
Implementation of Calculating Steiner Point
for 2D Objects

Jiuzhen Liang1,2 Mirko Navara2

1School of Information Technology, Jiangnan University, Wuxi 214122, P.R. China
2Center for Machine Perception, Faculty of Electrical Engineering, Czech Technical University,
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Abstract

This approach deals with the Steiner point calcu-
lation implementation and its application in image
processing. Based on Steiner point definition and
some properties, a numerical method is proposed
for calculating the Steiner point of a 2-dimensional
polytope. Also analysis of computational complex-
ity is presented. Some experiments on randomized
2-dimensional data and 2D image processing are
provided for testing the algorithm.
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1. Introduction

In 1826, Steiner described a special point of a trian-
gle, which had important influence on geometry [1].
Forty years later, in J. Neuberg, ”Sur le point de
Steiner,” Journal de mathématiques spéciales 1886,
the point was constructed as described as in [1]
and was given Steiner’s name. Nowadays, there
are (at least) three different types of points known
as Steiner points [2]. One of them, more properly
known as the Steiner curvature centroid, is the geo-
metric centroid of the system obtained by placing a
mass equal to the magnitude of the exterior angle
at each vertex [4].

To locate the Steiner point of an object is help-
ful for many tasks, because Steiner point is an in-
variant point of an object while a transform is used
on it in certain ways, such as growing uniformly in
all directions, moving in a line, rotating around an
axis [13]. By finding the Steiner point of an ob-
ject, one can analyze some properties of an image
[12]. To detect or recognize an object in an image,
Steiner point can help us in some cases. If two ob-
jects are similar but have different Steiner points,
one can distinguish them in this way [8]. Track-
ing moving objects is now a popular approach for
research workers, if Steiner points of objects are

referenced they could save a large amount of com-
putation.

In the early years, much work has been done on
some algebraic and analytic structure and behav-
iour of Steiner points, such as linear translation,
continuity, and even affine translation of an ob-
ject. Three important properties were studied and
known as basic properties of Steiner points, which
are shortly denoted as commutation, addition, and
continuity [11], [7], [9]. Furthermore, the definition
of Steiner point was generalized from a polytope to
a nonempty compact convex subset K of Rn [6]. To
implement the calculation of a Steiner point, there
are several alternatives [12], one efficient way refers
to [5], which is based on the exterior angle of con-
vex points in a polytope. In recent years, Steiner
point has been extended to fuzzy sets and provides
an alternative strategy of defuzzication, which is
regarded as the center of the fuzzy set [13].

This approach deals with the Steiner point cal-
culation implementation, some evaluation on the
promoted algorithm, and application in digital im-
age processing. This paper is arranged as follows.
The second section introduces the mathematical de-
finition of Steiner point and some transformation
properties which mainly refer to [13]. In the third
part we present a numerical method for calcula-
tion of the Steiner point based on a convex poly-
tope. The fourth part provides analysis of compu-
tational complexity. In the fifth section, some ex-
periments on randomized 2-dimensional data and
image processing are given. The last part of the
paper contains conclusions.

2. Definition of steiner point
and some basic properties

In the following let us suppose that n > 1 is an
integer. We denote by Kn the set of non-empty
compact convex subsets of Rn. The set Kn is en-
dowed with a linear structure in which the addition



of two subsets and the multiplication of a subset by
a positive real are defined pointwise. We further-
more endow Kn with the Hausdorff metric dE . Let
Sn−1 denote the unit sphere in Rn, and C(Sn−1)
the space of continuous functions from Sn−1 to
R, endowed with the supremum norm. Now, for
A ∈ Kn, we define the support function of A, see
e.g. [6], by

hA : Sn−1 → R, e 7→ max{〈a, e〉 : a ∈ A} (1)

where 〈·, ·〉 denotes the usual inner product of Rn.
The following definition is due to [7] and [13].

