
A Framework of Ontology-supported Knowledge
Representation in Software Process

Jianying He Haihua Yan Chao Liu Maozhong Jin

School of Computer Science & Engineering, Beihang University, Beijing 100083, P. R. China

Abstract
In this paper, we discuss the crucial importance of
properly analyzing and representing useful assets
obtained in the process of software development. An
ontology supported knowledge representation scheme
is presented to compose and organize process
knowledge into an organizational repository.
According to the characteristics of process knowledge,
we build ontologies and utilize them as shared and
controlled representation vocabulary that can eliminate
conceptual and terminological confusion. In order to
facilitate the storage and dissemination of process
knowledge, we design a framework named OnSSPKR
to validate our proposed ontologies and to confirm the
implementation feasibility.

Keywords: Ontology, Knowledge representation,
Software process

1. Introduction
The development of software is one of the most
knowledge intensive processes that occur in modern
organizations and involves many intellectual assets,
including developers’ personal skills, technical
artifacts, best software development practices, and
even the whole process experiences. It is necessary to
accumulate and disseminate these process assets
through the organization. By doing this, developers
can facilitate organizational memory to concentrate
their creativity on solving technical problems, rather
than reinventing the wheel [1]. However, how can
these valuable process assets be appropriately and
effectively composed and organized into useful asset
libraries? This can be generally akin to a problem of
knowledge representation which is still one of the
main directions pursued by researchers and
practitioners.

A number of schemes and programs that are either
similarly addressing the need for representation of
process knowledge or at least generating interest in the
topic, such as ProKnowHow [2], BORE [3], ASPEN

[4] and SPO [5]. Although these efforts generally
provide methods to capture and register software
process related knowledge, there still remains much
work to do. Some of the problems emerged in their
studies go following:

• Incompleteness: Almost all existing studies
are based on the concept of Experience
Factory [6] that concentrated on formal
description or software process models and
attempted to capture the whole software
process experience as a lesson learned.
However, software process knowledge should
be systematically analyzed and collected. It
should contain both formal and informal
knowledge, not only process experiences.

• Ambiguity of software process knowledge
types: Any type of knowledge that generated
and used during software development process
should be regarded as software process
knowledge [2]. In fact, this process knowledge
can be generally divided into the following
three types: (1) process experiences; (2)
knowledge artifacts; (3) personal skills.
However, most of the current research only
shed light on the former two types and failed
to intentionally consider the third one.

• Effectiveness of supporting tools: Since the
representation of process knowledge manually
is a hard task, offering an automated support
for this task becomes an important challenge.

To address the above problems, we tentatively put
forward a distinct though related approach, presenting
manually constructed ontologies that incorporate all
these three types of process knowledge. The
ontologies are built according to the characteristics of
these three type knowledge and serve as shared and
controlled vocabulary that can eliminate conceptual
and terminological confusion. Moreover, we have
developed a conceptual framework called OnSSPKR
(Ontology Supported Software Process Knowledge
Representation) which can not only explicitly
compose and organize of software process knowledge,
but also provide support for project auditors in

existing projects and for project managers in planning
new projects.

The rest of paper is organized as follows: Section
2 briefly discusses previous work on software process
knowledge representation and related tools; Section 3
presents our ontology supported knowledge
representation scheme including detailed analysis of
characteristics of software process knowledge and
design of corresponding ontologies; Section 4 reports
the OnSSPKR framework; Section 5 concludes the
paper.

2. Related work
Several works have exploited the use of knowledge
representation techniques to support organizing,
storing and eventually managing of software process
knowledge, such as BORE, ProKnowHow, ASPEN
and SPO.

BORE (Building an Organizational Repository of
Experiences) is a prototype tool designed to further
explore and refine the requirements for tools
supporting experience based approaches [3]. As the
name indicates, the BORE tool aims reusing
organizational experience through packaging it in
experience repositories.

In [2], a tool named ProKnowHow is developed to
support the standard process tailoring for the projects,
allowing the knowledge acquired in this process to be
shared. Also, ProKnowHow is based on a standard
established software process and could collect and
disseminate the knowledge acquired during standard
process instantiation.

J. G. Doheny and I. M. Filby propose an ASPEN
process modeling framework for modeling and
assessing software development processes [4]. Their
framework is based on process ontology and can
model in an explicit form the contents of software
development standards and other forms of best
practice.

In [6], an OWL based ontology for software
processes, called SPO (Software Process Ontology), is
designed and extends to generate ontologies for
specific process models, such as CMMI and ISO/IEC
15504. SPO is proposed to support software process
definition and assessment. However, this work’s
concern only relies on process modeling and formal
description. It failed to deal with other formal and
informal process knowledge.

