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Abstract

A novel neural network approach is presented for
solving nonlinear bilevel programming problem.
The proposed neural network is proved to be Lya-
punov stable and capable of generating optimal so-
lution to the nonlinear bilevel programming prob-
lem. The asymptotic properties of the neural net-
work are analyzed and the condition for asymptotic
stability, solution feasibility and solution optimality
are derived. The transient behavior of the neural
network is simulated and the validity of the network
is verified with numerical examples.
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1. Introduction

Bilevel programming (BLP) has increasingly been
addressed in literature, both from the theoretical
and computational points of view. This model has
been wildly applied to decentralized planning prob-
lems involving a decision progress with a hierarchi-
cal structure. It is characterized by the existence of
two optimization problems in which the constraint
region of the first-level problem is implicitly deter-
mined by another optimization problem.

The BLP problem is hard to solve. In fact,
the problem has been proved to be NP hard[1].
However the BLP problem is used so extensively
in resource allocation, finance budget, price control
et al[2]that many researchers have devoted to this
field, which leads to a rapid development in theo-
ries and algorithms. For the detailed expositions,
the reader may consult[3]-[6].

Since McCulloch and Pyne[7]-[8] utilized log-
ical calculus to emulate nervous activities, there
have been various types of analogue neural net-
works proposed for computation, we cite for
example[9]-[12]. But generally speaking, there
are two methods to solve optimization problem in

terms of neural network approach. One method is
to construct an appropriate computational energy
function(Lyapunov function)so that the lowest en-
ergy state will correspond to the desired solutions,
and then the derivation of the energy function en-
ables us to transform the optimization problem into
a set of ordinary differential equations on the basis
of which we can design neural network. Another
method is to construct a set of ordinary differential
equations and then find an appropriate Lyapunov
function such that all trajectory of the system con-
verges to some equilibrium points which correspond
to the desired solutions. The approach in [9,12]
belongs to the first method, and the approach in
[10]-[11] belongs to the second method.

It is noted that in modern science and tech-
nology, many optimization problems need to be
solved in real time, while the classical methods can
not render real-time solutions to these optimization
problems, especially large-scale problems. The ap-
pearance of neural computing approach satisfies the
demand of real-time optimal solutions and using
neural network approach to solve the BLP problem
is fairly new and there are few reports on the study
of neural network approach for the BLP problems
but Hsu-Shih Shih[13] and Kan-Ming Lan[14] re-
cently presented their studying results on neural
network approach for solving the linear BLP prob-
lem.

In this paper, for the nonlinear BLP prob-
lem, using the Kuhn-Tucker optimality condition,
we reduce the nonlinear BLP problem to a reg-
ular nonlinear programming with complementary
constraints. Then we propose a novel neural net-
work approach, which belongs to the above sec-
ond method, for the regular nonlinear programming
problem with complementary constraints and get
the approximate optimal solution of the nonlinear
BLP problem. Towards these ends, the rest of the
paper is organized as follows. In section 2, we will
firstly introduce the smoothing method for the reg-
ular nonlinear programming with complementary
constraints. Then in section 3, we propose a neural



network for solving the smoothed problem and de-
rive the condition for asymptotic stability, solution
feasibility and solution optimality. Numerical ex-
amples are given in section 4. Finally we conclude
our paper.

2. Nonlinear BLP problem and
smoothing method

Consider the following nonlinear BLP problem.

(UP) min Fx,y)

st. h(z) <0
(LP) min f(z,y) o
st g(x,y) <0

where x € R,y € R, F : R™™ — R!, f :
R™m — Rland h: R® — RP, g : R™™ — RY
are continuous differentiable functions. The term
(UP) is called the upper level problem and (LP) is
called the lower level problem and correspondingly
the terms z,y are the upper level variable and the
lower level variable respectively.

