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Abstract

Basic bilevel programming deals with hierarchical
optimization problems in which the leader at the upper
level attempts to optimize his/her objective, subject to
a set of constraints and his/her follower’s solution, and
the follower at the lower level tries to find an
optimized strategy according to each of possible
decisions made by the leader. Three issues may be
involved in a basic bilevel decision problem. One is
that bilevel decision making model may involve
uncertain parameters which appear either in the
objective functions or constraints of the leader or the
follower or both. Second, the leader and the follower
may have multiple conflict objectives that should be
optimized simultaneously. Third, there may have
multiple followers and partial shared their decision
variables among followers in a real decision situation.
Following our previous work, this study proposes a set
of fuzzy multi-objective multi-follower linear bilevel
programming models to describe the three issues. It
also develops an approximation branch-and-bound
algorithm to solve such kinds of problems.

Keywords: Bilevel programming, Branch and bound
algorithm, Fuzzy sets, Optimization

1. Introduction

Bilevel programming (BP) arises where decisions are
made in a two level hierarchical order and each
decision maker has no direct control upon the decision
of the other, but actions taken by one decision maker
effect returns from the other. It is developed for
mainly solving decentralized planning problems [1, 2,
4-6, 18, 19]. Decision maker at the upper level is
termed as the leader, and at the lower level, the
follower. The leader and the follower each tries to
optimize his/her own objective function, but the
decision affects the objective value of the other level
[12].

The majority of research on BP has centered on
the linear version of the problem, i.e., linear BP
problems. A set of approaches and algorithms have
been well developed such as well known Kuhn-Tucker
approach [2], Kth-best approach [3] and branch-and-
bound algorithm [2, 7]. In general, there are two
fundamental issues in BP theory and practice. One is
how to model a real-world bilevel programming
problem, and the other is how to find a solution for the
problem. Although much research has been done in
the area, existing results cannot adequately model and
well solve a bilevel problem when it corresponds to
the following situations.

First, the upper level or the lower level of a
bilevel decision may have multiple conflicting
objectives which should be considered simultaneously
by the leader or the follower. For example, a
coordinator of a multi-division firm considers three
objectives in making an aggregate production plan:
maximise net profits, maximise quality of products,
and maximise worker satisfaction. The three
objectives could be in conflict with each other, but
must be considered simultaneously. Any improvement
in one objective may be achieved only at the expense
of others. One level multi-objective decision-making
problem has been well researched and many other
researchers. But in a bilevel model, selection of an
alternative solution for the leader is affected by his/her
followers’ optimal reactions. Therefore, how to find a
solution for the leader which has multiple objectives
under consideration of both its constraints and its
followers’ decision is a new issue.

Second, existing BP approaches mainly suppose
the situation in which the objective functions and the
constraints of the leader and the follower are
characterized with precise parameters. Therefore, the
parameters are required to be fixed at the some values
in an experimental and/or subjective manner through
the experts’ understanding of the nature of the
parameters in the problem-formulation process. It has
been observed that, in most real-world situations, for
example, power market and business management, the
possible values of these parameters are often only



imprecisely or ambiguously known to the experts who
establish this model. With this observation, it would
be certainly more appropriate to interpret the experts’
understanding of the parameters as fuzzy numerical
data which can be represented by means of fuzzy sets
[20]. A BP problem in which the parameters, either in
objective functions or in constrains of the leader or the
follower, are described by fuzzy values is called a
fuzzy BP problem in the study. The fuzzy BP problem
was first researched by Sakawa et al. [13, 14]. Sakawa
et al. formulated cooperative fuzzy BP problem and
proposed a fuzzy bilevel programming approach for
solving the problem where Sakawa introduced the
concepts of a-bilevel programming based on the basis
of fuzzy number o-level sets. The third, multiple
followers may be involved and the leader’s decision
will be affected not only by those followers’
individual reactions but also by the relationships
among these followers. As uncertain information
could occur in the objectives and the constraints of
both the leader and his/her multiple followers, the
problem becomes very complex.

This paper deals with the three situations together.
As the relationship among followers can be with many
situations which need different models and algorithms,
this paper focuses on the situation where all followers
shard their decision variables. Based on the extended
solution concept and related theorems of BP [8, 9, 15-
17], we have solved fuzzy BP problems [21-25]. We
then conducted research on the model and solution
where the leader and the follower to have multiple
objectives with fuzzy parameters [11, 26-28]. This
paper extends our previous models by allowing
multiple followers with partial shared their decision
variables, called a fuzzy multi-objective multi-
follower linear bilevel programming with partial
shared decision variables (FMMBP-PC) problem. It
also develops an approximation branch-and-bound
algorithm to solve the general FMBP-PC problem.

