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Abstract 
Stock patterns are those that occur frequently in stock 
time series, containing valuable forecasting 
information. In this paper, an approach to extract 
patterns and features from stock price time series is 
introduced. Thereafter, we employ two ANN-based 
methods to conduct clustering analyses upon the 
extracted samples, which are the self-organizing map 
(SOM) and the competitive learning. Besides, and we 
introduce an improved version of the rival penalized 
competitive learning (RPCL), and furthermore 
conduct a comparative study between the clustering 
performances of the improved RPCL and the SOM. 
Experimental results show that a better clustering 
performance can be achieved by the former. 

Keywords: Competitive learning, Feed-forward neural 
network, Pattern analysis, Self-organizing map, Time 
series analysis. 

1. Introduction 
Within the current literature, there are two classic 
approaches for stock analysis, the fundamental 
analysis and the technical analysis. The former 
forecasts the tendency of stock price movement in 
light of the various elements that have an influence on 
the supply-and-demand correlation, while the latter 
does it via inspecting the market behaviors through 
graphs, charts as well as technical indicators. As yet, 
technical analysis has been comprehensively studied. 
The most frequently-applied theories in this regard 
include the Dow theory, the Elliot wave theory, the 
price volume theory, the K-line theory, the pattern 
theory and so forth, the majority of which combine 
chart analysis with technical indicator analysis in order 
to predict the moving trend of the stock price. Pattern 
analysis, an important branch of technical analysis, 
probes into the comparison between the strengths of 
the longs and shorts indicated by the stock curves. In a 
nutshell, pattern analysis is aimed at discovering both 
the undergoing and would-be trends in stock price 
with the aid of various patterns displayed by the 
corresponding curves. By investigating into the 

historical stock prices, pattern analysis serves to be 
suggestive and advisory to support investors to 
forecast stock price movements. 

As for the technical patterns in pattern analysis, 
they refer to those patterns recurrently exhibited in 
stock price curves. Technical patterns hold their own 
importance in financial forecasting. [1] indicate the 
efficiency of one specific technical pattern, namely the 
head and shoulders, for forecasting the foreign 
exchange rate. [2] and [3] demonstrate that the bull 
flag technical pattern, exhibited in both the stock price 
and the trading volume time series, is able to generate 
trading rules that imply higher profits compared to 
stochastic trading strategies. Besides, it is claimed in 
[4] that some technical patterns can provide additional 
information to forecast stock prices. One predominant 
type of technical pattern is the candlestick chart using 
candlestick-like figures to represent four important 
prices within a trading day, namely the opening, the 
closing, the highest and the lowest. In this paper, we 
concentrate on the closing price time series, which is 
divided into multiple trend segments, each of which is 
denoted by a line segment indicating the basic trend of 
the stock price. An uptrend implies a rise in price 
whereas a downtrend a decrease. 

The highly computational capabilities derived 
from computer technologies have enabled the design 
of computer-based algorithms for pattern analysis [1]-
[8]. In the meanwhile, neural network has been going 
through an increment in popularity within stock 
market analysis [9]. In this work, we propose two 
clustering approaches relying on neural networks to 
analyze the patterns in stock price time series. The 
most noticeable difference, compared to the work done 
in [9], lies in that the inputs of the networks do not 
cover every time point in the series. On the contrary, a 
segmentation process, which is also proposed by [1], 
is adopted in this work to first transform the original 
time series into a sequence of trend segments and 
features. Eventually, this sequence of features, instead 
of the whole time series, is designated as part of the 
inputs of the network. This not only reduces the 
calculation expense but also enables the alteration of 
time granularity by adjusting the length of the 
segments. 



As mentioned before, technical patterns are 
characteristic of being recurrent. Assuming that those 
non-predetermined frequently-occurred patterns are 
some unknown clusters, clustering analysis can 
therefore be implemented. Two classic approaches 
include the self-organizing map (SOM) and 
competitive learning, both achieving the clustering 
process via a competition among several neurons for 
the current object. We investigate in detail the 
clustering performance of SOM as well as a variation 
of RPCL [11] in this work and the inputs of the 
network are feature sequence extracted from the 
smoothed trend segment sequence. Basically, the best 
performance can be achieved when the number of 
output units equals the number of clusters within the 
samples’ feature space. However, it is usually an 
impossible task to foreknow the number of the clusters 
[10]-[13]. In [10], the number of output units is 
progressively curtailed by combining them with 
similar weight vectors. Nevertheless, the constant 
length of the sliding window, adopted in [10], vastly 
constricts the time-span for samples, and in the 
meantime, numerous redundant samples are generated 
due to that the window slides only one trading day 
forward each time. In this paper however, time-span 
varies among samples, thus leading to a comparatively 
low coupling between each. 

