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Abstract  
Complex Gaussian wavelet support vector machine 
(CGW-SVM) is constructed with complex Gaussian 
wavelet kernel function for short-term load forecasting 
(STLF). Based on the chaotic characteristics of short-
term load time series, the series is reconstructed with 
phase space reconstruction theory (PSRT). Then the 
vector of phase space is used as the input of CGW-
SVM. Considering the periodical feature of power 
loads, the fuzzy c-means (FCM) clustering algorithm 
is introduced to reduce sample data. The experiments 
show that, by applying the proposed method, the 
accuracy of load forecasting results is improved and 
the forecasting process is speeded up.  

Keywords: complex Gaussian wavelet support vector 
machine,  fuzzy c-means clustering; short-term load 
forecasting, phase space reconstruction, complex 
Gaussian wavelet kernel, support vector machine 

1. Introduction 
Short-term load forecasting (STLF) is a crucial issue 
for power systems. Load forecasting helps the system 
operator to schedule reserve allocation efficiently and 
is also useful to power system security. Since the 
power system is a complicated nonlinear system which 
exhibits chaotic behavior, precise forecasting of short-
term load is still a difficult task [1]. 

Many techniques for STLF have been tested with 
different degrees of success.  Traditional techniques 
include time-series models, regression models, 
Kalman filtering models, autoregressive (AR) model, 
and so on [2]. These models and techniques are 
basically linear methods and have limited ability to 
capture nonlinearities in the short-term load series. 
Artificial neural networks (ANN) have also been 
proposed for STLF [3]. The ANN extracts the implicit 
non-linear relationship among input variables by 
learning from training data without making complex 
dependency assumptions among input variables. But 
learning algorithm of ANN lacks quantitative analysis 
and perfect results since it adopts empirical risk 

minimization (ERM) principle according to statistical 
learning theory (SLT), which tries only to minimize 
experience risk. 

Chaotic time series analysis has been studied to 
investigate complicated nonlinear power systems in 
recent years [4]. It’s based on phase space 
reconstruction theory (PSRT), which is supported by 
embedded theory. How to construct load forecasting 
model with PSRT is a key issue. 

Support vector machine (SVM) proposed by 
Vapnik in 1995 has been applied to load forecasting 
[5]. It is a small-sample theory firmly grounded on the 
framework of SLT [6]. SVM is based on the structural 
risk minimization (SRM) principle to minimize the 
generalization error rather than the empirical error. 
According to SVM theory, regression problems can be 
converted into linear ones, and finally deduced to 
mathematical problems of quadratics programming. 
For STLF, RBF function is often selected as the kernel 
function and the load and weather data is used as the 
inputs of SVM. 

In this paper, we prove that complex Gaussian 
wavelet can satisfy the kernel function condition, and 
try to build a kind of complex Gaussian wavelet kernel 
SVM (CGW-SVM). The short-term load series is 
reconstructed with PSRT, and the vector of phase 
space is used as the inputs of CGW-SVM. The fuzzy 
c-means (FCM) clustering algorithm is introduced to 
reduce sample data to increase convergence speed. 
The experimental results show that the proposed 
method can be believed as one of the most promising 
methods and has high application value in STLF. 

2. CGW-SVM  
A common d-dimensional (d-D) wavelet function can 
be written as the product of one-dimensional (1-D) 

wavelet function [7]: ∏
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translation-invariant wavelet kernel that satisfies the 
translation-invariant kernel theorem is:   

           ∏
=

−
=

d

i

ii

a
xxxxk

1

)'()',( ψ                   (1) 



The translation-invariant kernel is an admissive 
SVM kernel if it satisfies the following theorem [8]: 
Theorem: A translation-invariant kernel 

)'()',( xxkxxk −=  is an admissible SVM kernel if 
and only if the Fourier transform  
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is non-negative. 

2.1. Complex Gaussian wavelet 
kernel 

Complex Gaussian wavelet is constructed with the nth-
derivative of complex Gaussian function 

)ee()(
2j xx

nCt −−=ψ . nC  is such that the 2-norm of 

the nth-derivative of )(tψ  is equal to 1. Let 1=nC  
in this paper and it won’t decrease the performance of 
SVM. We select the imaginary part of the 1st-
derivative, and get complex Gaussian wavelet as 
follows: 

)exp()sin2cos()( 2xxxxxf −+−=    (3) 

The SVM kernel of this mother wavelet is 
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It is an admissible SVM kernel function when d is an 
even number which is proved as follows. 

Proof: For all x , 
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Substituting (5) into (2), we can calculate the integral 
term 
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Substituting (6) into (2), we can obtain the Fourier 
transform 
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Obviously, when d is an even number, 0)]([ ≥ωkF . 

2.2. SVM 
dRx∈  is the input vector of the SVM, and Ry∈  is 

the output. The non-linear function )(xΦ  maps the 
sample of input space to output space. Generally, the 
optimization problem for ε -insensitive SVM is given 
as follow quadratic programming problem: 
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where iξ  is a slack variable and 0>C  is a 
constant which determines penalties. We solve the 
optimization problem and get the estimation 
function as follows: 

∑
∈

∗ +−=
SVx

iii bxxKxf ),()()( αα        (8) 

where CC ii

n

i
ii ≤≤≤≤=− ∗

=

∗∑ αααα 0,0,0)(
1

, and  

),( xxK i  is SVM kernel. The typical examples of 
kernel function are as follows: 
Linear: >⋅=< ii xxxxK ),( . 

