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Abstract  
Basic bilevel programming deals with hierarchical 
optimization problems in which the leader at the upper 
level attempts to optimize his/her objective, subject to 
a set of constraints and his/her follower’s solution, and 
the follower at the lower level tries to find an 
optimized strategy according to each of possible 
decisions made by the leader. Three issues may be 
involved in a basic bilevel decision problem. One is 
that bilevel decision making model may involve 
uncertain parameters which appear either in the 
objective functions or constraints of the leader or the 
follower or both. Second, the leader and the follower 
may have multiple conflict objectives that should be 
optimized simultaneously. Third, there may have 
multiple followers and partial shared their decision 
variables among followers in a real decision situation. 
Following our previous work, this study proposes a set 
of fuzzy multi-objective multi-follower linear bilevel 
programming models to describe the three issues.  It 
also develops an approximation branch-and-bound 
algorithm to solve such kinds of problems.  

Keywords: Bilevel programming, Branch and bound 
algorithm, Fuzzy sets, Optimization 

1. Introduction 
Bilevel programming (BP) arises where decisions are 
made in a two level hierarchical order and each 
decision maker has no direct control upon the decision 
of the other, but actions taken by one decision maker 
effect returns from the other. It is developed for 
mainly solving decentralized planning problems [1, 2, 
4-6, 18, 19]. Decision maker at the upper level is 
termed as the leader, and at the lower level, the 
follower. The leader and the follower each tries to 
optimize his/her own objective function, but the 
decision affects the objective value of the other level 
[12]. 

The majority of research on BP has centered on 
the linear version of the problem, i.e., linear BP 
problems. A set of approaches and algorithms have 
been well developed such as well known Kuhn-Tucker 
approach [2], Kth-best approach [3] and branch-and-
bound algorithm [2, 7]. In general, there are two 
fundamental issues in BP theory and practice. One is 
how to model a real-world bilevel programming 
problem, and the other is how to find a solution for the 
problem. Although much research has been done in 
the area, existing results cannot adequately model and 
well solve a bilevel problem when it corresponds to 
the following situations. 
       First, the upper level or the lower level of a 
bilevel decision may have multiple conflicting 
objectives which should be considered simultaneously 
by the leader or the follower. For example, a 
coordinator of a multi-division firm considers three 
objectives in making an aggregate production plan: 
maximise net profits, maximise quality of products, 
and maximise worker satisfaction. The three 
objectives could be in conflict with each other, but 
must be considered simultaneously. Any improvement 
in one objective may be achieved only at the expense 
of others. One level multi-objective decision-making 
problem has been well researched and many other 
researchers. But in a bilevel model, selection of an 
alternative solution for the leader is affected by his/her 
followers’ optimal reactions. Therefore, how to find a 
solution for the leader which has multiple objectives 
under consideration of both its constraints and its 
followers’ decision is a new issue. 
       Second, existing BP approaches mainly suppose 
the situation in which the objective functions and the 
constraints of the leader and the follower are 
characterized with precise parameters. Therefore, the 
parameters are required to be fixed at the some values 
in an experimental and/or subjective manner through 
the experts’ understanding of the nature of the 
parameters in the problem-formulation process. It has 
been observed that, in most real-world situations, for 
example, power market and business management, the 
possible values of these parameters are often only 



imprecisely or ambiguously known to the experts who 
establish this model. With this observation, it would 
be certainly more appropriate to interpret the experts’ 
understanding of the parameters as fuzzy numerical 
data which can be represented by means of fuzzy sets 
[20]. A BP problem in which the parameters, either in 
objective functions or in constrains of the leader or the 
follower, are described by fuzzy values is called a 
fuzzy BP problem in the study. The fuzzy BP problem 
was first researched by Sakawa et al. [13, 14]. Sakawa 
et al. formulated cooperative fuzzy BP problem and 
proposed a fuzzy bilevel programming approach for 
solving the problem where Sakawa introduced the 
concepts of α-bilevel programming based on the basis 
of fuzzy number α-level sets. The third, multiple 
followers may be involved and the leader’s decision 
will be affected not only by those followers’ 
individual reactions but also by the relationships 
among these followers. As uncertain information 
could occur in the objectives and the constraints of 
both the leader and his/her multiple followers, the 
problem becomes very complex. 
      This paper deals with the three situations together. 
As the relationship among followers can be with many 
situations which need different models and algorithms, 
this paper focuses on the situation where all followers 
shard their decision variables. Based on the extended 
solution concept and related theorems of BP [8, 9, 15-
17], we have solved fuzzy BP problems [21-25]. We 
then conducted research on the model and solution 
where the leader and the follower to have multiple 
objectives with fuzzy parameters [11, 26-28]. This 
paper extends our previous models by allowing 
multiple followers with partial shared their decision 
variables, called a fuzzy multi-objective multi-
follower linear bilevel programming with partial 
shared decision variables (FMMBP-PC) problem. It 
also develops an approximation branch-and-bound 
algorithm to solve the general FMBP-PC problem.  
       Following the introduction, Section 2 gives 
FMBP-PC models, related definitions, theorems and 
properties [10, 26]. A general fuzzy number based 
approximation branch-and-bound algorithm for 
solving FMMBP-PC problems is presented in Section 
3. Conclusions are discussed in Section 4.  

