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Abstract

Mathematical techniques based on auxiliary equa-
tions and the symbolic computation system Maple
are employed to investigate a generalized Benjamin-
Bona-Mahony differential equation. The Jacobian
elliptic function solution, the soliton solutions and
the triangle function solutions to the equation are
constructed under various circumstances.
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1. Introduction

Many mathematical techniques have been em-
ployed to find traveling wave solutions of nonlin-
ear partial differential equations. Rosenau and
Hyman[1] used the pseudo spectral methods in
space and a variable order, variable time-step
Adams-Basford-Moulton method in time to study a
family of nonlinear KdV equations, and obtained a
class of solitary waves with compact support, which
were called compactons. Wadati[2][3] developed
the trace method to investigate the exact travel-
ing wave solutions for a modified Kortweg-de Vries
equation. The tanh method developed by Malfliet
et al.[4][5] is a reliable algebraic technique to obtain
exact solutions of many nonlinear equations. Fan
and Zhang[6][7] extended tanh method and investi-
gated the generalized mKdV equation and the gen-
eralized ZK equation. This extended method was
a powerful tool to seek exact solutions of nonlin-
ear equations. By decomposing the time and space
variables of nonlinear partial differential equations
into two integrable ordinary differential equation,
Ma and Wu[8] have found some exact solutions of
KdV,mKdV and KPP equations.

Benjamin, Bona and Mahony[9] established the
model

ut + aux − buxxt + k(u2)x = 0, (1)

which was called BBM equation. It is used as
an alternative to the KdV equation which de-
scribes unidirectional propagation of weakly long
dispersive waves[10]. As a model that character-
izes long waves in nonlinear dispersive media, the
BBM equation, like KdV equation, was formally
derived to describe an approximation for surface
water waves in a uniform channel. The equation
covers not only the surface waves of long wave-
length in liquids, but also hydromagnetic waves in
cold plasma, acoustic waves in anharmonic crystals,
and acoustic gravity waves in compressible fluids.
Many researchers are attracted by the wide applica-
bility of the BBM equation[10][11].

Using the tanh method and the sine-cosine
method, Wazwaz[12] obtained compactons, soli-
tons, solitary patterns and periodic solutions for
the following generalized form of Eq.(1)

ut + aux − buxxt + k(um)x = 0, (2)

where a 6= 0, b 6= 0, k 6= 0 and m > 1 are constants.
In the present work, making use of two differ-

ent kinds of auxiliary equations, we will focus on
deriving the exact traveling wave solutions includ-
ing Jacobian elliptic function solution, solitons and
triangle function solutions for Eq.(2). Our results
includes those presented in Wazwaz’s paper[12] as
a special case.

2. Exact traveling wave solu-
tions to the Eq.(2)

Firstly, we illustrate the main approach used in this
work.

The transformation u(x, t) = u(ξ) (ξ = µ(x −
ct)) turns a given nonlinear equation

P (u, ut, ux, uxx, uxt, utt · ··) = 0 (3)

into the following nonlinear ordinary different equa-
tion

Q(u, uξ, uξξ, uξξξ, · · ·) = 0. (4)



We seek for the solutions of Eq.(4) in the form

u(ξ) =
N∑

i=0

giz
i(ξ), (5)

where gi(i = 0, 1, 2, · · ·, N) are constants which will
be determined later. The parameter N is a pos-
itive integer and can be determined by balancing
the highest order derivative terms and the highest
power nonlinear terms in Eq.(4). The highest de-
gree can be calculated by
{

O[∂pu
∂ξp ] = N + p, p = 0, 1, 2 · ··

O[uq ∂pu
∂ξp ] = qN + p, q, p = 0, 1, 2, · · · .

. (6)

2.1. The first auxiliary equa-
tion for solving Eq.(2)

To find the traveling solutions for Eq.(2), we know
that the wave variable ξ = µ(x − ct) turns Eq.(2)
into the ordinary differential equation

(a− c)u′ + bcµ2u′′′ + k(um)′ = 0. (7)

Integrating Eq.(7) once and ignoring the inte-
gral constant give rise to

(a− c)u + bcµ2u′′ + kum = 0. (8)

Setting um−1(ξ) = v(ξ) yields

(a− c)v2 +
bcµ2(2−m)

(m− 1)2
v′2 +

bcµ2

m− 1
v′′v + kv3 = 0.