The rest of paper is organized as follows. In 
section 2, the pattern theory and the trend 
segmentation are briefly described. Clustering 
analyses conducted upon the segmented samples are 
presented in section 3. Section 4 details the 
experiments and section 5 concludes this paper.  

2. Pattern Theory and Trend 
Segmentation 

2.1. Pattern theory in a nutshell 
Pattern theory tends to dig into various shapes 
underlying those stock price curves, although not 
every shape is able to be used to carry out predictions. 
A number of beneficial technical patterns have been 
discovered by stock analysts, and these patterns could 
be categorized principally into two types: continuation 
pattern and reversal pattern. Continuation pattern 
indicates that stock price is going to keep its current 
movement trend thus the original balance will be 
maintained whereas the reversal pattern, on the 
contrary, implicates that the current balance will be 
violated and an opposite trend will appear. In terms of 
movement trend, continuation pattern can be further 
classified into the ascending and the descending 
continuations while reversal pattern further 

categorized into the top and the bottom reversals. A 
detailed investigation of as many as 63 important 
technical patterns, including the chart patterns as well 
as the event patterns, was made in [14]. Technical 
patterns reflect the market behavior [14], thus serving 
to be the footprints following which those informed 
investors can be able to enhance their profits. Fig. 1 
visualizes ascending symmetrical triangle and head 
and shoulders top, two technical patterns that have 
already been studied. 
 

 

 
 
Fig. 1: Two technical patterns, with (a) ascending 
symmetrical triangle and (b) head and shoulders top. 

2.2. Trend segmentation and 
feature extraction 

For the sake of the efficiency and simplicity, trend 
segmentation is usually conducted upon the stock 
price time series. Generally, a stock price time series 
comprises of several coarse trends, each of which 
might further contain several fine trends. Discovering 
all the finest trends is laborious and somewhat 
redundant. Therefore, trend segmentation is employed 
in order to smooth off the relatively unimportant fine 
trends while keep reflecting the general coarse trends 
in large [1, 4, 15]. 

Segmentation involves first dividing the time 
series into multiple segments, according to some 
optimization rules, and then connecting each in a 
head-to-tail manner. Three approaches are usually 
employed, namely the sliding window method, the 
top-down method and the bottom-up method [16]. In 
this paper, we take the third method as the 
segmentation approach. 



Suppose that we have T time points within the 
time series, with the average length for each segment l 
(1<l<T) time intervals. The bottom-up approach refers 
to a process that first a value is assigned to l, then the 
time series is divided into 

2
T  segments by grouping 

the (2i-1)th and the 2ith (i=1, 2,…, T/2) time points 
into one segment. Afterwards, calculation of the 
merging costs with its two neighbors for each segment 
is carried out. Two adjacent segments whose merging 
yields smaller cost are merged and new merging costs 
for the new segment is recalculated. This process is 
repeated until the number of the segments falls no 

more than 
l
T . 

Feature extraction serves to be an important step 
after trend segmentation. After it has been transformed 
into multiple trend segments, the time series can be 
defined uniquely by the starting and ending points of 
all these segments. Suppose that a time series with the 
length T is divided into m trend segments, denoted by 
(s1, s2, …, sm), with si (1≤i≤m) representing the ith 
segment. The length of time window is set to w, thus 
(m-w+1) samples can be extracted from this sequence 
of segments, as (s1, s2, …, sw), (s2, s3, …, sw+1), … , 
(sm-w+1, sm-w+2, …, sm). 
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Fig. 2: Marking the starting and ending points of each 
segment within a sample. 
 