2. Fuzzy Multi-objective Multi-
follower Linear Bilevel 
Programming with Partial 
Shared Variables Model 

Let R be the set of all real numbers, Rn be n-
dimensional Euclidean space, and x = (x1, x2, …, xn)T, 
y = (y1, y2, …, yn)T ∈ Rn be any two vectors, where xi, 
yi ∈ R, i = 1,2, …, n and T  denotes the transpose of 
the vector. For any two vectors x, y ∈ Rn, we write 

yx >  iff ;,,2,1, niyx ii L=∀≥  yx > iff yx >  and  

yx ≠ ; x > y iff  xi > yi, ∀ i = 1,2, …, n. 
      Let F(R) be the set of all finite fuzzy numbers. By 
the decomposition theorem of fuzzy sets, we have 
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a~ is called an n-dimensional fuzzy number on Rn. If 
),(~ * RFai ∈  i= 1, 2, ,L n, a~ is called an n-

dimensional finite fuzzy number on Rn. 
     Let )( nRF  be the set of all n-dimensional fuzzy 
numbers and the set of all n-dimensional finite fuzzy 
numbers on Rn respectively. 
     Definition 2.2 For any n-dimensional fuzzy 
numbers ),(

~
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    We call the binary relations ff  ,  and f a fuzzy 
max order, a strict fuzzy max order and a strong fuzzy 
max order, respectively. 
      Fuzzy multi-objective multi-follower linear bilevel 
programming with partial shared decision variables 
problems is the cooperative situation where the 
followers partial share the decision variables in their 
objectives and constraints. However, there are four 
different sub-cases within the cooperative situation 
which are determined by the relationships among the 
objectives and constrains of the followers. Each 
follower may have an individual objective whatever 
sharing their constraints with other followers. 
Consider the following FMBP-PC problems: 

Model I. A FMMBP-PC problem in which 
)2(≥K  followers are involved and there are shared 

objective functions and constraint functions and partial 
decision variables among followers is defined as 
follows: 
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       It consists of finding a solution to the upper level 
problem  
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),,,2,1(where Kiyi L=  for each value of x, is the 
solution of the lower level problem: 
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Model II. A FMMBP-PC problem in which 
)2(≥K  followers are involved and there are shared 

objective functions and partial decision variables but 
different constraint functions among followers is 
defined as follows.           
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solution of the lower level problem: 
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Model III. A FMMBP-PC problem in which 
)2(≥K  followers are involved and there are shared 

partial decision variables and constraint functions but 
different objective functions among them is defined as 
follows. 
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problem  
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solution of the lower level problem: 
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        Model IV. A FMMBP-PC problem in which 
)2(≥K  followers are involved and there are partial 

shared decision variables but different objective and 
constraint functions among them is defined as follows.  
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        By analysis above four models and using a 
weighting method, we can get a general model (Model 
G) for FMMLB-PC problems:  
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1.  For Models I, II and III, they are obviously special 
issues of Model IV, respectively.    

2. For Model IV, we know that it is a FMMBP 
problem in which the K followers share the variable z. 
By using weighting method, we can obtain  
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3. Obvious, this model and Model G are same. 
     We will present an approximation branch-and-
bound algorithm to solve FMMBP problem with in a 
partial cooperative situation 

3. An Approximation Branch-and-
bound Algorithm 

Associated with the FMMBP-PC problem, we now 
consider the following multi-objective linear bilevel 
programming (MOLBP) problem:  
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By using Definition 2.2, we have 
Theorem 3.1 Let ),( ** yx  be the optimal 

solution of the MOLBP problem defined by (2). Then 
it is also an optimal solution of the FMMBP-PC 
problem defined by Model G. 

