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Abstract
Fully implicational Triple I method is one of im-
portant fuzzy reasoning methods. In this paper, we
discuss fully implicational triple I reasoning method
on a linguistic truth-valued lattice implication alge-
bra L18, we define L18-type α-triple I rule FMP and
L18-type α-triple I rule FMT, and give the corre-
sponding algorithm formulas, respectively. Finally,
the conclusions on the recovery properties of the
two algorithms are obtained.
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1. Introduction
It is well known that fuzzy reasoning plays an
important role in fuzzy control theory, and the
methodology of its differs from the methodology of
artificial intelligence. In the study of fuzzy con-
trol theory, many fuzzy reasoning methods have
been proposed(see.e.g.[2]-[4]); however, there ex-
ists a gap between these methodology and artifi-
cial intelligence. Artificial intelligence emphasized
symbolic manipulation and has rooted in logic, au-
tomated deduction using syntactic tools, and has
very much neglected anything pertaining to "num-
ber crunching". On the contrary, most of proposed
fuzzy reasoning methodology have been right away
addressing methodology based on non-linear opti-
mization.

To reduce the above mentioned gap,in [5],
Wang proposed Triple I method for solving the
problems of fuzzy modus ponens (briefly, FMP)
and fuzzy modus tollens (briefly, FMT) based on
the corresponding fuzzy logic. Since then this
fuzzy reasoning methodology has been extensively
investigated by several researchers (see e.g. [6]-[9]).
In [10], Wu et.al. discussed triple I algorithm
on complete residuated lattice. In [11], Wang

discussed the formalized theory of general fuzzy
reasoning through generalizing triple I method to
multiple I method.

In recent years, linguistic variable(or terms)
have been extensively investigated in approximate
reasoning, fuzzy logic and decision-making theory
and it will certainly increase in importance in
the future. In 1970s, Zadeh [12] presented and
developed the theory of approximate reasoning
based on linguistic variable and fuzzy logic. In
Zadeh’s view of fuzzy logic, the truth-values are
linguistic. In [13], Herrera et al. investigated
aggregation of linguistic information, presented
the linguistic aggregation operators LOWA and
LWA, and applied them to decision-making and
internet information processing. Herrera et al.
also presented a processing model for 2-tuple
linguistic information, which has been applied to
fuzzy inference and fuzzy decision-making. Since
1990, in ([14]-[18]), Ho et al . has established
the hedge algebra to process linguistic terms, and
introduced a measure function to describe "if-then"
inference rule. However, due to the absences of
implication operator transferring truth values,
and so based on hedge algebra, it is difficult to
establish corresponding algebraic logic as well as
fuzzy inference by computing with words.

In order to study uncertainty reasoning and
automatic reasoning with linguistic terms, whose
foundation is lattice-valued logic system based
on lattice implication algebras, by defining the
set of basic linguistic truth values and the set of
modifiers, and also defining partially orderings
on them according to common sense, Xu [19]
established the notion of linguistic truth-valued
lattice implication algebra L18 and discussed its
properties in 2006, Xu considers that it is highly
necessary to establish suitable logic foundation
based on linguistic truth values for reasoning with
words.



2. Preliminaries
In this section, for the purpose of reference, we
present some basic information about linguistic
truth-valued lattice implication algebra and fully
implicational triple I method for fuzzy reasoning.

In [5], Wang proposed Triple I method for solv-
ing the problem of FMP based on the corresponding
fuzzy logic. Consider the most fundamental form
of fuzzy reasoning, i.e., FMP with the form

suppose that A(x) → B(y) −major premise

and given A∗(x) −minor premise

(1)

calculate B∗, · · · conclusion,

and FMT with the form

suppose that A(x) → B(y) −major premise

and given B∗(x) −minor premise

(2)

calculate A∗ , · · · conclusion,

where A(x), A∗(x) and B(y), B∗(y) are subsets of
X and Y, respectively. According to triple I rule
FMP in [5], B∗ is the smallest fuzzy subset of Y
such that the major premise A(x) → B(y) fully
sustains the fact that the minor premise A∗(x) sus-
tains the conclusion B∗, i.e., (A(x) → B(y)) →
(A∗(x) → B∗(y)) is a "tautology" with respect to
X and Y. Especially, if we assume that → satisfies
that a → b = 1 if and only if a 6 b, then the
following condition holds