Following the introduction, Section 2 gives
FMBP-PC models, related definitions, theorems and
properties [10, 26]. A general fuzzy number based
approximation  branch-and-bound algorithm  for
solving FMMBP-PC problems is presented in Section
3. Conclusions are discussed in Section 4.

2. Fuzzy Multi-objective Multi-
follower Linear Bilevel
Programming with Partial
Shared Variables Model

Let R be the set of all real numbers, R" be n-
dimensional Euclidean space, and x = (x;, x5, ..., X,)",
y=nya ... va)' € R" be any two vectors, where x;,
vieR i=12,...,nand T denotes the transpose of
the vector. For any two vectors x, y € R", we write

x>y iff x>y, Vi=12,--,n;, x>yiff x>y and
x#zy;x>yiff x;>y, Vi=12, ..., n

Let F(R) be the set of all finite fuzzy numbers. By
the decomposition theorem of fuzzy sets, we have

a= Uaa;.a]],

Aef01]
for every a e F(R).

Definition 2.1 Let a e F(R),i=12,---,n. We
4 R~ [0, 1],
. x,,)T e R", and
a is called an n-dimensional fuzzy number on R". If
aeF(R), i= 1, 2, -, n, a is called an n-
dimensional finite fuzzy number on R”.

Let F(R") be the set of all n-dimensional fuzzy

numbers and the set of all n-dimensional finite fuzzy
numbers on R" respectively.
Definition 2.2 For any n-dimensional fuzzy

numbers a,b e F(R"), we define
arb iff a'>b" and a' >b", Ae(0d];
a=b iff a>b" and a* > 5", Ae(01l;
a=biff a'>b"and a* >b", 1e(0]].
We call the binary relations ot and > a fuzzy

define a=(a,a,-a,):

x> AL (x,), where x = (x;, x5, ..

max order, a strict fuzzy max order and a strong fuzzy
max order, respectively.

Fuzzy multi-objective multi-follower linear bilevel
programming with partial shared decision variables
problems is the cooperative situation where the
followers partial share the decision variables in their
objectives and constraints. However, there are four
different sub-cases within the cooperative situation
which are determined by the relationships among the
objectives and constrains of the followers. Each
follower may have an individual objective whatever
sharing their constraints with other followers.
Consider the following FMBP-PC problems:

Model I. A FMMBP-PC problem in which
K (= 2) followers are involved and there are shared

objective functions and constraint functions and partial
decision variables among followers is defined as
follows:

ForxeXcR", yeYcR", Y=(Y, -, Y,Z),
F:XxY,xx..xY,xZ—>F(R"), fi:XxY,xZ—
F(R")and i=12.---,K.

It consists of finding a solution to the upper level
problem

_ K ~ ~ _ K ~
min F(x,y)= [cllx + ;dijj +dlz, c;x+ ;d;}.y‘i

T
~ K ~ ~
+dyz, el x+)dy, + dfz)
=



-~ ko~ ~ ~
1 1 1 1
st. A x+;Bjyj+B z<b

where y,(i =12,---,K), for each value of x, is the
solution of the lower level problem:

_ K ~ ~ - K ~
V,Q?,I(L,f(x' y)= (clszr Z;dffyj + d1ZZ' czzxJr Z;dzz/y/'
) zeZ J= j=

T
~ K~ ~
+d}z,, Clx+ ;d”zy/. +drzzj
-~ K~ ~ ~
2 2 2 2
s.t. 4 x+;B/.y/.+B z<b

where ¢, ¢’ e F(R"), b' e F(R'), b%<cF(RY), a, €
FR), 3 =), bia erm, Bi=[) . B

ijk

€),.a:eFR),4*=a7) .d:.d'd:d* e F(R),

b . B ) B (B) =12

’
ik K gxm

j=12,--,t,and k=12,---, K.

Model Il. A FMMBP-PC problem in which
K(=2) followers are involved and there are shared

objective functions and partial decision variables but
different constraint functions among followers is
defined as follows.

ForxeXcR", y,eYcR", Y=(Y, Y, ,Z),
FiXxY,xx..xY,xZ—>FR), f,:XxY,xZ—>
F(R)and i=12.---,K.

