
Automatically Recognizing Stock Patterns Using
RPCL Neural Networks

Xinyu Guo Xun Liang Nan Li
Institute of Computer Science and Technology, Peking University, Beijing 100871, P. R. China

Abstract
Stock patterns are those that occur frequently in stock
time series, containing valuable forecasting
information. In this paper, an approach to extract
patterns and features from stock price time series is
introduced. Thereafter, we employ two ANN-based
methods to conduct clustering analyses upon the
extracted samples, which are the self-organizing map
(SOM) and the competitive learning. Besides, and we
introduce an improved version of the rival penalized
competitive learning (RPCL), and furthermore
conduct a comparative study between the clustering
performances of the improved RPCL and the SOM.
Experimental results show that a better clustering
performance can be achieved by the former.

Keywords: Competitive learning, Feed-forward neural
network, Pattern analysis, Self-organizing map, Time
series analysis.

1. Introduction
Within the current literature, there are two classic
approaches for stock analysis, the fundamental
analysis and the technical analysis. The former
forecasts the tendency of stock price movement in
light of the various elements that have an influence on
the supply-and-demand correlation, while the latter
does it via inspecting the market behaviors through
graphs, charts as well as technical indicators. As yet,
technical analysis has been comprehensively studied.
The most frequently-applied theories in this regard
include the Dow theory, the Elliot wave theory, the
price volume theory, the K-line theory, the pattern
theory and so forth, the majority of which combine
chart analysis with technical indicator analysis in order
to predict the moving trend of the stock price. Pattern
analysis, an important branch of technical analysis,
probes into the comparison between the strengths of
the longs and shorts indicated by the stock curves. In a
nutshell, pattern analysis is aimed at discovering both
the undergoing and would-be trends in stock price
with the aid of various patterns displayed by the
corresponding curves. By investigating into the

historical stock prices, pattern analysis serves to be
suggestive and advisory to support investors to
forecast stock price movements.

As for the technical patterns in pattern analysis,
they refer to those patterns recurrently exhibited in
stock price curves. Technical patterns hold their own
importance in financial forecasting. [1] indicate the
efficiency of one specific technical pattern, namely the
head and shoulders, for forecasting the foreign
exchange rate. [2] and [3] demonstrate that the bull
flag technical pattern, exhibited in both the stock price
and the trading volume time series, is able to generate
trading rules that imply higher profits compared to
stochastic trading strategies. Besides, it is claimed in
[4] that some technical patterns can provide additional
information to forecast stock prices. One predominant
type of technical pattern is the candlestick chart using
candlestick-like figures to represent four important
prices within a trading day, namely the opening, the
closing, the highest and the lowest. In this paper, we
concentrate on the closing price time series, which is
divided into multiple trend segments, each of which is
denoted by a line segment indicating the basic trend of
the stock price. An uptrend implies a rise in price
whereas a downtrend a decrease.

The highly computational capabilities derived
from computer technologies have enabled the design
of computer-based algorithms for pattern analysis [1]-
[8]. In the meanwhile, neural network has been going
through an increment in popularity within stock
market analysis [9]. In this work, we propose two
clustering approaches relying on neural networks to
analyze the patterns in stock price time series. The
most noticeable difference, compared to the work done
in [9], lies in that the inputs of the networks do not
cover every time point in the series. On the contrary, a
segmentation process, which is also proposed by [1],
is adopted in this work to first transform the original
time series into a sequence of trend segments and
features. Eventually, this sequence of features, instead
of the whole time series, is designated as part of the
inputs of the network. This not only reduces the
calculation expense but also enables the alteration of
time granularity by adjusting the length of the
segments.

