Size of TV-Moran and NTV-Moran tests for spatial dependence is reported in Table 1. We consider 

two cases: (1) the sample size (N) is different with fixed T, namely N=25, 36, 49, 64, 81, 100, 121, 144, 

169, 196, and T=10, (2) the time period (T) is different with fixed N, namely T=5, 10, 15, 20, 25, 30, 35, 

40, 45, 50. Table 1 shows that there is no significant difference between size of TV-Moran and 

NTV-Moran when N or T are different. Furthermore, when there is no spatial dependence, spatial weights 

matrix doesn't work, and then it's reasonable that there is no difference for TV-Moran tests and 

NTV-Moran tests. 
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Table 1 Size of Moran tests for spatial dependence in panel data models with time varying and invariant 

spatial weights matrices 

N 
Size 

T 
Size 

TV-Moran NTV-Moran TV-Moran NTV-Moran 

25 0.043 0.047 5 0.066 0.042 

36 0.06 0.047 10 0.055 0.048 

49 0.042 0.034 15 0.044 0.043 

64 0.049 0.043 20 0.051 0.042 

81 0.047 0.042 25 0.041 0.044 

100 0.043 0.039 30 0.057 0.054 

121 0.05 0.042 35 0.042 0.048 

144 0.049 0.036 40 0.051 0.05 

169 0.048 0.052 45 0.048 0.06 

196 0.055 0.043 50 0.058 0.046 

Fig. 1 presents power of Moran tests for spatial dependence in panel data models with time varying and 

invariant spatial weights matrices at 5% nominal level of significance. In each of the 1 by 2 grid of graphs, 

"TV-Moran" and "NTV-Moran" respectively denote the power curves of Moran's I tests for spatial 

dependence with time varying and the misspecification of invariant spatial weights matrices. The blue 

solid-line curve represents the power of TV-Moran, and the red dash curve represents the power of 

NTV-Moran. The left graph is the power curves when the alternatives models - SAR are true, and the 

right graph is the power curves when the alternative models- SEAR are true. We observe that the blue 

solid-line curve is higher than the red dash curve, especially 0  in the SAR model and 0  in the 

SEAR model, namely the power of TV-Moran is much higher than that of NTV-Moran, especially in the 

negative spatial correlation. When spatial correlation is more than zero ( 0 in the SAR models, 0  

in the SEAR models), the power of TV-Moran is similar to one of NTV-Moran. Obviously, when there is 

negative spatial correlation, a model misspecification of a time invariant spatial weights matrix may 

cause substantial reduction in power of tests for spatial dependence.  
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Fig. 1 Power of Moran tests for spatial dependence in panel data models with time varying and invariant 

spatial weights matrices 

In summary, based on our extensive Monte Carlo experiments, TV-Moran tests are proven to have 

higher power than NTV-Moran tests based on the misspecification of invariant spatial weights matrix, 

and there is no significant difference between size of TV-Moran and NTV-Moran tests. The good 

performance of TV-Moran tests is particularly evident for negative spatial correlation. TV-Moran's I tests 

are the preferred method of testing spatial dependence in panel data models with substantially time 

varying spatial weights matrices. 

Conclusion 

In this paper, we first investigate and develop Moran's I tests for spatial dependence in panel data with 

substantially time varying spatial weights matrices and propose the corresponding TV-Moran tests. It's 

known that NTV-Moran tests with the misspecification of invariant spatial weights matrix perform poorly 

with weak power when spatial correlation is negative. Instead, we derive TV-Moran tests based on with 

time varying spatial weights matrices. Our Monte Carlo experiments confirm that for general models with 

time varying spatial weights matrices, TV-Moran tests is superior to NTV-Moran test with the 

misspecification of  invariant spatial weights matrix, with larger power. 
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