It consists of finding a solution to the upper level
problem

K ~ ~ K ~
min F(x, y) = (cllx +)dy, +dlz,c;x+)d,y,
re =1 j=1
T ~1 &7 T !
+dlz, -, csx+;dyyj +d;z
=

s.t. A1x+;B§y/. +B'z = b*

where y.(i =1,2,---,K), for each value of x, is the
solution of the lower level problem:

_ K ~ ~ - K ~
min_f(x,) :(CfXJrZ;df/y/ +d1zzr szx""_z;dzz/y/
J= J=

yye¥yzeZ

T
K ~ ~
+djz, ¢ x+2d]y, +dfz)
=)
~ K ~ ~ ~
2 2 2 2
SUAX+2 By, +B2xb,r=12,K,

where  ¢*,2*e F(R"),b* e F(R’),b? e F(R"),a" e

FR).A =(),, b8 e FR)L.BL =[] B =

() a7 e F), 3 = (7)) 33,30, d7 < FR),

ij ij ik jk
b P, B =) B ) i1

i ijk r i

j=12,---,t,and £ =12,---, K.

Model 11l. A FMMBP-PC problem in which
K(=2) followers are involved and there are shared

partial decision variables and constraint functions but
different objective functions among them is defined as
follows.

ForxeXcR" y,eYcR", Y=, Y,Z),
F:XxY xx..xY,xZ—>FR), fi:XxY,xZ—>
F(R)and i=12.---,K.

It consists of finding a solution to the upper level
problem

K ~ ~ K
; ~1 1 1= 1
nllan(x’y):(clx+zdl/‘yj +dle sz+z 2V
; =l =)
1 ~1 1 1
+d?Z'""Csx+zldvy;/‘+dsz)
J=

~ ko~ ~ -~
1 1 1 1
s.t. Ax+/Z:;Bjyj+B z=<b

where y,(i =1,2,---,K) , for each value of x, is the
solution of the lower level problem:

_ K ~ -~ _ K ~
min_ £ (x,») :(c‘fxvh;d,f/.y/ +d?z, ci§x+Z£d§/.y,
J= J=

vy zeZ
~ K ~ ~ r
#di e Exr Sy, + 032
=
s.t. 22x+il§.2y. +Bz<b’
=1 Jo =

where &', 22 e F(R"),b' e F(R"),b* e F(R"),a' e

FR)B e F(R).B =) . & eF(R). =),
ch, J; e F(R"),i=12, -5, j=12, -t and B? =

(5,)..5 € F(R), g z=12,+, K.

Model IV. A FMMBP-PC problem in which
K(>2) followers are involved and there are partial

shared decision variables but different objective and
constraint functions among them is defined as follows.

ForxeXcR", yeYcR" Y=(, . Y,Z),
F:XxY,xx..xY,xZ—>FR"), fi:XxY,xZ—>
F(R)and i=12.---,K.

It consists of finding a solution to the upper level
problem

K ~ ~ K ~
min F(x, y) = [cllx +Xdly, +dlz, c;x+d,y,
xe j=1 j=1
~ K ~ -~ T
1 ~1 1 1
+d,z, -, csx+Z;dlvyl. +dsz)
p=

~ k  ~ ~ ~
s.t. A1x+/Z:lijyj +B'z = b!

where y,(i=12,---,K), for each value of x, is the
solution of the lower level problem:

K ~ -~ K ~
min, (5= (Exe Sty vtz L,
vyeY; zeZ =i j=1



;
X ~
2 =2 2 2
+d2z, -, ci,x+;d. ¥, +di,z)
J=

itj
-~ K~ ~ ~
st A’?X+ZIB’jy./ +BrZZébr21 r :1!21 "'lK;

where  &',Z2e F(R"),b" e F(R"),b? e F(R"),d, e

FR)A =(a,) .b,.& <F(R).B =(p,)

d} cij € F(R'”),Ej = (s.:)qu, 5, €F(R),i=12,-s,

iz ij

j=12,-,t,and g,z=12,---, K.

By analysis above four models and using a
weighting method, we can get a general model (Model
G) for FMMLB-PC problems:

ForxexcRr',y eY cr™, Y=, -, Y) F:XxY,
x..xY, > F(R"), f:XxY > F(R)andi=12,... K.