3. Ontology supported knowledge
representation in software
process

As mentioned above, software process knowledge can
be generally categorized into three types: (1) process
experiences; (2) knowledge artifacts; (3) personal
skills. To represent and organize these intellectual
assets into an organizational repository urges us to
give a deep and thorough investigation about their
characteristics. By referring to previous related studies,
we tentatively proposed a conceptual model of
software process knowledge representation (shown in
Figure 1). It deals with this three type knowledge
differently according to their characteristics. Each type
of knowledge has its own ontologies that built
manually. Accumulation of the ontologies’ instances
constitutes an organizational knowledge repository.

Fig. 1: Conceptual model of software process knowledge
representation.

This section discusses how to utilize ontology to

formally represent these three types of process
knowledge. We also analyze each type of knowledge’s
characteristics.

3.1. Process experiences ontology
At the core of a software organization’s memory, it is
process experiences or lessons learned, enabling reuse
and sharing of organizational knowledge [2]. It is
necessary to disseminate the process experiences
through the organization. An organization that does
not register the successes or failures of its projects will
have as a result the repetition of the failures. However,
to compose and organize the process experience tends
to be a difficult work because every software
development project is unique in some sense.
Characteristics of process experiences mainly include:

• High dependency on specific project:
Application domain, team features,
development technology and project size,
among other factors influent the way a

Knowledge
Artifacts

Personal
Skills

Process
Experiences

 Title

Artifacts

Process ExpOnto

 Keyword
Descript

Knowledge
Artifacts Onto

 Ontology &

Instances

Degree
Certification

Personal Skills
Onto

Creating

Creating

Generating

software product is developed, operated and
maintained [7].

• Hard to follow a given process model: None
of existing process models can be applied to
every kind of software practice.

• Reusable between similar projects:
Historical best practices can be used for
reference in future.

Concerning the above characteristics, we employ
ontology technique to formally describe process model
and instantiate it to form a tangible software project.
Although the existing software process models are
different and their model components have various
names, they nevertheless have some similarities (see
table 1), e.g. their main components are “Process” and
“Practice” [6] [8] [9]. Normally, the models have a set
of processes, which could guide the software
production, and the processes are classified into
several domains, called “Subsystem” or “Category”.

Compo

nents

Model

Sub
system

Catg Proc Sub
Proc

Practice Proc
Attr

CMM Catg Key
Proc
Area

 Key
Practice

CMMI Catg Proc
Area

Specific
Goal

Specific
Practice

Generi
c goal

ISO/IEC
15504

 Catg Proc Compo
nent
Proc

Basic
Practice

Proc
Attr

ISO9001 Sub
system

 Main
Topic
Area

 Manage
ment
Issue

BOOTS
TRAP

Proc
Area

Proc
Catg

Proc Practice

Abbreviation: Proc=Process; Catg=Category; Attr=Attribute
Table 1: Similarities of existing standard software process

models [5].

With the capability of OWL, we design a process
experiences ontology (RDF Graph is shown in figure2)
based on the distilled process model presented in [5].
The proposed ontology defines the process model at
the schema level and plays a similar role to conceptual
data schemas in the database community. Thus a
project’s software process definition is in fact an
instantiation of the standard process.

In this ontology, we define some core classes to
represent components in models, and properties to
represent the relationship between components. And
the core classes are chosen from the shared concept in
CMM, CMMI, ISO/IEC15504, ISO9001 and
BOOTSTRAP [10]. Then we group them into three
conceptual sets, which become the major components
in our tree hierarchy. Finally, we develop the full

hierarchy tree inserting all the terms we have collected
previously into our Classes using a kind of
relationship.

Fig. 2: Process experiences ontology.

3.2. Personal skills ontology
Developer’s skill involved is the most important
knowledge needed to capture and represent because all
activities are carried out by human in the final analysis.
Developers’ personal skills directly determine the
quality of the process through software is developed.
So, knowledge in developers’ mind has to be
systematically collected, stored in a corporate memory,
and shared across the organization. However, to do so
is a rather challenging task. Characteristics of personal
skills include:

• Tacit: developers’ skill will remain latent in
their mindset and never become explicit
without being elicited.

• High value: unquestionable, employees’ tacit
knowledge is one of the organization’s most
valuable intellectual assets.

• Unstable: knowledge in people’s mind tends
to leak when individuals leave the company.