Throughout the rest of the paper, we make the
following assumptions:
(Hy) For fixed z € {x : Jy € R™ h(z) <
0,9(x,y) < 0}, the problem (LP) is a convex opti-
mization problem satisfying (M FCQ) at y € {y :
y € R™, g(z,y) <0}
(H2) The constraint region of the BLP problem
S = {(z,y) : h(x) < 0,g(z,y) < 0} is nonempty
and compact.

If the assumption (H;) is satisfied, then we can
reduce the BLP problem to the one-level program-
ming problem:

min F(z,y)
s.t. h(z) <0
VyL(:I:,y,)\) =0 (2)
Mg(z,y) =0
g(z,y) <0
A>0

where L(z,y,\) is the Lagrange function and
L(z,y,\) = f(z,y) + \g(z,y), A € R

Remark: If the lower level problem is not
a convex parametric optimization problem, then
the problem (2) has a larger feasible set including
not only global optimal solutions of the lower level
problem but also all local optimal solutions and also
all stationary points. Then, to simply discussion,

we assume that the lower level problem is a convex
parametric optimization problem in this paper.

For the problem (2), the regularity assumptions
which are needed for successfully handling smooth
optimization problems are never satisfied and this
situation is not good for using the neural network
approach to solve the problem (2). But fortunately,
Dempel[5] presents smoothing method for the BLP
problem and the similar method is also presented
in [16] for programming with complementary con-
straints. Following the smoothing method we can
propose a neural network approach for the nonlin-
ear BLP problem. Before introducing the smooth-
ing method, we give some definitions firstly.

Definition 1 The Fischer—Burmeister func-
tion is ® : R? — R defined by ®(a,b) = a +b —
va? + b2, and the perturbed Fischer— Burmeister
function is ® : R®> — R defined by ®(a,b,e) =
a+b—+va?+b+e.

The Fischer — Burmeister function has the
property that ®(a,b) = 0 if and ounly if @ > 0,0 >
0,ab = 0, but it is non-differentiable at a = b = 0.
Its perturbed variant satisfies ®(a,b,e) = 0 if and
only if a > 0,b > 0,ab = ¢/2 for ¢ > 0. This
function is smooth with respect to a,b for € > 0.

In order to make the proposed neural network
can also be applied to solve the linear BLP prob-
lem and satisfies the asymptotic stability conditions
well, in this paper we adopt the following changed
perturbed Fischer — Burmeister function:

' (a,b,6) = Va2 + 02 +e—a—b

It is obvious that function & (a,b,e) has the same
property with the function ®(a,b,e). Using the
changed perturbed Fischer— Burmeister function,
the problem (2) can be approximated by

mil}\ F(x,y)

st. h(z) <0
VyL(z,y,A\) =0 (3)
\/)\f + g3 (2, y) +e = Nj +gj(z,y) =0

J=1....q

Using the problem (3), we overcome the diffi-
culty that the problem (2) dose not satisfy any reg-
ularity assumptions which are needed for success-
fully handling smooth optimization problems, and
pave the way for using neural network approach to
solve the problem (2). To simply our discussion, we
introduce the following notations.

y x7y7
H(:c,y,/\) = < (I)'()\j7_gj(x,y),€)j:1 q )

,,,,,



Let ' = (x,y,A), then the problem can be written
as:

min F(z)

T

st. Gy(z)<0,1=1,...,p (4)

.,m+q

Definition 2 Let z' be a feasible point of the
problem (4) and L = {l : G;(z') = 0,1 = 1,...,p}.
We say that 7 is a regular point if the gradients
VH(z'),...,VHpya(z') and VGy(z'), | € L are
linearly independent.

Similar to the main result in [5](Theorem 6.11),
we can have the following result.

Theorem 1 Let {(z )¢} be a sequence of solu-
tions of the problem (4). Suppose that the sequence
{(z')} converges to some Z for ¢ — 0+. If Z is
a regular point, then Z is a Bouligand stationary
solution for the BLP problem (1).