As mentioned before, technical patterns are
characteristic of being recurrent. Assuming that those
non-predetermined frequently-occurred patterns are
some unknown clusters, clustering analysis can
therefore be implemented. Two classic approaches
include the self-organizing map (SOM) and
competitive learning, both achieving the clustering
process via a competition among several neurons for
the current object. We investigate in detail the
clustering performance of SOM as well as a variation
of RPCL [11] in this work and the inputs of the
network are feature sequence extracted from the
smoothed trend segment sequence. Basically, the best
performance can be achieved when the number of
output units equals the number of clusters within the
samples’ feature space. However, it is usually an
impossible task to foreknow the number of the clusters
[10]-[13]. In [10], the number of output units is
progressively curtailed by combining them with
similar weight vectors. Nevertheless, the constant
length of the sliding window, adopted in [10], vastly
constricts the time-span for samples, and in the
meantime, numerous redundant samples are generated
due to that the window slides only one trading day
forward each time. In this paper however, time-span
varies among samples, thus leading to a comparatively
low coupling between each.

The rest of paper is organized as follows. In
section 2, the pattern theory and the trend
segmentation are briefly described. Clustering
analyses conducted upon the segmented samples are
presented in section 3. Section 4 details the
experiments and section 5 concludes this paper.

2. Pattern Theory and Trend
Segmentation

2.1. Pattern theory in a nutshell
Pattern theory tends to dig into various shapes
underlying those stock price curves, although not
every shape is able to be used to carry out predictions.
A number of beneficial technical patterns have been
discovered by stock analysts, and these patterns could
be categorized principally into two types: continuation
pattern and reversal pattern. Continuation pattern
indicates that stock price is going to keep its current
movement trend thus the original balance will be
maintained whereas the reversal pattern, on the
contrary, implicates that the current balance will be
violated and an opposite trend will appear. In terms of
movement trend, continuation pattern can be further
classified into the ascending and the descending
continuations while reversal pattern further

categorized into the top and the bottom reversals. A
detailed investigation of as many as 63 important
technical patterns, including the chart patterns as well
as the event patterns, was made in [14]. Technical
patterns reflect the market behavior [14], thus serving
to be the footprints following which those informed
investors can be able to enhance their profits. Fig. 1
visualizes ascending symmetrical triangle and head
and shoulders top, two technical patterns that have
already been studied.

Fig. 1: Two technical patterns, with (a) ascending
symmetrical triangle and (b) head and shoulders top.

2.2. Trend segmentation and
feature extraction

For the sake of the efficiency and simplicity, trend
segmentation is usually conducted upon the stock
price time series. Generally, a stock price time series
comprises of several coarse trends, each of which
might further contain several fine trends. Discovering
all the finest trends is laborious and somewhat
redundant. Therefore, trend segmentation is employed
in order to smooth off the relatively unimportant fine
trends while keep reflecting the general coarse trends
in large [1, 4, 15].

Segmentation involves first dividing the time
series into multiple segments, according to some
optimization rules, and then connecting each in a
head-to-tail manner. Three approaches are usually
employed, namely the sliding window method, the
top-down method and the bottom-up method [16]. In
this paper, we take the third method as the
segmentation approach.

Suppose that we have T time points within the
time series, with the average length for each segment l
(1<l<T) time intervals. The bottom-up approach refers
to a process that first a value is assigned to l, then the
time series is divided into

2
T segments by grouping

the (2i-1)th and the 2ith (i=1, 2,…, T/2) time points
into one segment. Afterwards, calculation of the
merging costs with its two neighbors for each segment
is carried out. Two adjacent segments whose merging
yields smaller cost are merged and new merging costs
for the new segment is recalculated. This process is
repeated until the number of the segments falls no

more than
l
T .

Feature extraction serves to be an important step
after trend segmentation. After it has been transformed
into multiple trend segments, the time series can be
defined uniquely by the starting and ending points of
all these segments. Suppose that a time series with the
length T is divided into m trend segments, denoted by
(s1, s2, …, sm), with si (1≤i≤m) representing the ith
segment. The length of time window is set to w, thus
(m-w+1) samples can be extracted from this sequence
of segments, as (s1, s2, …, sw), (s2, s3, …, sw+1), … ,
(sm-w+1, sm-w+2, …, sm).

0
2

3

4

5

6

71

Fig. 2: Marking the starting and ending points of each
segment within a sample.