We can use the theory of solving FMOLBP [21] 
to find an optimal solution for Model G because we 
have known Model G of the general model of 
FMMBP-PC problem is a FMOLBP problem. 

Theorem 3.2 [26] For ,nRXx ⊂∈ ,im
ii RYy ⊂∈ i = 

1, 2, …, K, if all the fuzzy parameters have piecewise 
trapezoidal membership functions in the Model G,  
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where z~  denotes any fuzzy parameters in Model G, 
then, ),( ** yx  is a complete optimal solution to the 
FMMBP-PC problem if and only if ),( ** yx  is an 
optimal solution to the MOLBP problem:   
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Then we can re-write (3) by using  
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      Theorem 3.3 [26] For ,nRXx ⊂∈ ,im
ii RYy ⊂∈ i = 

1, 2, …, K, if all the fuzzy parameters have piecewise 
trapezoidal membership functions in the Model G, 
then a necessary and sufficient condition that ),( ** yx  
solves the Model G problem is that there exist vectors 
u*, v* and z* such that ),,,,( ***** zvuyx solves: 
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      Based on Theorem 3.3, we will present an 
approximation branch-and-bound algorithm for 
solving the FMMBP-PC problem shown in Model G.  
      We first write all the inequalities (except of the 
leader’s variables) of (3’a)-(3’d) as ,0),( ≥yxgi  i = 1, 
2, …, p + q + m, and note that complementary 
slackness simply means 0),( =yxgu ii  (i = 1, 2, …, 
p+q+m). Now we suppress the complementary term 
and solve the resulted linear sub-problem. At each 
time of iteration the condition (4e) is checked. If it is 
satisfied, the corresponding point is in the inducible 
region and hence a potential solution to (3’). 
Otherwise, a branch-and-bound scheme is used to 
implicitly examine all combinations of the 
complementarities slackness.  
      Let W ={1, 2, …, p + q + m} be the index set for 
the terms in (4e), F  be the incumbent upper bound on 
the objective function of the leader. At the kth level of 
an search tree we define a subset of indices WWk ⊂ , 
and a path kP  corresponding to an assignment of 
either 0=iu  or 0=ig  for kWi∈ . Now let 

}0,:{ =∈=+
ikk uWiiS  

}0,:{ =∈=−
ikk gWiiS  

}:{0
kk WiiS ∉= . 

       For 0
kSi∈ , the variables iu  or ig  are free to 

assume any nonnegative value in the solution of (4) 
with (4e) omitted, so complementary slackness will 
not necessarily be satisfied.  
      By using these notations we give all steps of the 
approximation branch-and-bound algorithm for the 
proposed FMMBP-PC problem: 

 

      Step 1. Give weights for the objectives of the 
leader and the followers, and let 
∑ ∑= = ==s

j
t
j jj ww1 1 21 .1and1  

      Step 2. Transform Model G to the problem (3’) 

      Step 3. Let the interval [0, 1] be decomposed into 
2l-1 mean sub-intervals with (2l-1+1) nodes 
( )12,,0 −= l

i i Lλ  which are arranged in the order of 
10 1210 =<<<= −lλλλ L  and a range of errors ε > 0. 

      Step 4. Set 1=l , then solve (MOLBP)2
l
, i.e. (3’) by 

using an extended branch-and-bound algorithm [15] 
when β = 0 and α =1, we obtain an optimization 
solution ( ) lyx 2, . 

       Step 5. Transform the problem (3’) to linear BP 
problem (4) by using a weighting method [10]. 

      Step 6. Solve the problem (4). 

       Step 7. (Initialization) Set 0=k , φ=+
kS , φ=−

kS , 

},,1{0 mqpSk ++= K , and ∞=F . 

       Step 8. (Iteration k) Set 0=iu  for +∈ kSi  and 
0=ig  for −∈ kSi . It first attempts to solve (4) without 

(4e). If the resultant problem is infeasible, go to Step 
12; otherwise, put 1+← kk  and label the 
solution ),,( kkk uyx . 

       Step 9. (Fathoming) If FyxF kk ≥),( , then go to 
Step 12. 

       Step 10. (Branching) If 0),( =kk
i

k
i yxgu , i =  1, 

2, …, p + q + m, then go to Step 11. Otherwise select i 
for which 0),( ≠kk

i
k
i yxgu  is the largest and label it 1i . 