Assuming that w is 7, Fig. 2 visualizes a sample 
with 7 segments. The conjunction time points are 
denoted as y0, y1, y2, …, y7. We define 8 features as 
follows for the sample with a length 7 as 

 
⎩
⎨
⎧

<−−
≥−

=
0,1
0,1

01

01
1 yyif

yyif
p ,              (1) 

 7,...,3,2,
21

1 =
−
−

=
−−

− i
yy
yy

p
ii

ii
i

,             (2) 

12

17
8 yy

yy
p

−
−

= ,               (3) 

where P1 denotes the initial trend of the pattern, with a 
value 1 representing upward while -1 downward; 

P2~P7 indicate the proportions between the price spans 
of two adjacent segments; P8 implies the correlation 
between the continuation pattern’s breaking point and 
the first segment’s right point. Thus we can use (P1, 
P2, …, P8) to represent this sample. 

3. Clustering Analysis for Stock 
Patterns 

Due to its learning abilities, neural network has been 
widely implemented into clustering analysis, two 
typical approaches including self-organizing map 
(SOM) and competitive learning algorithms. A 
competitive learning network, which works in a 
winner-takes-all fashion, is characteristic of having 
only one neuron in the output vector as 1 whereas all 
the others 0. SOM network is a subtype of competitive 
learning network, differing from the other subtypes as 
introducing the concept of neighborhood. Nonetheless, 
most competitive learning networks, including SOM, 
suffer from the difficulty to choose the number of the 
output neurons, denoted as k. The optimal 
performance is only achieved when k is equivalent to 
the number of clusters within the sample space. 

In response to this, L. Xu et al. introduced in [11] 
a heuristic adaptation of competitive learning, namely 
the rival penalized competitive learning (RPCL), 
which moves the rival neuron away from the current 
object (i.e. the input vector), while moving the 
winning neuron closer to the current object. The rival 
of the winning neuron in RPCL refers to the neuron 
whose weighted distance to the current object is only 
greater than the winning neuron while smaller than all 
the other neurons. One competitive learning epoch in 
RPCL contains two prime steps. 

• A sample xv  is selected from the training 
sample set, and the output vector for this 
sample can be calculated by the rules 
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where ui (i = 1, 2, …, k) represents the ith neuron of 
the output vector; c represents the serial number of the 
winning neuron while r the rival; jwv  represents the 

weight vector of the jth neuron; 
∑=
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denotes the cumulative number of winning times for 
the ith neuron. 

• Secondly update the weight vector iwv  for 
each neuron using 



⎪
⎩

⎪
⎨

⎧
−=−−

=−
=Δ

else.,0
,1if),(

,1if),(

iir

iic

i uwx
uwx

w vr

vr

v α
α

             (5) 

where αc represents the learning rate of the winning 
neuron while αr that of the rival’s. For the purpose of 
learning stability, αr should be much smaller than αc 
(e.g. αc=0.05, αr=0.002). This is primarily because if αr 
is assigned a rather big value, the rival will be quickly 
expelled out of the cluster area, which leads to an 
undesirable consequence that only quite a few 
clustering centers will be left. 

What can be directly obtained by the RPCL is that 
every cluster contains only one cluster center, which is 
calculated based on the weight vector of the 
corresponding output neuron of the network, whereas 
all the redundant neurons are isolated away from all 
the clusters. The clustering result using RPCL 
algorithm when k is set to 5 is visualized in Fig. 3, 
where it’s clear to notice that one neuron has been 
isolated away from all the clusters. 
 

 
 
Fig. 3: The clustering result using RPCL algorithm when k is 
set to 5. Note that the neuron with the weight vector (-0.3, 6) 
has been isolated from the cluster area. 
 

Therefore, RPCL serves as an efficient approach 
to solve the problem caused when k is set greater than 
the number of clusters. Nonetheless, when the value of 
k is initialized way too large, RPCL is considered not 
to be sufficient anymore. As illustrated by Fig. 4, 
when k is set to 6, RPCL is as incompetent as normal 
competitive learning algorithms. One primary reason 
for this is that when there are multiple redundant 
neurons, each of them is accordingly given less 
expelling force. One alternative to solve this problem 
is to increase the value of αr (increase it to 0.02 for 
instance) thus increasing the moving speed of the rival 
neurons. However, such solution also suffers from an 
unstable learning process, since the mutual expelling 
processes among neurons tend to induce the deviation 
of cluster centers from the cluster means. The 

clustering result of RPCL when k=6 and αr=0.02, is 
shown in Fig. 5. 
 

 
 
Fig. 4: The clustering result using RPCL algorithm when k is 
set to 6. Note that due to the insufficiency of RPCL, the 
redundant neurons are not completely expelled from the 
cluster area while still stay in the neighborhood instead. 
 