Assuming that w is 7, Fig. 2 visualizes a sample
with 7 segments. The conjunction time points are
denoted as y0, y1, y2, …, y7. We define 8 features as
follows for the sample with a length 7 as

⎩
⎨
⎧

<−−
≥−

=
0,1
0,1

01

01
1 yyif

yyif
p , (1)

 7,...,3,2,
21

1 =
−
−

=
−−

− i
yy
yy

p
ii

ii
i

, (2)

12

17
8 yy

yy
p

−
−

= , (3)

where P1 denotes the initial trend of the pattern, with a
value 1 representing upward while -1 downward;

P2~P7 indicate the proportions between the price spans
of two adjacent segments; P8 implies the correlation
between the continuation pattern’s breaking point and
the first segment’s right point. Thus we can use (P1,
P2, …, P8) to represent this sample.

3. Clustering Analysis for Stock
Patterns

Due to its learning abilities, neural network has been
widely implemented into clustering analysis, two
typical approaches including self-organizing map
(SOM) and competitive learning algorithms. A
competitive learning network, which works in a
winner-takes-all fashion, is characteristic of having
only one neuron in the output vector as 1 whereas all
the others 0. SOM network is a subtype of competitive
learning network, differing from the other subtypes as
introducing the concept of neighborhood. Nonetheless,
most competitive learning networks, including SOM,
suffer from the difficulty to choose the number of the
output neurons, denoted as k. The optimal
performance is only achieved when k is equivalent to
the number of clusters within the sample space.

In response to this, L. Xu et al. introduced in [11]
a heuristic adaptation of competitive learning, namely
the rival penalized competitive learning (RPCL),
which moves the rival neuron away from the current
object (i.e. the input vector), while moving the
winning neuron closer to the current object. The rival
of the winning neuron in RPCL refers to the neuron
whose weighted distance to the current object is only
greater than the winning neuron while smaller than all
the other neurons. One competitive learning epoch in
RPCL contains two prime steps.

• A sample xv is selected from the training
sample set, and the output vector for this
sample can be calculated by the rules

⎪
⎪

⎩

⎪
⎪

⎨

⎧

−=−=−

−=−=

= ≠

else.,0

,minand,if,1

,minand,if,1
2

c
2

22

jjjrr

jjjcc

i wxwxri

wxwxci

u vvvv

vvvv

γγ

γγ
(4)

where ui (i = 1, 2, …, k) represents the ith neuron of
the output vector; c represents the serial number of the
winning neuron while r the rival; jwv represents the

weight vector of the jth neuron;
∑=

= k

i i

j
j

n

n

1

γ while ni

denotes the cumulative number of winning times for
the ith neuron.

• Secondly update the weight vector iwv for
each neuron using

⎪
⎩

⎪
⎨

⎧
−=−−

=−
=Δ

else.,0
,1if),(

,1if),(

iir

iic

i uwx
uwx

w vr

vr

v α
α

 (5)

where αc represents the learning rate of the winning
neuron while αr that of the rival’s. For the purpose of
learning stability, αr should be much smaller than αc
(e.g. αc=0.05, αr=0.002). This is primarily because if αr
is assigned a rather big value, the rival will be quickly
expelled out of the cluster area, which leads to an
undesirable consequence that only quite a few
clustering centers will be left.

What can be directly obtained by the RPCL is that
every cluster contains only one cluster center, which is
calculated based on the weight vector of the
corresponding output neuron of the network, whereas
all the redundant neurons are isolated away from all
the clusters. The clustering result using RPCL
algorithm when k is set to 5 is visualized in Fig. 3,
where it’s clear to notice that one neuron has been
isolated away from all the clusters.

Fig. 3: The clustering result using RPCL algorithm when k is
set to 5. Note that the neuron with the weight vector (-0.3, 6)
has been isolated from the cluster area.