It consists of finding a solution to the upper level
problem

K ~ K ~
mL”F(xvy)=(Efx+2df,-y,v55X+Zd§,-yn"v
e Jj=1 Jj=1
~1 &7 !
csx+zldy.yjj
y=
~ K ~ -~
st. A'x+ By, <b’
j=1 -
where y,(i =1,2,---,K) , for each value of x, is the

solution of the lower level problem:

_ K ~ - K ~
min f(x,y)z(cfx-ﬁ-%df/y/,c;x+;d22jyj,-~-,

J=12,-K

-~ K ~ ~
s.t. Afx+/Z:;B;yj ébzz, z=12,---,K,

where ¢!, ¢} e F(R"),b" € F(R"), b* eF(RY), a, €
FR), 1=(@,),.b<F(R).B =(p,), .2 <F(R).d:,
eF(R"),i=12, s, j=12-t andz=12,, K,

B =(5) .5 eF(R).z=12 K.

1. For Models I, Il and 11, they are obviously special
issues of Model 1V, respectively.

2. For Model IV, we know that it is a FMMBP
problem in which the K followers share the variable z.
By using weighting method, we can obtain
For xeXcR",y,eY, cR" Y=, Y., Y.,) F:
XxY,x..xY, xY  —>F(R), f:XxY—F(R) and
i=12,....K+1.

It consists of finding a solution to the upper level
problem

K+l ~ K+l ~
: ~1 1 ~1 1
mIXnF(x,y) :(clx+zd1/y/' sz+ Zdz/'yf‘ T
xe j=1 J=L

2 ~:
pxm? A: - (ek.f )qxn !

- K+ ~ r
cx+2dyy,
p=i
st A+ S By <b
Lo Ax+ 2By, <
=

where y,(i =1,2,---,K) , for each value of x, is the
solution of the lower level problem:

K~ K~
; ~2 2. =2 2
)V,Tm f(x:J/):(Clx+zd1,J’,:sz+zdz,-yj-"':
JAd K =1 =

- K+l ~ r
c,2x+2dlfyjj
=
~ K+l ~ ~
s.t. Afx+ZB;y, <b?z=12,-,K+],
< P2

where ¢*,c? e F(R"),b* e F(R'),b? e F(R"), @, ¢

FR).A'=(a,) b, e F(R).B' =[b,) .2 e F(R),

d;

iz

J,i EF(R”’)VEZZ :<S )qu, g‘:j EF(R),l':l,Z, ey S,

i

j=12 t,and z=12,-, K +1.

3. Obvious, this model and Model G are same.

We will present an approximation branch-and-
bound algorithm to solve FMMBP problem with in a
partial cooperative situation

3. An Approximation Branch-and-
bound Algorithm

Associated with the FMMBP-PC problem, we now
consider the following multi-objective linear bilevel
programming (MOLBP) problem:

Forxe XcR",y, e¥ cR", Y=(Y1,~~~,YK)T,F:)(XY1
x.xY. > F(R"), f:XxY¥ > FR)andi=12,... K.

min (7 (x, ) = (7)) (B ) (7. (e, ) )
(F.een)) 2el01] (18)
St Ax+ gBj; v <bY, (1b)
A x4 iB;fyj <%, 2e[0,1]
min (e ). = (e ) (G )
o)) (o)) Aclo (o)

2L & pat 2L
s.t. AZA-X"';B:UJG <b’, (1d)
2L & et 2L 2 0
A”x+jZZ;Bzuy/ <b:,, z=12--K,1€[0,1]
where (F,(x, »)); = ¢l x + 2. d), v, (F(en)) =clix
#2017 ) = el X dl Ly, and (1 (x,

2 R 1L iR 2L oR

) =cfzfx+zl/;d:”y/, Ael0l], ¢, ¢, e, ch, €



R" L R L R
, bli,bli ERF bz bz

R",d" 4", d%", d2" e ,

a0 gt Tigp? g g

Ai=(af)as=la))err = (e ) a7 = e,))e
BZH _ R, BlL—(,ZU)BlRZ( ) R, BZL_(Z]L)

izj p, ) ir A
(s7%)e R™", =12, )5, j=12, -, t, z=12,, K
By using Definition 2.2, we have

Theorem 3.1 Let (x',y") be the optimal
solution of the MOLBP problem defined by (2). Then
it is also an optimal solution of the FMMBP-PC
problem defined by Model G.

We can use the theory of solving FMOLBP [21]
to find an optimal solution for Model G because we
have known Model G of the general model of
FMMBP-PC problem is a FMOLBP problem.