 
 
Fig. 5: The clustering result using RPCL algorithm when k is 
set to 6 and αr is increased to 0.02. Note that due to the 
increment of αr, a side effect has come along that three 
clustering centers have deviated from the cluster means, 
which are (0, -1), (0, 1) and (1, 0). 
 

For the sake of learning stability, we implement 
different values of αr for different training epochs. We 
gradually decrease its value and assign it to 0 
eventually, which constitutes an improved version of 
RPCL. One measure is to adjust the value of αr during 
the ith training epoch according to 
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where e represents the total number of training epochs; 
α represents the initial value for αr. When k is set to 6 
and 8 the clustering results using an improved RPCL 
algorithm are visualized in Fig. 6 and 7. 
 



 
 
Fig. 6: The clustering result using an improved RPCL 
algorithm when k is set to 6. Note that there are 2 (k-4) 
redundant neurons that have been isolated from the cluster 
area and at the same time there is no cluster center that has 
deviated from the mean. 
 

 
 
Fig. 7: The clustering result using an improved RPCL 
algorithm when k is set to 8. Note that there are 4 (k-4) 
redundant neurons that have been isolated from the cluster 
area and at the same time there is no cluster center that has 
deviated from the mean. 
 

The improved RPCL observably enhances the 
clustering performance when k is given a 
comparatively large value at the beginning. It is able 
to expel those redundant neurons effectively from the 
cluster area while at the same time prevent the 
deviation of the cluster centers from cluster means. 
Therefore, we will adopt this improved RPCL as the 
competitive learning algorithm in the next section. 

4. Experiments 
We extract 2029 samples out of 508 stocks in 
Shanghai Stock Exchange which contain 593 
continuation patterns and 1436 reversal patterns, to 
form the training set. We also extract 4937 samples, 
out of 155 stocks from Shenzhen Stock Exchange 
within the same time-span which contain 54 
continuation patterns, 270 reversal patterns as well as 

4613 neither of the two, to form the testing set. The 
training set is meant to train the classification network, 
while the testing set is meant to test the recognition 
ability of the classification network as well as to train 
the clustering network. 

4.1. Clustering analysis based on 
SOM 

In this section, the clustering result based on a two-
dimensional SOM containing 81 (9×9) output neurons 
with 2000 training samples and 10000 training epochs 
is provided. After the training, SOM calculates the 
distance between the current sample and each output 
neuron, and categorizes the input sample into the 
cluster corresponding to the neuron whose output is 1. 
The weight vector of the neuron is also named as the 
prototype vector, corresponding to the clustering 
center. Since that SOM directly calculates the distance 
between the input vector and the weight vector of the 
neuron instead of calculating the inner product, it is 
not necessary to normalize the input vectors 
beforehand [17]. Fig. 8 visualizes the prototype 
vectors for 81 clusters while Fig. 9 and Fig. 10 are 
intended to show the two clusters with the most 
samples, whose numbers are 62 and 54, respectively. 
These two clusters represent the most frequently 
occurred patterns in stock curves. 

As shown in Fig. 8, SOM clustering enables the 
resemblance among prototype vectors within the same 
neighborhood. For example, prototype vectors, with 
the position of (2, 7), (2, 8), (3, 7) and (3, 8) in Fig. 8, 
exhibit almost the same shape, which indicates that 
some clusters can be merged. 
 

 
 
Fig. 8: Prototype vectors for SOM clustering analysis. 
 



 
 
Fig. 9: Cluster 1 from the clustering result based on SOM, 
containing 62 samples out of 2000. The primary geometric 
feature of this cluster is that all local maxima or minima are 
approximately of the same value, leading to a volatility of 
stock price within two horizontal lines. 
 

 
 
Fig. 10: Cluster 2 from the clustering result based on SOM, 
containing 54 samples out of 2000. The primary geometric 
feature of this cluster is that all local minima are 
approximately of the same value, while the local maxima are 
going through a gradual increment in value. 