(A(x) → B(y)) → (A∗(x) → B∗(y)) = 1, (3)

for any x ∈ X, y ∈ Y , and B∗ is the smallest fuzzy
subset of Y satisfying (3). Similarly, according to
triple I rule FMT in [5], A∗ is the largest fuzzy
subset of X satisfying (4),

(A(x) → B(y)) → (A∗(x) → B∗(y)) = 1, (4)

for any x ∈ X, y ∈ Y ,

Definition 2.1. [1] A bounded lattice
(L,∨,∧, O, I) with order-reversing involution ′

and a binary operation → is called a lattice impli-
cation algebra if it satisf ies the following axioms:
( I1) x → (y → z) = y → (x → z),
( I2) x → x = I,
( I3) x → y = y′ → x′,
( I4) x → y = y → x = I ⇒ x = y,

( I5) (x → y) → y = (y → x) → x,
(L1) (x ∨ y) → z = (x → z) ∧ (y → z),
(L2) (x ∧ y) → z = (x → z) ∨ (y → z),

for all x, y, z ∈ L.

In a lattice implication algebra L, for all
x, y, z ∈ L, the following hold (see [1]):

(i) I → x = x and x⊗O = x′;
(ii) x 6 y ⇔ x → y = I;
(iii) x ∨ y = (x → y) → y;
(iv) x → y > x′ ∨ y;
(v) (L,∨,∧) is a distributive lattice;
(vi) x 6 y implies y → z 6 x → z and z → x 6

z → y.

Let {false, true} be the basic linguistic truth-
valued set with ordering relation {false < true}
in common sense, and {slightly, little, somewhat,
closely, basically, more, most, very, utterly} be the
basic modifier set with ordering relation {slightly <
little < somewhat < closely < basically < more <
most < very < utterly} in common sense, by using
basic modifiers to modify the basic linguistic truth-
valued, then we get a basic linguistic truth-valued
set L18 = {O = (a1, b1) = utterly false, I = (a9, b2)
= utterly true, (a1, b2) = slightly true, (a2, b2) = lit-
tle true, (a3, b2) = somewhat true, (a4, b2) = closely
true, (a5, b2) = basically true, (a6, b2) = more true,
(a7, b2) = most true, (a8, b2) = very true, (a9, b1)
= slightly false, (a8, b1) = little false, (a7, b1) =
somewhat false, (a6, b1) = closely false, (a5, b1) =
basically false, (a4, b1) = more false, (a3, b1) = most
false, (a2, b1) = very false}. According to the intu-
itive meaning of synthesized linguistic truth-valued
terms, further, we define a semantically partial or-
dering on L18 as follows,

and so we obtain an algebraic lattice
(L18,∨18,∧18). In [19], the order-reversing



involution ’ and the implication operation →18 on
(L18,∨18,∧18) have been defined as follows,

(ai, bj)′18 = (a10−i, b3−j),

(ai1 , bj1) →18 (ai2 , bj2) =





I i1 6 i2 and j1 6 j2

(a9, b1) i1 6 i2 and j1 > j2

(a9−i1+i2 , b2) i1 > i2 and j1 6 j2

(a9−i1+i2 , b1) i1 > i2 and j1 > j2

where i = 1, 2, · · · , 9 and j = 1, 2. It is easy to val-
idate that (L18,∨18,∧18,

′18 ,→18) is a lattice impli-
cation algebra, and is called as an linguistic truth-
valued lattice implication algebra.

3. Algorithm of triple I rea-
soning on linguistic truth-
valued lattice implication al-
gebra

In this section, we define L18-type α-triple I rule
fuzzy modus ponens (briefly, FMP) and L18-type
α-triple I rule fuzzy modus tollens (briefly, FMT)
and give the algorithm formulas of this two rules.
We also discuss the recovery properties of L18-type
α-triple I rule FMP and L18-type α-triple I rule
FMT.

Definition 3.1. Given a nonempty set X, an ar-
bitrary mapping f : X → L18 is called a L18-fuzzy
subset of X (or a L18-fuzzy set in X). The collection
of all L18-fuzzy subset of X denotes by F (X).

Definition 3.2. (L18-type α-triple I rule FMP)Let
X, Y be two nonempty set, A,A∗ ∈ F (X), B,B∗ ∈
F (Y ), then B∗ in (1) is the smallest L18-fuzzy sub-
set in F (Y ) such that for any x ∈ X, y ∈ Y

(A(x) → B(y)) → (A∗(x) → B∗(y)) > α. (5)

Remark 3.1. If α = I, we call L18-type α-triple I
rule FMP as L18-type triple I rule FMP.