Put }{ 1iSS kk ∪← ++ , }{\ 1
00 iSS kk ← , −− ← kk SS , append 

1i  to kP , and go to Step 8. 

       Step 11. (Updating) Let ),( kk yxFF ← . 

       Step 12. (Backtracking) If no live node exists, go 
to      Step 13. Otherwise branch to the newest live 
vertex and update +

kS , −
kS , 0

kS  and kP  as discussed 
below. Go back to Step 8. 

       Step 13. (Termination) If ∞=F , there is no 
feasible solution to (MOLBP)2

l. Otherwise, declare the 
feasible point associated with F  which is the optimal 
solution to (MOLBP)2

l. 

       Step 14. Solve (MOLBP)2
l+1

 by Step 8 to Step 13, 
and we obtain an optimization solution ( ) 12, +lyx . 



       Step 15. If ( ) ( ) ε<−+ ll yxyx 22 ,, 1 , then the solution 

( )**, yx  of the FMMBP-PC problem is ( ) 12, +lyx . 
Otherwise, update l to 2l and go back to Step 8. 

       Step 16. Show the result of FMMBP-PC problem. 
      We give some explanations for these steps and 
their working process as follows. 
       After initialization, Step 8 is designed to find a 
new point which is potentially bilevel feasible. If no 
solution exists, or the solution does not offer an 
improvement over the incumbent (Step 9), the 
algorithm goes to Step 12 and backtracks.  
        Step 10 checks the value of ),( kk

i
k
i yxgu to 

determine if the complementary slackness conditions 
are satisfied. In practice, if 610−<i

k
i gu  it is considered 

to be zero. Confirmation indicates that a feasible 
solution of a FMMBP-PC has been found and at Step 
11 the upper bound on the leader’s objective function 
is updated. Alternatively, if the complementary 
slackness conditions are not satisfied, the term with 
the largest product is used at Step 10 to provide a 
branching variable. Branching is always completed on 
the Kuhn-Tucker multiplier [2]. 
       At Step 12, the backtracking operation is 
performed. Note that a live node is one associated with 
a sub-problem that has not yet been fathomed at either 
Step 8 due to infeasibility or at Step 9 due to bounding, 
and whose solution violates at least one 
complementary slackness condition. To facilitate book 
keeping, the path kP  in the branch-and-bound tree is 
represented by a vector, its dimension is the current 
depth of the tree. The order of the components of kP  is 
determined by their level in the tree. Indices only 
appear in kP  if they are in either +

kS  or −
kS  with the 

entries underlined if they are in −
kS . Because the 

algorithm always branches on a Kuhn-Tucker 
multiplier first, backtracking is accomplished by 
finding the rightmost non-underlined component if kP , 
underlining it, and erasing all entries to the right. The 
erased entries are deleted from −

kS  and added to 0
kS . 

4. Conclusions 
A bilevel decision making problem may be modeled to 
have multiple objective functions, fuzzy parameters, 
and multiple followers. The research deals with the 
three issues together. This paper proposes a fuzzy 
number based approximation branch-and-bound 
algorithm to solve this complex problem, i.e., fuzzy 
multi-objective multi-follower linear bilievel problem 
with a partial decision variable among followers. 
Further study includes the development of models and 
approaches for other situation among followers: when 
followers do not share their decision variables. 

Acknowledgment 
The work presented in this paper was supported by 
Australian Research Council (ARC) under discovery 
grant DP0557154. 

References  
[1] G. Anandalingam and T. Friesz, Hierarchical 

optimization: An introduction, Annals of 
Operations Research 34:1-11, 1992. 

[2] J. Bard, Practical bilevel optimization: 
Algorithms and applications, Amsterdam: 
Kluwer Academic Publishers, 1998. 

[3] W. Bialas and M. Karwan, Two-level linear 
programming, Management Science 30:1004-
1020, 1984. 

[4] J. Bracken and J. McGill, Mathematical 
programs with optimization problems in the 
constraints, Operations Research 21: 37-44, 1973. 

[5] W. Candler and R. Townsley, A linear two-level 
programming problem, Computers and 
Operations Research 9 : 59-76, 1982. 

[6] S. Dempe, A simple algorithm for the linear 
bilevel programming problem, Optimization 
18:373-385, 1987.  

[7] P. Hansen, B. Jaumard, and G. Savard, New 
branch-and-bound rules for linear bilevel 
programming, SIAM Journal on Scientific and 
Statistical Computing 13:1194-1217, 1992. 