4.2. Clustering analysis based on 
RPCL 

In this section, the clustering result based on a RPCL 
network containing 81 (9×9) output neurons with 2000 
training samples and 200 training epochs is provided. 
After the training, RPCL calculates the distance 
between the current sample and each output neuron, 
and in the meantime categorizes the input sample into 
the pattern corresponding to the neuron whose output 
is 1. Fig. 11 visualizes the prototype vectors for the 
RPCL network, where it can be clearly observed that 
21 of them, for example the (1, 7), (2, 9), (3, 3), (3, 9) 
and (5, 2), are considerably different from the others 
as they don’t exhibit a seven-segment zigzag shape. 
As a matter of fact, such prototype vectors correspond 
to those neurons which have been isolated from the 

cluster area, indicating that there are only 60 (81-21) 
clusters within the sample space. 
Fig. 12 and Fig. 13 visualize the two clusters 
containing the most samples, with 72 and 60 
respectively. Similarly, they represent the two most 
frequently occurred patterns in stock curves. 
 

 
 
Fig. 11: Prototype vectors for RPCL clustering analysis. 
 

 
 
Fig. 12: Cluster 1 from the clustering result based on RPCL, 
containing 72 samples out of 2000. The primary geometric 
feature of this cluster is that both the local maxima and 
minima both go through a gradual decrement in value. 
 

 
 
Fig. 13: Cluster 2 from the clustering result based on RPCL, 
containing 72 samples out of 2000. The primary geometric 



feature of this cluster is that the first and third local maxima 
are approximately of the same value while the second one is 
comparatively smaller as well as that the second and third 
local minima are approximately of the same value, leading to 
that the third to the sixth segments constitute a “W” shape. 

4.3. A comparison between the two 
results 

First of all, we compare these two results according to 
the shapes of the prototype vectors. As shown in Fig. 8, 
each neuron resembles each other within its 1-
neighborhood considerably, which indicates that some 
output neurons in SOM might be redundant. Therefore 
there are actually less than 81 clusters existing in the 
sample space. Nonetheless, RPCL automatically 
deletes the effects of those redundant neurons by 
isolating them away from the cluster area. 

Second of all, we investigate into the distribution 
of samples within each cluster. Let d

v
 denote the 

number of samples of each cluster, with )(xd
v (1≤x≤81) 

representing the number of samples of the xth cluster. 
In addition, assume that Hi (i is a positive integer) 
denotes the number of clusters whose samples amount 
to at least (i-1)*10 and less than i*10. When SOM is 
utilized, it can be acquired that 62)(0 ≤≤ xd

v
 while the 

variance of d
v

 is 171.22. The number of clusters which 
have at least 30 samples is 25 and the total number of 
samples is 988. The value of Hi in SOM is shown in 
the second line of Table 1. Accordingly, when RPCL 
is utilized, it can be acquired that 72)(0 ≤≤ xd

v
 while 

the variance of d
v

 is 349.02. The number of clusters 
which have at least 30 samples is 37 and the total 
number of samples is 1532. The value of Hi in RPCL 
is shown in the third line of Table 1. 
 

approach H1 H2 H3 H4 H5 H6 H7 H8

SOM 10 18 28 17 2 5 1 0

RPCL 24 5 15 18 13 4 1 1

Table 1: Different values of Hi when i is of different values 
for both SOM and RPCL approaches, where Hi (i is a 
positive integer) denotes the number of clusters whose 
samples amount to at least (i-1)*10 and less than i*10. 

 
A conclusion can be reached that a comparatively 

better equilibrium of the distribution of samples within 
clusters can be achieved when suing SOM approach, 
while the distribution is more concentrated when 
RPCL is adopted. Taking into account that the 
concentration exhibited in sample distribution helps 
substantiate that there does exist some frequently 
occurred patterns in stock time series, RPCL serves to 
be more preferable. 

5. Conclusions 
With the progressive complexity of stock markets, it 
becomes increasingly difficult to discover the 
underlying technical patterns. The implementation of 
automatic pattern recognition using computer 
technologies has served as an affective alternative. In 
this paper, an approach to effectively extract patterns 
out of stock time series is introduced along with 
clustering analyses conducted upon the patterns. With 
the aid of trend segmentation and pattern feature 
extraction, it becomes more convenient and effective 
to recognize patterns from stock time series. In the 
clustering analysis that follows, namely the SOM and 
competitive learning clustering analyses, experiments 
are carried out using as many as 2000 patterns 
gathered from 155 stocks in the Shenzhen Stock 
Exchange. The results demonstrate that RPCL is 
capable to achieve a better clustering result over SOM, 
substantiating that there does exist some patterns in 
real stock time series which tend to occur more 
frequently than the average. 
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