Theorem 3.1. (algorithm formula of L18-type α-
triple I rule FMP)Let X, Y be two nonempty set,
A,A∗ ∈ F (X), B,B∗ ∈ F (Y ), then (1) can be
computed as follows, for y ∈ Y ,

B∗(y) =
∨

x∈X

((A(x) → B(y)) → (A∗(x) → α′))′.

(6)

Proof. we first prove that (6) satisfies the condition
(5). In fact, for any x ∈ X, y ∈ Y ,

α → ((A(x) → B(y)) → (A∗(x) →
∨

x∈X

((A(x)

→ B(y)) → (A∗(x) → α′))′)) =

(A(x) → B(y)) → (A∗(x) → (α →
∨

x∈X

((A(x)

→ B(y)) → (A∗(x) → α′))′)) =

(A(x) → B(y)) → (A∗(x) →
∨

x∈X

(α → ((A(x)

→ B(y)) → (A∗(x) → α′))′)) =

(A(x) → B(y)) → (A∗(x) →
∨

x∈X

(((A(x) →

B(y)) → (A∗(x) → α′)) → α′)) =

(A(x) → B(y)) →
∨

x∈X

(A∗(x) → (((A(x) →

B(y)) → (A∗(x) → α′)) → α′)) =

(A(x) → B(y)) →
∨

x∈X

(((A(x) → B(y)) →

(A∗(x) → α′)) → (A∗(x) → α′)) =

(A(x) → B(y)) →
∨

x∈X

((A(x) → B(y)) ∨

(A∗(x) → α′)) = I,

hence,

((A(x) → B(y)) → (A∗(x) →
∨

x∈X

((A(x) →

B(y)) → (A∗(x) → α′))′)) > α.

On the other hand, if D(y) ∈ F (Y ) satisfies the
condition (4), then

α → ((A(x) → B(y)) → (A∗(x) → D(y))) = I.

Since
((A(x) → B(y)) → (A∗(x) → α′))′ → D(y) =
D(y)′ → ((A(x) → B(y)) → (A∗(x) → α′)) =
(A(x) → B(y)) → (A∗(x) → (D(y)′ → α′)) =
(A(x) → B(y)) → (A∗(x) → (α → D(y))) =
(A(x) → B(y)) → (α → (A∗(x) → D(y))) =

α → ((A(x) → B(y)) → (A∗(x) → D(y))) = I,

it follows that∨

x∈X

((A(x) → B(y)) → (A∗(x) → α′))′ 6 D(y).

As a result,

B∗ =
∨

x∈X

((A(x) → B(y)) → (A∗(x) → α′))′.



Corollary 3.1. (algorithm formula of L18-type
triple I rule FMP) Let X, Y be two nonempty set,
A,A∗ ∈ F (X), B,B∗ ∈ F (Y ), then (1) can be
computed as follows, for y ∈ Y ,

B∗(y) =
∨

x∈X

((A(x) → B(y)) → A∗(x)′)′. (7)

In the following, we shall discuss the recovery
property of algorithm formula of L18-type α−triple
I rule FMP. In (5), let A∗(x) = A(x), x ∈ X, we
have that for any y ∈ Y,

B∗(y) =
∨

x∈X

((A(x) → B(y)) → (A(x) → α′))′

=
∨

x∈X

((A(x) ∧B(y)) → α′)′

=
∨

x∈X

(α → (A′(x) ∨B′(y)))′

=
∨

x∈X

((α → B′(y)) ∨ (α → A′(x)))′

=
∨

x∈X

((α → B′(y))′ ∧ (α → A′(x))′)

= (α → B′(y))′ ∧
∨

x∈X

(α → A′(x))′

= (α → B′(y))′ ∧ (
∧

x∈X

(α → A′(x)))′

= (α → B′(y))′ ∧ (α →
∧

x∈X

A′(x))′

= (α → B′(y))′ ∧ (α → (
∨

x∈X

A(x))′)′

= ((α → B′(y)) ∨ (α → (
∨

x∈X

A(x))′))′

= (α → (B′(y) ∨ (
∨

x∈X

A(x))′))′

= (α → (B(y) ∧ (
∨

x∈X

A(x)))′)′.

According to the properties of lattice implication
algebras, we can obtain the following conclusion
about the recovery property of the algorithm.

Theorem 3.2. For the algorithm formula of L18-
type α-triple I rule FMP, if for any y ∈ Y , α →
((

∨
x∈X A(x)) → B(y)) = I and α ∨ B′(y) = I,

then when A∗(x) = A(x), x ∈ X, we have B∗(y) =
B(y), y ∈ Y.