Our personal skills ontology is defined in a
hierarchal structure of different kinds of skills a person
can possess regarding the above characteristics. Skills
are obtained from various sources, such as certified
training, formal education or previous work
experience [11]. Because skills have a great effect on
the way employees carry out tasks, the assignment of
tasks to proper employees is crucial to the potential
success of a project.

3.3. Knowledge artifacts ontology
An organization’s knowledge repository should also
contain the knowledge artifacts obtained throughout

 Architecture

 Owl:thing

hasProcessOf

rdfs:subClassOf Activity

 phase

belongToCategory

rdfs:subClassOf

 Organization

 Milestone

 process

 BasicActivity

 processCategory
 AtomicActivity

rdfs:subClassOf

rdfs:subClassOf rdfs:subClassOf

rdfs:subClassOf

the projects. The knowledge artifacts could be a list of
requirements, a case tool graphic or some software
code. Generally speaking, there are four major artifact
types: technical, quality, safety and management [12].
Moreover, they can be subcategorised, for example,
quality artifacts have verification and validation
subtypes.

Although there is a growing interest in tools and
methods that support ontology automatic generation
from document corpus, output results are far from
mature and practical [13]. Therefore, we propose an
ontology indexed document corpus approach to
represent knowledge artifacts (see in figure 3).

Fig. 3: Ontology indexed document corpus

The figure shows that main body of explicit

knowledge still lies in “Artifacts Corpus”. However,
an artifacts ontology is designed and logically bound
to this “Artifacts Corpus” which has explicit
representations for the information and important
knowledge concepts contained in artifacts.

Every type of document’s ontology can be
designed respectively. But it usually has the sections
like “Title”, “Created Date”, “Rationale”,
“Dependencies”, and “Version” etc. An exceptional
case is the section “Annotation” which is a set of
ontology too. It carries document receptor’s annotating
information. This occurs similarly in the case of
“Author” section which is public ontology describing
document creator’s basic information.

4. OnSSPKR knowledge
representation framework

Under the ontology groundwork, we design a
prototype named OnSSPKR framework to prove our
idea. The OnSSPKR framework is currently
implemented using J2EE/EJB technology and
Browser/Server based. It mainly provides with K-
Manager Environment and K-User Environment. A
diagram of its architecture is shown in Figure 4. The
following sections describe the OnSSPKR framework
in more detail.

Fig. 4: The OnSSPKR architecture.

4.1. Design goals
OnSSPKR was developed to achieve the following
goals:

• To support useful process assets to be safely
composed and organized into an knowledge
repository;

• To represent the knowledge generated and
acquired during process of software
development;

• To support retrieval and dissemination of
stored knowledge from organizational
repository.

To satisfy the above requirements, OnSSPKR is
designed to have the architecture shown in figure 4.

The process knowledge sources contains both
formal and informal knowledge varied from quality
models, development artifacts, experiences, lessons
learned to personal expertise. As pointed above, it is
divided into three types: (1) process experiences; (2)
knowledge artifacts; (3) personal skills.

The organizational repository stores ontology and
its instances we discussed in section 3. It is also
divided into three: (1) process experiences repository;
(2) knowledge artifacts repository; (3) personal skills
repository. Moreover, the organizational repository is
indexed and organized into a terminology tree derived
from the major concepts defined in system ontologies.

On the top layer of OnSSPKR are functions
provided for project managers and common users,

Author
Ontology

 Artifacts
Corpus

Artifacts
Ontology

 Annotation
Ontology

Process
Knowledge
Sources Manual Creating

Web Portal

 Organizational Repository

Terminology Tree

K-Manager

Indexing

K-User

Sorting
Browsing
Searching
Scaling

Editing
Instantiating

called K-Managers Environment and K-User
Environment respectively. Next, we discuss them in
detail.

4.2. K-Users environment
Common users in an organization(called K-Users)
participate in organization’s development activities
and access their knowledge through either their own
knowledge sources or knowledge sources obtained
from outside.

OnSSPKR offers K-Users functions to sorting a
concept from the terminology tree and register their
knowledge in an indexed folder. Also, K-Users can
search or browse the knowledge repository to find
relevant knowledge for their jobs. In addition, after
assimilating the knowledge they acquired, K-Users
can scale on the items they viewed as a feedbacks to
the repository. Detailed description of K-Users
environment’s functions go following:

• Sorting: select a concept from the
terminology tree and store knowledge in the
indexed folder. This is a process of knowledge
composing and storing.

• Browsing: brow the whole terminology tree to
have an overall vision of the organization’s
intellectual assets.

• Searching: search and reference knowledge
items based on terms. This is a process of
knowledge disseminating.