Therefore, RPCL serves as an efficient approach
to solve the problem caused when k is set greater than
the number of clusters. Nonetheless, when the value of
k is initialized way too large, RPCL is considered not
to be sufficient anymore. As illustrated by Fig. 4,
when k is set to 6, RPCL is as incompetent as normal
competitive learning algorithms. One primary reason
for this is that when there are multiple redundant
neurons, each of them is accordingly given less
expelling force. One alternative to solve this problem
is to increase the value of αr (increase it to 0.02 for
instance) thus increasing the moving speed of the rival
neurons. However, such solution also suffers from an
unstable learning process, since the mutual expelling
processes among neurons tend to induce the deviation
of cluster centers from the cluster means. The

clustering result of RPCL when k=6 and αr=0.02, is
shown in Fig. 5.

Fig. 4: The clustering result using RPCL algorithm when k is
set to 6. Note that due to the insufficiency of RPCL, the
redundant neurons are not completely expelled from the
cluster area while still stay in the neighborhood instead.

Fig. 5: The clustering result using RPCL algorithm when k is
set to 6 and αr is increased to 0.02. Note that due to the
increment of αr, a side effect has come along that three
clustering centers have deviated from the cluster means,
which are (0, -1), (0, 1) and (1, 0).

For the sake of learning stability, we implement
different values of αr for different training epochs. We
gradually decrease its value and assign it to 0
eventually, which constitutes an improved version of
RPCL. One measure is to adjust the value of αr during
the ith training epoch according to
 ei

e
i

r ,,2,1,
1
11 L=×⎟
⎠
⎞

⎜
⎝
⎛

−
−

−= αα , (6)

where e represents the total number of training epochs;
α represents the initial value for αr. When k is set to 6
and 8 the clustering results using an improved RPCL
algorithm are visualized in Fig. 6 and 7.

Fig. 6: The clustering result using an improved RPCL
algorithm when k is set to 6. Note that there are 2 (k-4)
redundant neurons that have been isolated from the cluster
area and at the same time there is no cluster center that has
deviated from the mean.

Fig. 7: The clustering result using an improved RPCL
algorithm when k is set to 8. Note that there are 4 (k-4)
redundant neurons that have been isolated from the cluster
area and at the same time there is no cluster center that has
deviated from the mean.

The improved RPCL observably enhances the
clustering performance when k is given a
comparatively large value at the beginning. It is able
to expel those redundant neurons effectively from the
cluster area while at the same time prevent the
deviation of the cluster centers from cluster means.
Therefore, we will adopt this improved RPCL as the
competitive learning algorithm in the next section.

4. Experiments
We extract 2029 samples out of 508 stocks in
Shanghai Stock Exchange which contain 593
continuation patterns and 1436 reversal patterns, to
form the training set. We also extract 4937 samples,
out of 155 stocks from Shenzhen Stock Exchange
within the same time-span which contain 54
continuation patterns, 270 reversal patterns as well as

4613 neither of the two, to form the testing set. The
training set is meant to train the classification network,
while the testing set is meant to test the recognition
ability of the classification network as well as to train
the clustering network.

4.1. Clustering analysis based on
SOM

In this section, the clustering result based on a two-
dimensional SOM containing 81 (9×9) output neurons
with 2000 training samples and 10000 training epochs
is provided. After the training, SOM calculates the
distance between the current sample and each output
neuron, and categorizes the input sample into the
cluster corresponding to the neuron whose output is 1.
The weight vector of the neuron is also named as the
prototype vector, corresponding to the clustering
center. Since that SOM directly calculates the distance
between the input vector and the weight vector of the
neuron instead of calculating the inner product, it is
not necessary to normalize the input vectors
beforehand [17]. Fig. 8 visualizes the prototype
vectors for 81 clusters while Fig. 9 and Fig. 10 are
intended to show the two clusters with the most
samples, whose numbers are 62 and 54, respectively.
These two clusters represent the most frequently
occurred patterns in stock curves.

As shown in Fig. 8, SOM clustering enables the
resemblance among prototype vectors within the same
neighborhood. For example, prototype vectors, with
the position of (2, 7), (2, 8), (3, 7) and (3, 8) in Fig. 8,
exhibit almost the same shape, which indicates that
some clusters can be merged.

Fig. 8: Prototype vectors for SOM clustering analysis.