3. Neural network for BLP

problem

The Lagrange function of the problem (4) can be
’ ’ m+q ’
defined by L(z',Y,7,1) = F(a) + 3 wHx(z) +
k=1

p ’
S w[Gi(z ) + Y] where Y € RP is slack variable
=1

and v € R™*4 u € RP are referred as the Lagrange
multiplier.

Then, our aim now is to design a neural net-
work that will settle down to an equilibrium, which
is also a stationary point of the Lagrange function
L(:z:', Y,~, u). The transient behavior of the neural
network can be defined by the following equations.

dz'/dt = =V, L(z',Y, 7, 11)

dY/dt = —VyL(fc/7 Y,~, %)
dy/dt =V L(z ,Y,, 1)
dp/dt =V, L(x', Y, 7, p)

(NLBPNN)

Now we will study the relationship between the
equilibrium of (NLBPNN) and the approximate
optimal solution of the problem (1) for e — 0+.
We have the following theorem.

Theorem 2 Let ((z')*,Y*, v*, u*) be the equi-
librium of the neural network (NLBPNN) for
¢ — 0+ and assume that:

(i) (z')* is a regular point of the problem (4).
(i) For any z € Z = {z : VHy((z')*)z =
=1,.

0,k om+q¢; VG((z)*)z =0,V e L},

zTVi,m,L((x/)*, Y*, 4% u*)z > 0.

Then the equilibrium of the neural network solves
the problem (4), and also solves the BLP problem.

Proof. The proof of theorem 2 can be divided
into two steps. Firstly, same to the proof of theorem
3 in [10], we can get that y; > 0,0l =1,...,p and
the equilibrium of the neural network is the KT
point of the problem (4); Secondly, following the
sufficiency optimality conditions of second order for
the problem (4), we can get that ((z')*,Y*,~v*, u*)
solves the problem (4). Following theorem 1, we
can finish this proof. [

While for the network to be of practical sense,
((z')*,Y*,4*, u*) should furthermore to be of as-
ymptotically stable, so that the network will al-
ways converge to ((z')*,Y*,v* p*) from an arbi-
trary initial point within the attraction domain of
((#')*,Y*,~*, u*). With this in mind we state and
prove the following theorem, which in other words
represents the local stability of the network.

Theorem 3 Let ((z)*,Y* ~*, 1) be the
equilibrium of the neural network (NLBPNN)
for ¢ — 0+. Assume that the Hessian
Vi,m,L((ac/)*, Y*, 4%, ") is positive definite and
(z')* is a regular point of the problem (4). Then
((z')*,Y*,fy*,,u*) is a asymptotically stable point
of the neural network.

Proof. Let  E(z',Y,v,p) =
%|V$IL($,7Y,’)/,M)|2 + %|VYL($/7K73/L)|2 +
SIVALE Y,y )P+ $IVLL(, Y )P de-
note the Lyapunov function of the network
(NLBPNN). Differentiating E(z,Y,~, ) with
respect to time t along the trajectory of the neural
network gives:

dE(z Yy _ OE d OE dY | 9E d OE d
dt R z + Y " dt + 6A/ dpty + ot dltt
= (V. L(z' ,Yﬁ, ).Vm/x,L(x Yoy, +

V»YL(Z’/7Y,’Y,M).V’Qyz/L(l'/,Y,’Y,M)
VL@ Y,y 0). V2 L@ Yy, 1)) S
[Vy L(z .Y, 7, 1) Viy L, Y.y, 1)
V;LL(CU7Y,%M)~V/LYL(‘% Y’% )]dY
Vo L@, Y, v, 1).V2 L(x' Y, 7, w)] G
(Vo L@, Yy, 1).V2, L(x,Y, v, 1)
Vy L(z', Y, 5, ). ngu (x,Y, 7, 1) %

+ o+ o+t

—V o L@ Y, v, 0).V2 L&' Y,y 1)V L(z' Y,y 1)~

VyL(x', Y, 5, 1).Vy L(z, Y, 7, 1) Vy L(z', Y, 5, 1)