[8] J. Lu, C. Shi, and G. Zhang, An extended branch-
and-bound algorithm for bilevel multi-follower 
decision making in a referential-uncooperative 
situation, International Journal of Information 
Technology and Decision Making 6:1-18, 2007. 

[9] J. Lu, C. Shi and G. Zhang, On bilevel multi-
follower decision-making: general framework 
and solutions,  Information Science 176:1607-
1627, 2006. 

[10] J. Lu, G. Zhang, D. Ruan and F. Wu, Multi-
objective group decision making: methods, 
software and applications with fuzzy set 
technology, Imperial College Press, London, 
2007. 

[11] J. Lu, G. Zhang and T. Dillon, Fuzzy multi-
objective bilevel decision making by an 
approximation Kth-best approach, Journal of 
Multiple-Valued Logic and Soft Computing, in 
press. 

[12] T. Miller, T. Friesz and R. Tobin, Heuristic 
algorithms for delivered price spatially 
competitive network facility location problems, 
Annals of Operations Research 34:177-202, 1992. 

[13] M. Sakawa, Fussy sets and interactive multi-
objective optimization, New York: Plenum Press, 
1993. 

[14] M. Sakawa, I. Nishizaki, and Y. Uemura, 
Interactive fuzzy programming for multilevel 



linear programming problems with fuzzy 
parameters, Fuzzy Sets and Systems 109: 3-19, 
2000. 

[15] C. Shi, J. Lu and G. Zhang, An extended Kuhn-
Tucker approach for linear bilevel programming, 
Applied Mathematics and Computation 162:51-
63, 2005. 

[16] C. Shi, J. Lu and G. Zhang, An extended Kth-
bast approach for linear bilevel programming, 
Applied Mathematics and Computation 164: 843-
855, 2004. 

[17] C. Shi, G. Zhang and J. Lu, On the definition of 
linear bilevel programming solution, Applied 
Mathematics and Computation 160: 169-176, 
2005. 

[18] H. Von Stackelberg, The theory of the market 
economy, New York: Oxford University Press, 
1952. 

[19] D. White and G. Anandalingam, “A penalty 
function approach for solving bi-level linear 
programs,” Journal of Global Optimization, 
3:397-419, 1993. 

[20] L. A  Zadeh, Fuzzy sets, Information & Control 
8:338-353, 1965. 

[21] G. Zhang and J. Lu, The definition of optimal 
solution and an extended Kuhn-Tucker approach 
for fuzzy linear bilevel programming, IEEE 
Computational Intelligence Bulletin, 5:1-7, 2005. 

[22] G. Zhang and J. Lu, Model and approach of 
fuzzy bilevel decision making for logistics 
planning problem, Journal of Enterprise 
Information Management 20:178-197, 2007. 

[23] G. Zhang, J. Lu and T. Dillon, A branch-and-
bound algorithm for fuzzy bilevel decision 
making, in: Ruan, et al eds., Applied  Artificial 
Intelligence, Singapore : World Scientific, pp. 
291-298, 2006. 

[24] G. Zhang, J. Lu and T. Dillon, Kth-best 
algorithm for fuzzy bilevel programming, 
International Conference on Intelligent Systems 
and Knowledge Engineering (ISKE2006), pp.6-7, 
Shanghai, China (CDRoom), 2006. 

[25] G. Zhang, J. Lu and T. Dillon, An approximation 
branch-and-bound approach for fuzzy linear 
bilevel decision making, 1st International 
Symposium Advances in Artificial Intelligence 
and Applications (AAIA `06) Wisla, Poland, 
November 6-10, 2006 (CDRoom). 

[26] G. Zhang, J. Lu and T. Dillon, Solution concepts 
and an approximation Kuhn-Tucker approach for 
fuzzy multi-objective linear bilevel programming, 
in: Pardalos et al eds., Pareto Optimality, Game 
Theory and Equilibria: Spinger, pp. 467-490, 
2007 

[27] G. Zhang, J. Lu and T. Dillon, Decentralized 
multi-objective bilevel  decision making with 

fuzzy demands, Knowledge-Based System 
20:495-507, 2007. 

[28] G. Zhang, J. Lu and T. Dillon, Models and 
algorithm for fuzzy multi-objective    multi-
follower linear bilevel programming, IEEE 
International Conference on Fuzzy Systems, 
Imperial College, London, UK,pp. 23-26, 2007. 