Fig. 9: Cluster 1 from the clustering result based on SOM,
containing 62 samples out of 2000. The primary geometric
feature of this cluster is that all local maxima or minima are
approximately of the same value, leading to a volatility of
stock price within two horizontal lines.

Fig. 10: Cluster 2 from the clustering result based on SOM,
containing 54 samples out of 2000. The primary geometric
feature of this cluster is that all local minima are
approximately of the same value, while the local maxima are
going through a gradual increment in value.

4.2. Clustering analysis based on
RPCL

In this section, the clustering result based on a RPCL
network containing 81 (9×9) output neurons with 2000
training samples and 200 training epochs is provided.
After the training, RPCL calculates the distance
between the current sample and each output neuron,
and in the meantime categorizes the input sample into
the pattern corresponding to the neuron whose output
is 1. Fig. 11 visualizes the prototype vectors for the
RPCL network, where it can be clearly observed that
21 of them, for example the (1, 7), (2, 9), (3, 3), (3, 9)
and (5, 2), are considerably different from the others
as they don’t exhibit a seven-segment zigzag shape.
As a matter of fact, such prototype vectors correspond
to those neurons which have been isolated from the

cluster area, indicating that there are only 60 (81-21)
clusters within the sample space.
Fig. 12 and Fig. 13 visualize the two clusters
containing the most samples, with 72 and 60
respectively. Similarly, they represent the two most
frequently occurred patterns in stock curves.

Fig. 11: Prototype vectors for RPCL clustering analysis.

Fig. 12: Cluster 1 from the clustering result based on RPCL,
containing 72 samples out of 2000. The primary geometric
feature of this cluster is that both the local maxima and
minima both go through a gradual decrement in value.

Fig. 13: Cluster 2 from the clustering result based on RPCL,
containing 72 samples out of 2000. The primary geometric

feature of this cluster is that the first and third local maxima
are approximately of the same value while the second one is
comparatively smaller as well as that the second and third
local minima are approximately of the same value, leading to
that the third to the sixth segments constitute a “W” shape.

4.3. A comparison between the two
results

First of all, we compare these two results according to
the shapes of the prototype vectors. As shown in Fig. 8,
each neuron resembles each other within its 1-
neighborhood considerably, which indicates that some
output neurons in SOM might be redundant. Therefore
there are actually less than 81 clusters existing in the
sample space. Nonetheless, RPCL automatically
deletes the effects of those redundant neurons by
isolating them away from the cluster area.

Second of all, we investigate into the distribution
of samples within each cluster. Let d

v
 denote the

number of samples of each cluster, with)(xd
v (1≤x≤81)

representing the number of samples of the xth cluster.
In addition, assume that Hi (i is a positive integer)
denotes the number of clusters whose samples amount
to at least (i-1)*10 and less than i*10. When SOM is
utilized, it can be acquired that 62)(0 ≤≤ xd

v
 while the

variance of d
v

 is 171.22. The number of clusters which
have at least 30 samples is 25 and the total number of
samples is 988. The value of Hi in SOM is shown in
the second line of Table 1. Accordingly, when RPCL
is utilized, it can be acquired that 72)(0 ≤≤ xd

v
 while

the variance of d
v

 is 349.02. The number of clusters
which have at least 30 samples is 37 and the total
number of samples is 1532. The value of Hi in RPCL
is shown in the third line of Table 1.

approach H1 H2 H3 H4 H5 H6 H7 H8

SOM 10 18 28 17 2 5 1 0

RPCL 24 5 15 18 13 4 1 1

Table 1: Different values of Hi when i is of different values
for both SOM and RPCL approaches, where Hi (i is a
positive integer) denotes the number of clusters whose
samples amount to at least (i-1)*10 and less than i*10.

A conclusion can be reached that a comparatively

better equilibrium of the distribution of samples within
clusters can be achieved when suing SOM approach,
while the distribution is more concentrated when
RPCL is adopted. Taking into account that the
concentration exhibited in sample distribution helps
substantiate that there does exist some frequently
occurred patterns in stock time series, RPCL serves to
be more preferable.