Proof. According to the above discussion, the proof
is easy.

Corollary 3.2. For the algorithm formula of L18-
type α-triple I rule FMP, if there exists a ∈ X

such that A(a) = I and α = (a9, b1), and for any
y ∈ Y , B(y) ∈ {(ai, b1); i = 1, 2, · · · , 9}, then when
A∗(x) = A(x), x ∈ X, we have B∗(y) = B(y), y ∈
Y.

Corollary 3.3. For the algorithm formula of L18-
type triple I rule FMP, if there exists a ∈ X such
that A(a) = I, then when A∗(x) = A(x), x ∈ X, we
have B∗(y) = B(y), y ∈ Y.

Corollary 3.4. For the algorithm formula of L18-
type triple I rule FMP, if for any y ∈ Y , B(y) 6∨

x∈X A(x), then when A∗(x) = A(x), x ∈ X, we
have B∗(y) = B(y), y ∈ Y.

Definition 3.3. (L18-type α-triple I rule FMT)Let
X, Y be two nonempty set, A,A∗ ∈ F (X), B,B∗ ∈
F (Y ), then A∗ in (2) is the largest L18-fuzzy subset
in F (X) such that for any x ∈ X, y ∈ Y

(A(x) → B(y)) → (A∗(x) → B∗(y)) > α. (8)

Remark 3.2. If α = I, we call L18-type α-triple I
rule FMT as L18-type triple I rule FMT.

Theorem 3.3. (algorithm formula of L18-type α-
triple I rule FMT)Let X, Y be two nonempty set,
A,A∗ ∈ F (X), B,B∗ ∈ F (Y ), then (2) can be
computed as follows, for x ∈ X,

A∗(x) =
∧

y∈Y

((A(x) → B(y)) → (α → B∗(y))).

(9)

Proof. Similar to the proof of Theorem 3.2.

Corollary 3.5. (algorithm formula of L18-type
triple I rule FMT) Let X, Y be two nonempty set,
A,A∗ ∈ F (X), B,B∗ ∈ F (Y ), then (2) can be
computed as follows, for x ∈ X,

A∗(x) =
∧

y∈Y

((A(x) → B(y)) → B∗(x)). (10)

In the following, we shall discuss the recovery
property of algorithm formula of L18-type α−triple
I rule FMT. In (5), let B∗(y) = B(y), y ∈ Y , we
have that for any x ∈ X,

A∗(x) =
∧

y∈Y

((A(x) → B(y)) → (α → B(y)))

=
∧

y∈Y

(α → (A(x) ∨B(y)))

= α →
∧

y∈Y

(A(x) ∨B(y))

= (α → A(x)) ∨ (α →
∧

y∈Y

B(y)).



Therefore, we can obtain the following conclusion
about the recovery property of the algorithm for-
mula of L18-type α-triple I rule FMT.

Theorem 3.4. For the algorithm formula of L18-
type α-triple I rule FMT, if for any x ∈ X, α →
(
∧

y∈Y B(y)) 6 A(x) and α ∨ A(x) = I, then when
B∗(y) = B(y), y ∈ Y , we have A∗(x) = A(x), x ∈
X.

Corollary 3.6. For the algorithm formula of L18-
type α-triple I rule FMT, if there exists a ∈ Y
such that B(a) = O and α = (a9, b1), and for any
x ∈ X, A(x) ∈ {(ai, b2); i = 1, 2, · · · , 9}, then when
B∗(y) = B(y), y ∈ Y , we have A∗(x) = A(x), x ∈
X.

Corollary 3.7. For the algorithm formula of L18-
type triple I rule FMT, if there exists a ∈ Y such
that B(a) = O, then when B∗(y) = B(y), y ∈ Y ,
we have A∗(x) = A(x), x ∈ X.

Corollary 3.8. For the algorithm formula of L18-
type triple I rule FMT, if for any x ∈ X, A(x) >∧

y∈Y B(y), then when B∗(y) = B(y), y ∈ Y , we
have A∗(x) = A(x), x ∈ X.

4. Conclusion
In this present work, we investigate an triple I fuzzy
reasoning method based on a linguistic truth-valued
lattice implication algebra L18. L18-type α-triple I
rule FMP and L18-type α-triple I rule FMT are
defined, and the corresponding algorithm formulas
are given respectively. Some sufficient conditions
which make the algorithm formulas satisfy recovery
properties are given.
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