Sigmoid: )tanh(),( cxxvxxK ii +>⋅<= . 

Polynomial: d
ii xxxxK )1(),( +>⋅<= . 

Radial basis function (RBF):  



( )2)/)((exp),( σii xxxxK −−= . 
The common kernel function is RBF kernel. In 

this paper, we choose complex Gaussian wavelet 
function as the kernel, and construct a kind of CGW-
SVM. 

3. FCM 
For STLF with SVM, too small training data will 
cause increase of test error, and too many training data 
will cause the increase of training time. Considering 
the periodical feature of power loads, for a great deal 
of historical load data, FCM clustering algorithm is 
proposed to reduce training data. Thus the forecasting 
process can be speeded up and the accuracy of 
forecasting can be improved. 

c  clusters of N
kix 1}{ =  with the standard FCM 

objective function is given by [9] 
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where ikik vxd −=  , and iv  are the prototype or 

center of the ith cluster. The array Uuik =][  
represents a partition matrix, and the parameter m  
determines the amount of fuzziness of the resulting 
classification.  

FCM Algorithm: 
1) Fix c , m  and 0U . Then at step 0=l . 
2) Calculate  
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4) For 0>ε , if 

ε≤−+ )()1( ll UU , 

then stop. Otherwise, set 1+= ll , and return to 2). 

4. Simulation example 
In this paper, we use the proposed method compared 
with the commonly used RBF-SVM to show the 
forecasting performances. The experiment adopts load 
data of New South Wales, Australia from June 23, to 
July 22, 2006 [10]. We predict the load of July 23.  

4.1. Data pretreatment 

The load series },...,2,1),({ Niix = is normalized 

first. Supposing the maximum of )(ix  is maxx  and 

the minimum is minx , then we get )(ˆ ix  after 
normalization: 
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Considering the chaotic characters of short-term 
load series, we reconstruct it with PSRT which based 
on Takens’ embedding theory [11]. For the normalized 
load series, we can get the phase space point 

)])1((ˆ),...,(ˆ),(ˆ[)( ττ −++= dkxkxkxkX   (11)  
where Mk ,...,2,1= , M  is the point number in 
reconstructed phase space, τ)1( −−= dNM , d  is 
the embedding dimension, and τ  is the time delay. 
With the load series, we get  6=d  and 3=τ  using 
the method proposed by [11]. Since d  is an even 
number, the CGW-SVM can be used for the STLF. 

4.2. Parameter selection 
For CGW-SVM, there are the parameters ε,,Ca , and 
for RBF-SVM, there are εσ ,,C . The common 
method for parameter selection is based on experience. 
In recent years, the genetic algorithm has been 
proposed for the purpose. In this paper, we use the 
cloud theory-based genetic algorithm proposed by [12]. 
It is based on both the idea of genetic algorithm and 
the properties of randomness and stable tendency of a 
normal cloud model. We can get the optimized 
parameters with this algorithm. 

4.3. Forecasting results 
With FCM, the sample data of phase space are 
classified into 400 clusters as the training data of 
CGW-SVM. The Actual load and forecasting load 
with CGW-SVM and RBF-SVM are shown in figure 1. 
Figure 2 presents the error results corresponding to 
figure 1. Table 1 shows the numerical comparisons of 
CGW-SVM and RBF-SVM, including the mean absolute 
percentage error Emape, the maximum relative error 
Emax, the training time T, and the number of support 
vector Nsv. The simulation programs run on a 2.93 
GHz Pentium Ⅳ processor under Windows XP and 
Matlab 7.4.0 compiler. We use LOQO optimizer for 
the training of the SVM which consists on solving 
quadratic programming problem. 

From the figures and the table, it can be seen that 
the two SVM methods are efficient, but the proposed 
method is a better promising one. It has the lower 
forecasting error of Emape and Emax. Furthermore, with 
FCM clustering, the elapsed time is only 592 seconds, 
and the number of support vector is only 229.  
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Fig.1 Actual load and load forecasting results 
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 Fig.2 Error results corresponding to Fig.1 

 
Models Emape 

/% 
Emax 
/% 

T 
/s Nsv 

CGW-SVM 1.06 2.44 592 229 
RBF-SVM 1.18 2.49 17315 847 
Tab.1 Numerical comparisons of CGW-SVM and 

RBF-SVM 

5. Conclusions 
As a novel machine learning method, SVM is 
powerful for the STLF. In this paper, a new kernel 
function of SVM, complex Gaussian kernel, was 
proposed, and it was proved that the function satisfies 
the translation-invariant kernel condition. Considering 
its chaotic characteristics, the short-term load series 
was reconstructed based on PSRT. The FCM 
clustering method was also adopted to reduce sample 
data. The experiment results show that the proposed 
method can improve the forecasting accuracy and 
speed up the forecasting processing. 

The proposed model is a single-step method. Our 
forthcoming research is to propose adaptive multi-step 
forecasting method. 
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