(9)
From (6) and (9), we can assume that v(ξ)

takes the form

v(ξ) = g0 + g1z + g2z
2. (10)

Supposing z(ξ) = sn(ξ), that is

v(ξ) = g0 + g1sn(ξ) + g2sn
2(ξ), (11)

where g0, g1 and g2 are constants to be determined
later. Function sn(ξ) = sn(ξ, r) is a Jacobian ellip-
tic function and r(0 < r < 1) is the modus of the
function.

It follows from (11) that




v′ = g1cn(ξ)dn(ξ) + 2g2sn(ξ)cn(ξ)dn(ξ),
v′′ = 2g2cn

2(ξ)dn2(ξ)− sn(ξ)×
(g1 + 2g2sn(ξ))(dn2(ξ) + r2cn2(ξ)).

(12)

Substituting Eq.(11) and (12) into Eq.(9) and
equating each coefficients of sni(0 ≤ i ≤ 6) to be

zero in the resulting equation, we get the following
algebraic equations

6bcµ2g2
2r2

m− 1
+ kg3

2 +
8bcµ2g2

2r2

(m− 1)2

−4bcµ2mg2
2r2

(m− 1)2
= 0, (13)

8bcµ2g1r
2g2

(m− 1)2
− 4bcµ2mg1r

2g2

(m− 1)2

+
8bcµ2g1r

2g2

m− 1
+ 3kg1g

2
2 = 0, (14)

−bcµ2mg2
1r2

(m− 1)2
− 4bcµ2g2

2r2

(m− 1)2
− 4bcµ2g2

2

(m− 1)2

+
2bcµ2g2

1r2

m− 1
+

6bcµ2g2r
2g0

m− 1
+ (a− c + 3kg0)g2

2

+3kg2
1g2 +

2bcµ2g2
1r2

(m− 1)2
= 0, (15)

−3bcµ2g2g1r
2

(m− 1)2
− 3bcµ2g2g1

(m− 1)2
− bcµ2mg2g1r

2

(m− 1)2

−bcµ2mg2g1

(m− 1)2
+ 6kg0g1g2 + 2(a− c)g1g2

+
2bcµ2g1r

2g0

m− 1
+ kg3

1 = 0, (16)

(a− c)g2
1 −

4bcµ2mg2
2

(m− 1)2
− 4bcµ2g2g0

m− 1

+
2bcµ2g2

2

m− 1
+

8bcµ2g2
2

(m− 1)2
+ 3kg0g

2
1

+2(a− c)g0g2 − 4bcµ2g2r
2g0

m− 1
+ 3kg2

0g2

−bcµ2g2
1(r2 + 1)

(m− 1)2
= 0, (17)

(2a− 2c + 3kg0)g0g1 +
(6− 2m)bcµ2g2g1

(m− 1)2

−bcµ2g1(r2 + 1)g0

m− 1
= 0 (18)

kg3
0 +

2bcµ2g2g0

m− 1
+ (a− c)g2

0

− bcµ2mg2
1

(m− 1)2
+

2bcµ2g2
1

(m− 1)2
= 0. (19)

Solving Eqs.(13) to (19) with the Maple, we get

c =
a

bµ2r2 + bµ2 + 1
,m = 3, g0 = 0, (20)

g1 = 0, g2 = − 2abµ2r2

k(bµ2r2 + bµ2 + 1)
, (21)



or

r = 1, m 6= 3, g1 = 0, (22)

c = − (m2 − 2m + 1)a
4bµ2 − 1 + 2m−m2

, (23)

g0 = − 2(m + 1)abµ2

k(4bµ2 − 1 + 2m−m2)
, (24)

g2 =
2(m + 1)abµ2

k(4bµ2 − 1 + 2m−m2)
. (25)

Substituting Eq.(20) and (21) into Eq.(11) and
using the transformations um−1(ξ) = v(ξ) admit
the exact solution of Eq.(2) to have the form

u(x, t) = {− 2abµ2r2

k(bµ2r2 + bµ2 + 1)
sn2

(µ(x− a

bµ2r2 + bµ2 + 1
t))} 1

2 . (26)

From (22), (23), (24) and (25), the exact solu-
tion is expressed by

u(x, t) = {− 2(m + 1)abµ2

k(4bµ2 − 1 + 2m−m2)
(1− tanh2

[µ(x +
(m2 − 2m + 1)a

4bµ2 − 1 + 2m−m2
t)])} 1

m−1 . (27)

2.2. The second auxiliary equa-
tion for solving Eq.(2)

We assume that z(ξ) of Eq.(10) satisfies the follow-
ing auxiliary equation

(
dz

dξ
)2 = a1z

6 + a2z
4 + a3z

2. (28)