5. Conclusions
With the progressive complexity of stock markets, it
becomes increasingly difficult to discover the
underlying technical patterns. The implementation of
automatic pattern recognition using computer
technologies has served as an affective alternative. In
this paper, an approach to effectively extract patterns
out of stock time series is introduced along with
clustering analyses conducted upon the patterns. With
the aid of trend segmentation and pattern feature
extraction, it becomes more convenient and effective
to recognize patterns from stock time series. In the
clustering analysis that follows, namely the SOM and
competitive learning clustering analyses, experiments
are carried out using as many as 2000 patterns
gathered from 155 stocks in the Shenzhen Stock
Exchange. The results demonstrate that RPCL is
capable to achieve a better clustering result over SOM,
substantiating that there does exist some patterns in
real stock time series which tend to occur more
frequently than the average.

Acknowledgement
This work is supported by National Nature Science
Foundation of China (Grant No. 70571003).

References
[1] C.L. Osler and P.H.K. Chang, Head and

shoulders: Not just a flaky pattern, Staff Report,
No. 4, Federal Reserve Bank of New York, 1995.

[2] W. Leigh, N. Paz and R. Purvis, Market timing:
A test of a charting heuristic, Economics Letters,
77:55-63, 2002.

[3] W. Leigh, N. Modani and R. Hightower, A
computational implementation of stock charting:
Abrupt volume increase as signal for movement
in New York Stock Exchange Composite Index,
Decision Support Systems, 37:515-530, 2004.

[4] A. Lo, H. Mamaysky and J. Wang, Foundations
of technical analysis: computational algorithms,
statistical inference, and empirical
implementation, Journal of Finance, 55:1705-
1765, 2000.

[5] A. Sklarew, Techniques of a Professional
Commodity Chart Analyst, Commodity Research
Bureau, New York, 1980.

[6] S.C. Suh, D. Li and J. Gao, A novel chart pattern
recognition approach: A case study on cup with
handle, Proc of Artificial Neural Network in
Engineering Conf, St. Louis, Missouri, 2004.

[7] W.J. O’Neil, How to Make Money in Stocks, 3rd
Ed., McGraw-Hill Companies, New York, 2002.

[8] S. Anand, W.N. Chin and S.C. Khoo, Chart
patterns on price history, Proc of ACM SIGPLAN
Int Conf on Functional Programming, Florence,
pp. 134-145, 2001.

[9] K. Kamijo and T. Tanigawa, Stock price pattern
recognition: A recurrent neural network
approach, Proc of the Int Joint Conf on Neural
networks, pp. 215-221, 1990.

[10] T. Fu, F. Chung, V. Hg and R. Luk, Pattern
discovery from stock time series using self-
organization maps, Workshop Notes of 7th ACM
SIGKDD Int Conf on Knowledge Discovery and
Data Mining, San Francisco, pp. 27-37, 2001.

[11] L. Xu, A. Krzyzak and E. Oja, Rival penalized
competitive learning for clustering analysis, RBF
net, and curve detection, IEEE Trans Neural
Networks, 4:636-649, 1993.

[12] L. Xu, How many clusters? : A YING-YANG
machine based theory for a classical open
problem in pattern recognition. Proc of IEEE Int
Conf on Neural Networks, pp. 1546-1551, 1996.

[13] P. Guo, C. L. P. Chen, M. R. Lyu, Cluster
number selection for a small set of samples using
the Bayesian Ying-Yang model, IEEE Trans
Neural Networks, 13:757-763, 2002.

[14] N. Bulkowski, Encyclopedia of Chart Patterns,
2nd Ed., John Wiley and Sons, 2005.

[15] F. Chung, T. Fu, V. Hg, R. Luk, An evolutionary
approach to pattern-based time series
segmentation, IEEE Trans Evolutionary
Computation, 8:471-489, 2004.

[16] E. Keogh, S. Chu, D. Hart and M. Pazzani, An
online algorithm for segmenting time series,
Proc of IEEE Int Conf on Data Mining, pp. 289-
296, 2001.

[17] M.T. Hagan, H.B. Demuth and M.H. Beale,
Neural Network Design, PWS Publishing
Company, Boston, 1995.