Definition 2.1. The Steiner point of A in Kn is
defined as

s(A) =
1

V (Bn)

∫

Sn−1
ehA(e) dλ(e) , (2)

where e ∈ Sn−1 varies over the unit vectors of Rn,
λ is the Lebesgue measure on Sn−1, and V (Bn) is
the volume of the unit ball Bn of Rn. Notice that
s(A) ∈ A.

More generally, consider a smooth manifold Ω
of boundary Γ = ∂Ω containing the origin O. Mat-
tioli [6] gave a similar definition of Steiner point
and its subdifferential form definition as follows.
Definition 2.2. For a nonempty compact subset
K of Rn, its Steiner point sΩ(K) is defined by

sΩ(K) =
λ(Γ)
λ(Ω)

∫

Γ

pσ(K, p)ω(dp) (3)

where σ(K, ·) is the support function of K, ω is the
measure on Γ proportional to the Lebesgue measure
normalized by

∫
Γ

ω(dp) = 1.
The subdifferential ∂σ(K, p) of the support

function σ(K, ·) is given by

∂σ(K, p) = {x ∈ K|〈p, x〉 = σ(K, p)} (4)

We denote by m(∂σ(K, p)) the element of
∂σ(K, p) with the minimal norm.
Definition 2.3. Let K be a bounded subset of Rn.
Then Steiner point of K is given by

sΩ(K) =
1

λ(Ω)

∫

Ω

m(∂σ(K, p))(dp) (5)

The above definitions of Steiner point are use-
ful in investigation of the properties of Steiner
point. From the point of computing, to calculate
the Steiner point of an object, we have to use nu-
merical integration of equation (2), (3), or (5). A
usual way to approximate an object in Euclidean
space is to construct a polytope. This paper fo-
cuses on calculating Steiner point on polytopes. In

the case of a polytope, the Steiner point is conve-
niently defined as a sum involving the external an-
gles of the polytope at its vertices. The following
definition is described by [11].
Definition 2.4. Let P be any d-dimensional poly-
tope in Rn. The Steiner point of P is defined by

s(P ) =
f0∑

j=1

vjψ(F 0
j , P ) (6)

where vj is the position vector of the vertex F 0
j

of P (j = 1, · · · , f0), and ψ(F 0
j , P ) is the exter-

nal angle of P at F 0
j normalized so that it satisfies∑

j ψ(F 0
j , P ) = 1.

For the sake of discussion, we will use several
Euclidean isometries of Rn. By a rotation, we will
always mean a proper rotation which is an isometry
leaving the origin fixed and continuously connected
to the identity. A rigid motion is an isometry com-
posed of rotations and translations. The following
theorem is for the case n = 2 due to [11] and for
the case n > 2 due to [9].
Theorem 2.1. Let s′ : Sn−1 → Rn have the fol-
lowing properties:

(S1) For any A,B ∈ Kn, s′(A + B) = s′(A) +
s′(B).

(S2) For A ∈ Kn and any rigid motion τ , we
have s′(τA) = τs′(A).

(S3) s′ is continuous.
Then s′ = s is the Steiner point. These three

properties are described in [7] as addition, commu-
tation, and continuity of Steiner point.

We denote by Fn the set of all functions from
[0,1] to Kn which are (i) decreasing and (ii) left-
continuous on (0,1] and continuous at 0. For a
fuzzy set1 u ∈ Fn and a rigid motion τ we set
τu : [0, 1] → Kn, α 7→ τ(u(α)). The following the-
orems are due to [13].
Theorem 2.2. A function S : Fn → Rn is called
a Steiner point if it has the following properties:

(SF0) For any u ∈ Fn, S(u) ∈ u(0).
(SF1) For any u, v ∈ Fn, S(u + v) = S(u) +

S(v).
(SF2) For u ∈ Kn and any rigid motion τ , we

have S(τu) = τS(u).
1Usually a fuzzy set is represented in its vertical represen-

tation by its membership function U : Rn → [0, 1]. Here we
found it more efficient to use the horizontal representation
by a function u : [0, 1] → Kn defined by

u(α) = {x ∈ Rn | U(x) ≥ α}
for α > 0 and by

u(0) = {x ∈ Rn | U(x) > 0} .