Substituting Eq.(10) and (28) into Eq.(9) and
setting the coefficients of each order of z to be zero,

we get a set of algebraic equations

8bcµ2g2
2a1

m− 1
− 4bcµ2mg2

2a1

(m− 1)2

+
8bcµ2g2

2a1

(m− 1)2
= 0, (29)

−4bcµ2mg1g2a1

(m− 1)2
+

8bcµ2g1g2a1

(m− 1)2

+
11bcµ2g1g2a1

m− 1
= 0, (30)

3kg1g
2
2 +

3bcµ2g1a1g0

m− 1
+

8bcµ2g1g2a2

m− 1

+
(8− 4m)bcµ2g1g2a2

(m− 1)2
= 0, (31)

kg3
2

bcµ2
+

2mg2
2a2

(m− 1)2
+

8g2a1g0

m− 1
+

2g2
2a2

(m− 1)2

− g2
1a1

(m− 1)2
+

2mg2
1a1

(m− 1)2
= 0, (32)

(3kg0 − c + a)g2
2 −

4bcµ2mg2
2a3

(m− 1)2

+
6bcµ2g2a2g0

m− 1
+ 3kg2

1g2 +
2bcµ2g2

1a2

m− 1

−bcµ2mg2
1a2

(m− 1)2
+

4bcµ2g2
2a3

(m− 1)2
= 0, (33)

2(a− c + 3kg0)g1g2 + kg3
1

bcµ2
+

3g1g2a3

(m− 1)2

+
mg1g2a3

(m− 1)2
+

2g1a2g0

m− 1
= 0, (34)

(3kg0 − 2c + 2a)g0g2 +
4bcµ2g2a3g0

m− 1

+(a− c + 3kg0)g2
1 +

bcµ2g2
1a3

m− 1

−bcµ2mg2
1a3

(m− 1)2
+

2bcµ2g2
1a3

(m− 1)2
= 0, (35)

2(a− c)g0g1 + 3kg2
0g1

+
bcµ2g1a3g0

m− 1
= 0, (36)

−cg2
0 + ag2

0 + kg3
0 = 0. (37)

Solving Eq.(29) to (37) by using the Maple, we
obtain

g0 = 0, g1 = 0, g2 =
−2bcµ2(m + 1)

k(m− 1)2
a2,(38)

a1 = 0, a3 = − (a− c)(m− 1)2

4bcµ2
, (39)

where a2 is a nonzero constant. The equation
(dz

dξ )2 = a2z
4 − (a−c)(m−1)2

4bcµ2 z2 admits the solutions



in the case where φ = (a−c)(m−1)2

4bc and a−c
bc > 0

z(ξ) = { φ

µ2a2
sec2(

√
φ(x− ct))} 1

2 , (40)

z(ξ) = { φ

µ2a2
csc2(

√
φ(x− ct))} 1

2 , (41)

and in the case a−c
bc < 0

z(ξ) = { φ

µ2a2
sech2(

√
−φ(x− ct))} 1

2 , (42)

z(ξ) = { φ

µ2a2
csch2(

√
−φ(x− ct))} 1

2 , (43)

z(ξ) = 4{ a3 exp(±√−2φ(x− ct))
exp(±√−2φ(x− ct)− 4a2)

} 1
2 . (44)

From Eq.(38) and (39), the solutions of z(ξ)
and the transformations um−1(ξ) = v(ξ), we get
the following results

u(x, t) = { (c− a)(m + 1)
2k

sec2(
√

φ(x− ct))} 1
m−1 ,

(45)

u(x, t) = { (c− a)(m + 1)
2k

csc2(
√

φ(x− ct))} 1
m−1 ,

(46)
where a−c

bc > 0.

u(x, t) = { (c− a)(m + 1)
2k

sech2(
√
−φ(x−ct))} 1

m−1 ,

(47)

u(x, t) = { (c− a)(m + 1)
2k

csch2(
√
−φ(x−ct))} 1

m−1 ,

(48)

u(x, t) = {8(a− c)(m + 1)a2 exp(±√−2φ(x− ct))
k(exp(±√−2φ(x− ct))− 4a2)

} 1
m−1 ,

(49)
where a−c

bc < 0 and a2 is a nonzero constant.
Solution formulas (45)-(48) are in full agree-

ment with the solutions presented in Wazwaz[12].

3. Conclusions

In this paper, by using the ansatz method with the
help of two forms of auxiliary equations and the
Maple, we have obtained some exact solutions to
a generalized Benjamin-Bona-Mahony equation. It
is worthwhile mention that the ansatz method can
also be applied to many other evolution equations,
which is our future work.
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