• Scaling: track feedbacks to the knowledge
viewed. This is a process of lesson learning.

4.3. K-Managers environment
Knowledge Managers (called K-Managers) lead
organization learning by editing ontologies and
instantiating a software process for a project. K-
Managers are also responsible for adapting and
approving process knowledge items input by K-Users.
Therefore, all functions in a K-Users environment will
be informed to K-Managers. This information will
give K-Managers more opportunities to collect new
concepts of K-Users.

OnSSPKR offers two additional functions for K-
Managers described as follow:

• Editing: create and revise ontologies together
with their instances to build the foundation of
the system.

• Instantiating: instantiate a software process
for a new project.

5. Conclusion and future work

We have presented an ontology supported knowledge
representation approach for process assets. We
generally divided the process knowledge into three
types, i.e., process experiences, knowledge artifacts
and the personal skills, and discussed their
characteristics respectively. Ontologies towards these
types of knowledge were also built to serve as shared
and controlled vocabulary. Finally, a framework
named OnSSPKR was designed in this paper as an
embodiment of this idea.

Key benefits and potential usage of our work
include:

• Supports to compose and organize useful
process assets into a knowledge repository;

• Supports to accumulate software process
knowledge for further retrieval;

• Potential use of facilitating project’s feedback
to make software process improvement easier.

It should be noticed that this study has examined
only knowledge representation issues in software
process. It is not a knowledge management scheme.
However, we have employed OnSSPKR to compose
and organize our organizational intellectual assets and
the output results have demonstrated that the three
knowledge types can cover almost all the useful
process assets and our framework can effectively
retrieve stored knowledge.

Our next step work involves consummating our
designed ontologies, infiltrating knowledge
categorizing algorithm into the framework and
extending the functions of the tool.

Acknowledgement
This work is partially supported by National Natural
Science Foundation of China (Grant No.60573084)
and National Weaponry & Equipment Foundation
(Grant No. 9140A15050106HK0114).

References
[1] A. Birk, D. Surmann and K. Althoff,

Applications of knowledge acquisition in
experimental software engineering. Proc. of the
11th European Workshop on Knowledge
Acquisition, Modeling, and Management, pp. 67-
84, 1999.

[2] Ligia da Motta Silveira Borges and Ricardo de
Almeida Falbo, Managing software process
knowledge. Proc. of the International
Conference on Computer Science, Software
Engineering, Information Technology, e-
Business, and Applications, Foz do Iguazu,
Brazil, June, 2002.

[3] Scott R. Henninger, Tool support for experience
based software development methodologies.
Advances in Computers, 59:29-82, 2003.

[4] ww.aiai.ed.ac.uk/project/ftp/documents/1996/96-
ausda_tr_escom.doc.

[5] Li Liao, Yuzhong Qu and Hareton K. N. Leung,
A software process ontology and its application.
Proc. of the 4th International Semantic Web
Conference, Galway, Ireland, November, 2005.

[6] V. Basili, G. Caldiera and H. Rombach,
Encyclopedia of Software Engineering, John
Wiley & Sons, New York, 1994.

[7] W. Scacchi, Understanding software process
redesign using modeling, analysis and simulation.
Software Process Improvement and Practice,
5:183-195, 2000.

[8] M.G. Mendonça Neto, V. Basili, C.B. Seaman
and Y-M Kim, A prototype experience
management system for a software consulting
organization. Proc. of the 13th Int. Conference
on Software Engineering and Knowledge
Engineering, Buenos Aires, Argentina, 2001.

[9] S. Stab, R. Studer, H.P. Schnurr and Y. Sure,
Knowledge processes and ontologies. IEEE
Intelligent Systems, 16:26-34, 2001.

[10] M.C. Paulk, C. V. Weber, B. Curtis and M.B.
Chrissis, Key practices of the capability maturity
modelSM. Technical Report, CMU/SEI-93-TR-
025, SEI Carnegie Mellon University, 1993.

[11] Philip Nour, Ontology-based retrieval of
software engineering experiences. Master The-
sis, Department of Computer Science, University
of Galary, 2003.

[12] P. Ceravolo, E. Damiani, M. Marchesi, S. Pinna,
and F. Zavatarelli, A ontology-based process
modeling for XP. Proc. of the Tenth Asia-Pacific
Software Engineering Conference, pp. 236-242,
2003.

[13] A. Abecker, A. Bernardi, K. Hinkelmann, O.
Kuhn and M. Sintek, Toward technology for
organizational memories. IEEE Intelligent
systems, 13: 40-48, 1998.