Theorem 3.2 [26] Forxe X c R, y,eY,cR",i =
1, 2, ..., K, if all the fuzzy parameters have piecewise
trapezoidal membership functions in the Model G,

2R

L
0 1<z,
a, —a
— (t—zL )+0(O zh <<zt
L ay ay —= a
z, —z
a ay
(Zl Wy ( L ) L L
i -z, )to z, St<z,
z, —Z
@ Lo
(1) =1 zl <t<z! .(2)
an n=1 ( R ) R R
R R I+ Za,,,l T, Za,, é i< Z&'H
z, —Z
@1 @n
aO al R
t+z, |+« z <t<zt
R _ R a =" “%q
o leg
R
0 z,, <t

where z denotes any fuzzy parameters in Model G,
then, (x", y") is a complete optimal solution to the
FMMBP-PC problem if and only if (x7, ") is an
optimal solution to the MOLBP problem:

min (F,(x, ), =¢l, x+30dl, y.i=L..s,j=0L...,n

min (F,(x, )} =ch x+ 3, d20 v, (32)
1L & pit L.
S.t.Aa/.x—l-ZBm/yz <bl, j=0L1-n (3b)
2 =

1R & ik 7
Aux+Y By <be,j=01-n
= j =

min (f(xy))i :ciLx+ZA 1dzLy‘ i=1...,tj=01...,n
min(f;’(x,y)) =c’ x+ZHd2Ryk, z=1...,K, (3¢c)
st A% x+ZBfmy <bfa,j 01, (3d)

A x e Y B y <b™ | z=12K
7 =1 “dprs = 24

We note

Ax+By<h, (3'b)
Zx+ By, @'d)
where
K
L BIL
A, A, 2 e
: : i
S I P D B D
S e D e E
. . ~ zay
Ais,, Aiz Zklélk
=
Z leao blio blz;
K BZ . ZL 'L
3 Z Ka, | — bla” 5 b2
z=1 . :
Z B2 b, b;:
Ka,

Then we can re-write (3) by using
min (F,(x, ), =¢l, x+30,dL, y.ii=L..s, j=0L...n

min (F,(x,»)); =cl, x+X5d2, v, (3'a)
st Ax+By<b, (3'b)

miyn (f,"(x, y))i = cﬁi x+2::1dfki Yo i=1..tj=01...,n
ye j za aka

Teip (f,z(x,y)); t,j=01...,n

min (/7 (), =els x4 Sdi v, 2=l K, (37C)

zika

oL 2 L .
:C’:a/x+2k1d yk,l:].,...,

ik o

st Ax+B,y<b, (3°d)

Theorem 3.3 [26] Forxe X cR", y, €Y, cR",i =

1, 2, ..., K, if all the fuzzy parameters have piecewise
trapezoidal membership functions in the Model G,

then a necessary and sufficient condition that (x”,y")
solves the Model G problem is that there exist vectors
u* v*and z*such that (x",y",u",v",z") solves:

min (F(x,»)= ZW(Z(% X+Z-1d,lzi )

3l tae sty @)
st. Ax+By<bh, (4b)



‘ Zd) (4d)

n

u(( b+ b ) - (z AL 4y A )x —(
i=0 i=0 i=0 i

i=0

n K K 2R
[:o;;B"’“' y|+2zy=0 (4e)
x20,y>20,u>0,v>0,z>0, (41)

where 37w, =1land 3w’ =1

)

Based on Theorem 3.3, we will present an
approximation  branch-and-bound algorithm  for
solving the FMMBP-PC problem shown in Model G.

We first write all the inequalities (except of the
leader’s variables) of (3’a)-(3’d) as g,(x,»)20, i =1,
2, ..., p + g + m, and note that complementary
slackness simply means u,g,(x,y)=0 (i = 1, 2, ...,
ptq+m). Now we suppress the complementary term
and solve the resulted linear sub-problem. At each
time of iteration the condition (4e) is checked. If it is
satisfied, the corresponding point is in the inducible
region and hence a potential solution to (3°).
Otherwise, a branch-and-bound scheme is used to
implicitly examine all combinations of the
complementarities slackness.

Let W ={1, 2, ..., p + ¢ + m} be the index set for
the terms in (4e), F be the incumbent upper bound on
the objective function of the leader. At the ith level of
an search tree we define a subset of indicesW, c W,

and a path P, corresponding to an assignment of
either u, =0 or g, =0 for i e W, . Now let

S ={i:ieW, u =0}

S, ={itieW, g =0}

Sy={i:ieW}.

For ie S}, the variables u, or g, are free to

assume any nonnegative value in the solution of (4)
with (4e) omitted, so complementary slackness will
not necessarily be satisfied.