As V%YL(('T,)*7Y*77*aM*) =
Diag(2u3, .. .,2uy), following the proof of the-
orem 2, we have that p; > 0,1 = 1,...,p, and
V%;YL((QE/)*, Y* ~* u*) is positive definite. Then,

we can deduce that #7) < 0. It means



that ((ocl)*7 Y*, 4%, ") is a asymptotically stable
point of the neural network. O

Remark: The above proposed neural network
can also solve the linear BLP problem, moreover we
adopt the perturbed Fischer — Burmeister func-
tion ® (a, b, ) = va% + b2 + ¢ —a—b, then the con-
dition Vi,I,L((x/)*, Y*, %, ") is positive definite,
which is an assumption in theorem 2 and theorem
3, will be obvious for the linear BLP problem.

4. Computer simulations

In this section we will present two examples to il-
lustrate the validity of the neural network approach
for the nonlinear bilevel programming.

Example 1[15] Consider the following nonlin-
ear BLP problem, where z € R',y € R'.

min F(z,y) = 2 + (y - 10)°
s.;. 0<z<15

min f(x,y) = (z + 2y — 30)
y>0

st. x—y* >0
20—z —1y*>0

After applying the Kuhn-Tucker transforma-
tion and the smoothing method, the above prob-
lem reduces to a problem similar to the problem
(3). Then similar to the problem (5), we can get
a set of ordinary differential equations, which de-
scribes the transient behavior of the neural net-
work, and adopt the classical fourth-order Runge-
Kutta method to solve these equations. We make
program with Microsoft Visual C++ 6.0 and use
a personal computer(CPU: Intel Pentium 1.7GHz,
RAM: 256MB)to execute the program. Follow-
ing theorem 1, we let ¢ have different small val-
ues and table 1 presents the different optimal so-
lutions of Example 1 over the different . The ini-
tial condition is (z,y,A) = (1,1,0,0,0),(Y,~,u) =
(1,3,0,0,0,0,0,0), and figure 1 shows a typical
transient process of x,y corresponding to the above
initial point and £ = 0.001.

Example 2[4] Consider the following nonlin-
ear BLP problem, x € R',y € R?.

12 2
1;11218(3: 1)% +2y7 — 2z
s.t. m>i¥)1(2y1 —4)? 4+ (2y2 — 12 + 2y
y>

s.t. dxr + dyy + 4y < 12
—4x — by +4ys < —4
4o — 4y; + oy < 4
—4x+4y1 +5y2 < 4

For Example 2, following the same procedure of Ex-
ample 1, we also study the different optimal solu-
tions over the different €, the result is also presented
in table 1. Moreover figure 2 shows the transient
behavior of x, i1, y2 corresponding to an initial con-
dition (z,y1,y2,A1,...,A5) = (1,1,0,0,0,0,0,0),
(Y,~,un) =(0,1,0,0,0,0,0,0,0,0,0) and £ = 0.001.

From table 1 and the two figures, we can find
that the computed results converge to the optimal
solution with the decreasing of €. It shows that the
neural network approach is feasible to the nonlinear
BLP problem.

5. Conclusion

In this paper we present a novel neural network
for the nonlinear BLP problem, and the numerical
results show that the computed results converge to
the optimal solution with the decreasing of e, which
corresponds to the result in theorem 1. In fact,
a mass of additional numerical experiments show
that we can get a satisfying approximate solution
of the nonlinear BLP problems when ¢ = 0.01.

It deserves pointing out that the initial point
of the neural network is the key factor of influenc-
ing the transient behavior of the proposed neural
network. An appropriate initial point can get per-
fect transient behavior of the variables. The reason
why such thing happens is that the neural network
proposed only has asymptotic stability, then in or-
der to get the optimal solution rapidly, we should
choose the point, which satisfies the constraints (3)
possibly, as the initial point. How to design neural
network with global stability for BLP problems is
still a challenge topic.
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