(SF3) S is continuous.
Definition 2.5. Let D = (α0, · · · , αk) be a divi-
sion of [0, 1], which is 0 = α0 < α1 < · · · < αk = 1.
Then we call a fuzzy set u ∈ Fn a D-step fuzzy set
if it is constant on [α0, α1], (α1, α2], · · · , (αk−1, αk],
respectively. We denote by Fn

D the set of all D-step
fuzzy sets.
Theorem 2.3. Let D = (α0, · · · , αk) be a division
of [0, 1], i.e. 0 = α0 < α1 < · · · < αk = 1. Let
S : Fn

D → Rn be a function fulfilling the properties
(SF0)−(SF3) of theorem 2. Then there are unique
real numbers κ1, · · · , κk such that κ1 + · · ·+κk = 1
and for all u ∈ Fn

D

s(u) = κ1s(u(α1)) + · · ·+ κks(u(αk)) (7)

3. Calculating steiner point in
2-dimensional space

Without special explanation, in the following con-
text we consider a problem in the Euclidean space.
Before giving the algorithm for computing the
Steiner point of an object or a data set, let us
discuss two basic problems associated to the algo-
rithm. The first one is how to find all the extreme
points of an object, the second one is how to reduce
the computational complexity of the algorithm. For
the first one, suppose we have N points in the data
set which are denoted by S = {p1, · · · , pN}. If
pi = (xi, yi) is an extreme point, there exists a di-
rection ei = (cosαi, sinαi) such that

〈pi, ei〉 > 〈pj , ei〉 (8)

for j = 1, · · · , N and j 6= i. Denote pij = pi − pj ,
then we have

〈pij , ei〉 > 0, (9)

which means all the difference vectors are in the
same halfplane whose normal vector is ei, see fig-
ure 1. In fact, we do not need to know the normal
vector ei. Instead, we can judge pi is an extreme
point iff the following condition is satisfied 2

max
j
{αij} −min

j
{αij} < π, (10)

where αij is the polar coordinate angle of vector
pij . Now the second problem comes forth, comput-
ing equation (10) will cost O(N2) time. Usually N
is more than thousands, so it is necessary to reduce
the computing amount. In fact, much more points

2This is a calculation modulo 2π; as such, it requires
more attention to be formulated correctly. E.g., there is an
interval of length < π containing all αij . So all the angles
should be normalized to the interval [0, 2π].

o

ei
pij

ij 00

2

Fig. 1: Distribution of vectors in 2-dimensional space.

can be eliminated before computing equation (10).
We call these points inner points. They can be de-
tected by an assistant convex polygon whose con-
structions will be described in the following algo-
rithm.

Generally, there are three main steps in com-
puting the Steiner point of a 2-dimensional object.
We will describe the algorithm in detail as follows.

Step 1. Load 2-dimensional data of an ob-
ject. All data can be denoted by a set of points
S = {p1, · · · , pN}. We represent 2-dimensional
data points by pi = (xi, yi) as Cartesian coordi-
nates, or pi = (αi, ri) as polar coordinates. For
2-dimensional binary image data, we can also use
the matrix pi = (xi, yi) to express the image. Be-
fore this, if it is a color image, also the colors should
be processed separately. The color image has to be
segmented to the corresponding binary image, sep-
arating an object from others and finding its edges.
Here we do not deal with this procedure and we be-
gin with binary image of an object separated from
others, so that its borders are known.

Step 2. Select a suitable number of extreme
points to form a convex polygon. This can be di-
vided into the following five parts.

1) Compute the mean point as the center
(Xm, Ym) of the original data set and transform
two-dimensional Cartesian coordinates stored in
corresponding elements of arrays X and Y into po-
lar coordinates with origin in the mean.