By using these notations we give all steps of the
approximation branch-and-bound algorithm for the
proposed FMMBP-PC problem:

Step 1. Give weights for the objectives of the
leader and the followers, and let
2oow,=land 3w, =1

Step 2. Transform Model G to the problem (37)

Step 3. Let the interval [0, 1] be decomposed into
2" mean sub-intervals with (2"7+1) nodes
2,(i=0,---,2"*) which are arranged in the order of

i

0=14,<4<--<4, =1andarange of errors ¢ > 0.

Step 4. Set /=1, then solve (MOLBP),' i.e.(3") by
using an extended branch-and-bound algorithm [15]
when S = 0 and « =1, we obtain an optimization
solution (x, y), -

Step 5. Transform the problem (3’) to linear BP
problem (4) by using a weighting method [10].

Step 6. Solve the problem (4).

Step 7. (Initialization) Set k=0, S, =¢, S, =¢,
Sy ={,...,p+q+m}, and F=ow,

Step 8. (Iteration k) Set u,=0 for ie S, and

g, =0 forie S, . It first attempts to solve (4) without

(4e). If the resultant problem is infeasible, go to Step
12; otherwise, put k<« k+1 and Ilabel the

solution (x*, y*,u").

Step 9. (Fathoming) If F(x*,y")>F, then go to
Step 12.

Step 10. (Branching) If u'g.(x*,y")=0,i = 1,
2, ...,p +q + m, then go to Step 11. Otherwise select i
for which u/g, (x*,»") # 0 is the largest and label it 7, .
Put S; « S u{i}, S; <« S;\{i}, S, < S, , append
i, to P, and go to Step 8.

Step 11. (Updating) Let F « F(x*, ") .

Step 12. (Backtracking) If no live node exists, go
to Step 13. Otherwise branch to the newest live

vertex and update S;, S;, S? and P, as discussed
below. Go back to Step 8.

Step 13. (Termination) If F =oo, there is no
feasible solution to (MOLBP),". Otherwise, declare the

feasible point associated with # which is the optimal
solution to (MOLBP),".

Step 14. Solve (MOLBP)," by Step 8 to Step 13,
and we obtain an optimization solution (x, y),..



Step 15. If 16, ) =6 w)s
(x*, y*) of the FMMBP-PC problem is (x,y),. -
Otherwise, update / to 2/ and go back to Step 8.

Step 16. Show the result of FMMBP-PC problem.

We give some explanations for these steps and
their working process as follows.

After initialization, Step 8 is designed to find a
new point which is potentially bilevel feasible. If no
solution exists, or the solution does not offer an
improvement over the incumbent (Step 9), the
algorithm goes to Step 12 and backtracks.

Step 10 checks the value of u'g (x*,y*) to
determine if the complementary slackness conditions

are satisfied. In practice, if |u/g| <107 it is considered

< ¢, then the solution

to be zero. Confirmation indicates that a feasible
solution of a FMMBP-PC has been found and at Step
11 the upper bound on the leader’s objective function
is updated. Alternatively, if the complementary
slackness conditions are not satisfied, the term with
the largest product is used at Step 10 to provide a
branching variable. Branching is always completed on
the Kuhn-Tucker multiplier [2].

At Step 12, the backtracking operation is
performed. Note that a live node is one associated with
a sub-problem that has not yet been fathomed at either
Step 8 due to infeasibility or at Step 9 due to bounding,
and whose solution violates at least one
complementary slackness condition. To facilitate book
keeping, the path P, in the branch-and-bound tree is

represented by a vector, its dimension is the current
depth of the tree. The order of the components of P, is

determined by their level in the tree. Indices only
appear in P, if they are in either S, or S, with the

entries underlined if they are in S, . Because the

algorithm always branches on a Kuhn-Tucker
multiplier first, backtracking is accomplished by
finding the rightmost non-underlined component if P, ,

underlining it, and erasing all entries to the right. The
erased entries are deleted from S, and added to S? .

4. Conclusions

A bilevel decision making problem may be modeled to
have multiple objective functions, fuzzy parameters,
and multiple followers. The research deals with the
three issues together. This paper proposes a fuzzy
number based approximation branch-and-bound
algorithm to solve this complex problem, i.e., fuzzy
multi-objective multi-follower linear bilievel problem
with a partial decision variable among followers.
Further study includes the development of models and
approaches for other situation among followers: when
followers do not share their decision variables.
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