2) Find an assistant convex polygon with L
points, which is denoted by Ā = {p̄1, · · · , p̄L} (in
order to eliminate most inner points). Suppose
L=8, for example. We can divide the unit disc
into L equal parts with fan shapes, and each part
has an angle 2π/L. In the data set find L distinct
points which satisfy

p̄i = max
j
{〈ei, pj〉|pj ∈ S, j = 1, 2, · · · , N} (11)
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Fig. 2: An assistant convex polygon on given data.

where i = 1, · · · , L, and ei = (cos 2πi/L, sin 2πi/L)
is the unit vector with angle 2πi/L. Figure 2
shows that the points connected to the mean
point (Xm, Ym) with the dotted lines satisfy equa-
tion (11).

3) Delete duplicate points generated by step
2). Sometimes, there are more than one ei, for
i = 1, · · · , L, share the same points p̄i which sat-
isfy equation (11), and of course, these points are
numbered sequentially. In this case, the first point
is reserved and the duplicate ones should be elimi-
nated in order to achieve a distinct set of extreme
points. After this, the selected points form a set
which is also denoted as Ā = {p̄1, · · · , p̄L} .

4) Based on the assistant convex polygon, elim-
inate all the inner points; i.e. delete those data
points which satisfy the following condition

max
j
{αij} −min

j
{αij} > π (12)

Here αij = αi − ᾱj for i = 1, · · · , N ; j = 1, · · · , L.
Clearly, all the eliminated points are inner points.
The survival data set can be denoted as S̄ =
{p1, · · · , pM}, and usually M ¿ N .

5) Based on the survival points set , using a
strategy similar to step 4), select all the extreme
points according to equation (10), where pij =
pi− pj for i = 1, · · · ,M ; j = 1, · · · ,M ; j 6= i. After
that, we can form a convex polygon by ordering all
the extreme vertices according to their polar coor-
dinate angles, and denote it as A = {p1, · · · , pM}.

Step 3. Compute Steiner point according to
the following formula, see e.g. [11]

S(D) =
M∑

i=1

ψ(pi, A)pi , (13)

where ψ(pi, A), for i = 1, · · · ,M , is the proportion
to 2π of the external angle of convex polygon A at
pi.

4. Computational complexity
analysis

There are two aspects we will discuss, namely time
and space complexity. Let us consider the former
firstly. The procedure of computing Steiner point
for a 2-dimensional object is composed of three
steps as in the last section, so the total compu-
tational quantity of time can be expressed as

T = T1 + T2 + T3 (14)

Here
T1- time cost on loading 2-dimensional data of

an object ;
T2- on selecting extreme points to form a con-

vex polygon of an object;
T3- on calculating Steiner point based on the

convex polygon.
For a given problem, T1 is fixed and can be

estimated as
T1 = O(N) (15)

Now we focus on the second and the third terms3.
In the second term, there are five sub-steps in de-
tail, therefore we can rewrite T2 as follows,

T2 = T21 + T22 + T23 + T24 + T25 (16)

Here
T21- on computing the average point of the data

set and transform from Cartesian to polar coordi-
nates;

T22- on selecting an assistant convex polygon
with L points;

T23- on elimination of duplicate assistant poly-
gon points.

T24- on deleting inner points based on the as-
sistant polygon;

T25- on selecting the final convex points to form
a polygon.

Clearly, for 2-dimensional data set

T21 = O(N) (17)

While finding L maximum values in N points
according to equation (11), it needs

T22 = O(LN) (18)
3The repetition of step 2 or another procedure aiming

at the selection of extreme points are crucial for the time
complexity. So we focus on discussing step 2 in detail.



Elimination of duplicate convex points needs

T23 = O(L) (19)

Deleting the redundant inner points costs

T24 = O(LN) (20)

Similarly, searching M ′ maximum values of M
survival points by equation (11) and ordering them,
it needs

T25 = O(M(M − 1) + M ′log(M ′)) (21)

So we have

T2 = O((1 + 2L)N + L + M(M − 1) + M ′log(M ′))
(22)

Considering that L ¿ N and M ′ ≤ M , the last
formula is approximately

T2 ≈ O(LN + M2) (23)

For step 3, the main cost lies in computing the
external angle for each extreme point and it counts

T3 = O(M ′) = O(M ′) (24)

Totally, the sum of the computational complex-
ity of time can be evaluated as

T = T1 + T2 + T3 ≈ O(LN + M2) (25)

So the complexity of this algorithm is nearly
linear, and it should has fast speed under the con-
dition that we choose a proper parameter L, not
too large to decrease the computing time, and not
too small to eliminate most of inner points such
that M ¿ N .

Now consider the space complexity, it is much
easy to estimate the storage cost according to the
three steps in the algorithm

S = S1 ∨ S2 ∨ S3 (26)

Here,
S1 = O(N) (27)

S2 = O(N∨(N+L)∨(N+L)∨M∨M ′) = O(N+L)
(28)

S3 = O(M ′) (29)

In summary, the space cost in the procedure of the
algorithm is as follows

S = O(N)∨O(N + L)∨O(M ′) = O(N + L) (30)
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Fig. 3: Random data and assistant convex polygon.
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Fig. 4: Survival data after elimination of inner points.

5. Experimental examples

Following the algorithm given in section 3, this pa-
per provides two examples for calculating Steiner
point. Its purpose is to verify how to compute the
Steiner point when given a 2-dimensional data set
or a binary image. It focuses on computing the
Steiner point both efficiently and precisely.
Example 1. Random data set in 2 dimen-
sions.

Figure 3 is a random 2-dimensional data set
with the Gaussian distribution. We set parameters
N = 4096, L = 8; i.e. there are 4096 points forming
a 2-dimensional object, we use an assistant poly-
gon with 8 vertices to eliminate inner points. Fig-
ure 4 shows data after elimination of inner points
with the help of the assistant polygon. Figure 5
shows the final polygon and its Steiner point. Fig-
ure 6 is the result for testing invariant property
on Minkowski sum transform, in which the points
marked by ′⊕′ are those after Minkowski sum trans-
form.
Example 2. Image data set in 2 dimensions.

For 2D image problems, data points, with size
N = N1×N2, the process can be deduced by elim-
inating inner points easily. In detail, for each row
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Fig. 5: Final convex polygon and the Steiner Point.
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Fig. 6: Invariant test on Steiner point with
Minkowski sum.

what we need is finding the leftmost and the right-
most point of the object. These need computa-
tional complexity of O(N). After these processes,
the survival points is with size of O(2N1), and the
computing amount will be deduced sharply. Here
we list parameters as N = 15K, L = 6. Figure 7
is the original image. Figure 8 shows edge points
detected, whose scale is 615. Figure 9 shows the
assistant polygon of the image, with which there
are 77 points remained after elimination of inner
points. Figure 10 is the final convex polygon and
its Steiner point.

Fig. 7: A 2-dimensional image with one object.

Fig. 8: Boundary points of the object.

Fig. 9: Assistant polygon for the object in the image.

  Steiner Point

Fig. 10: Convex polygon and Steiner point.



6. Conclusion

There are several ways to calculate Steiner point of
an object [12]. This approach provides one of the
simplest methods on Steiner point calculation im-
plementation and its application in image process-
ing. Steiner point is a traditional geometry concept
for centuries and some properties are known clearly.
Based on these, a numerical method is proposed
for calculating Steiner point of a 2-dimensional
polytope. Also computational complexity is dis-
cussed in the text. Some experiments on random 2-
dimensional data and 2D image processing are pro-
vided for testing the algorithm. Furthermore, for
3-dimensional objects, computing Steiner point is
more useful in real life, but it is more complex to re-
alize such calculation, especially for image process-
ing problem, e.g. 3D virtual vision. In the 3D
space, the most difficult problem may be memory
and computational complexity. Tracking a moving
object needs a fast algorithm to recognize and lo-
cate the object, so it must be fast enough to calcu-
late the Steiner point in a very limited time. How-
ever, it is not easy to extend the current algorithm
to 3-dimensional space, as it is too complicated to
figure out the convex polytope and the external an-
gle for each extreme point in 3 dimensions. It is an
open problem for future study.
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