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Abstract—In this paper, the problem of control performance 

analysis with decay rate of networked control system (NCS) 

with uncertain time delays and packet dropouts  is studied, 

and the stabilization controller is designed to deal with the 

network induced issues. Gridding approach is introduced to 

transform the time-varying NCS model into a discrete 

switched linear system with finite switching rules. Sufficient 

conditions are given for asymptotical stability and 

exponential stability of proposed NCS model and state 

feedback controller is designed via linear matrix inequality 

(LMI) approach. The bound of decay rate of the system is 

obtained by solving a LMI optimization problem. Illustrative 

examples are presented to demonstrate the effectiveness of 

the proposed method and control performance with decay 

rate is analyzed based on the simulation results. 

Keywords-Networked control system, Time-varying 

sampling period, Switched system, Decay rate, Linear matrix 

inequality (LMI) 

I. INTRODUCTION 

Recent advances in network technology have been 
applied to distributed control system, whose feedback loop 
is closed through a real-time network, which is termed 
networked control system (NCS). NCS is distributed 
control systems in which the communication between 
sensor nodes, actuator nodes and controller nodes via a 
shared band communication network [1-3]. The benefits of 
NCS are low installation cost, reduced wiring, easy 
maintenance and diagnosis, and so on. Examples of NCS 
are available in manufacturing systems, aircraft systems, 
teleoperation of robots, etc. In spite of the great advantages 
that the NCS brings, network induced delays and data 
packet dropout may be inevitable during transmission of 
digital data between control devices. These factors degrade 
a system’s performance and possibly cause system 
instability [4].  

How to solve the network induced issues of random 
time delay and packet dropout to guarantee the system 
stability and performance is the hot research point in 
literature. Research on NCS has achieved a significant 
amount of results[5], and different models are developed 
for NCS to study stability criteria or stabilizing controller 
design. NCS with data dropout is modeled as 
asynchronous dynamical systems in [6]. An iterative 
approach is proposed to model networked control linear 
system with arbitrary but finite data packet dropout as 
switched linear systems in [7]. Optimal gain is calculated 
by modeling NCS as a switched system in [8]. 

However, these publications are only proposing the 
stability criteria that guarantee the system stability and 
related stabilizing controller design. Measures of system 
stability performance have not mentioned, which quantizes 
the effectiveness of stabilizing controller. To the best of 
the authors’ knowledge, the problem of stability criteria 
with decay rate and the performance related stabilizing 
controller of the NCS have not been fully investigated to 
date. This paper will proposed a novel method to 
investigate stability and control design problems with 
performance analysis for networked control systems with 
random time delays and packet dropouts.  

The effect of networked induced delay on closed 
control loop is the most serious challenge in NCS. 
Researchers always make some assumptions before 
addressing this tough issue. Time delays have been 
assumed to be bounded by one sampling period in [9], a 
constant delay in, an independent random delay [10], and a 
delay with known stochastic distribution governed by the 
Markov chain model [11]. To consider uncertain time 
delays naturally without assumptions, an active time-
varying sampling method is proposed in this paper to make 
sure time delay always less than one sampling period. 
Linear matrix inequality (LMI) method is adopted for 
controller design to guarantee the stability of the closed-
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loop networked control system with uncertain time delays 
and packet dropouts. A “gridding” approach [12] is 
introduced to convert the time varying discrete system into 
a switched linear system. For discrete-time switched linear 
systems, there are many discussions on stability and 
stabilization [13-14] for reference. Of particular interest is 
the formulation of an LMI optimization problem to find 
the bound of the decay rate for the switched linear system. 
A sufficient condition is obtained for the exponential 
stability of the NCS and stability performance is analyzed 
under the decay rate. 

II. PROBLEM FORMULATION 

Consider a linear time-invariant plant described by 

( ) ( ) ( )x t Ax t Bu t                        (1) 

where ( ) nx t R is the state vector, ( ) pu t Rp is the input 

vector. A and B are constant matrices of appropriate 
dimensions. 

To design a network controller for NCS, time delays 
and packet dropouts should be taken into account. If 
constant sampling period is adopted, time delays may be 
less or greater than one sampling period which will make 
NCS modeling more complicated. In the following, the 
sampling period will be set time varying to make sure time 
delay is less than one sampling period. In order to achieve 
this goal, sensor is assumed both time-driven and event-
driven. Actuator and controller are event-driven. Suppose 
time axis is partitioned into equidistant small intervals and 

the length of each interval is l . Define 
kt as the 

thk  

updating instant of actuator, and assume that total 
transmission delay from sensor to actuator of the updating 

signal at the instant 
kt  is

k . Then the next sampling 

instant can be selected as 

1

max max

[ ( 1) , )k k k k

k

k k k

s nl t s n l s nl
s

s T t s T


    
 

  
         (2) 

where 
ks  is the 

thk  sampling instant, 
maxT  is the allowable 

maximum sampling interval we predefined (
maxT Nl , N  

is a positive integer), n  is a positive integer and 0 n N  . 

Fig. 1 shows the sampling and updating conditions of 

NCS. if the transmission time of sampled signal at time 
ks  

is less than 
maxT , the actuator will be updated by the signal 

and the sensor will be driven to do the next sampling, 
which is called an effective sampling instant because the 
signal at this sampling instant is successfully transmitted 

from sensor to actuator, such as 1s and 2s marked in Fig. 1; 

if the signal sampled at time ks has not arrived before the 

maximal allowable updating time maxks T , which means 

the total transmission delay is out of maxT , the signal will 

be discarded and the sensor will adopt time-driven mode, 

such as 
3s marked in Fig.1; if packet dropout happened to 

the sampled signal, which can be seen as a long delay 
packet, the time-driven mode will adopted by sensor to do 

the next sampling, such as 
6s  marked in Fig. 1. 

 
Figure 1.  Sampling and Updating Conditions of NCS 

Let us denote the effective sampling instant as 
mi and 

assume
1 2 3{ , , , }U i i i , which have been marked in Fig 1; 

correspondingly, updating instants are denoted 

as
1 2 3{ , , , }S t t t . Between two updating instants, 

actuator operates in a zero order hold (ZOH) fashion, 
meaning that the value of control signal remains constant 

during the interval
1[ , )k kt t 

. Therefore, we have 

1( ) ( ) ( ) ( ),k k k k ku t u i K i x i t t t        (3) 

with 
1kt 

being the next updating instant of the ZOH after 

tk. 
Note that state-feedback control gains in (3) are not  

constant but varying with every updating interval 

1[ , )k kt t 
to ensure the stability of the time varying sampled 

system.  
Based on the selection principle of sampling instant 

proposed above, the time delay between sensor and 
actuator is ensured to be less than one sampling interval. 

Suppose 
kh as the length of interval between two 

successive effective sampling instants 
ki and 

1ki 
, thus, the 

discrete time representation of (1) can be described as 
follows 

1 0 1 1( ) ( ) ( , ) ( ) ( , ) ( )k k k k k k k k kx i x i h u i h u i      (4) 

where kAh

k e  , 

0 1
0

( , ) , ( , )
k k k

k k

h h
As As

k k k k
h

h e dsB h e dsB



 




     .  

Let us introduce a new augmented state 

 1( ) ( ) ( )
T

k kz k x i u i  . Therefore, from (3) and (4), we 

can get the following augmented closed-loop system 

( 1) ( )kz k z k                        (5) 

where 

0 1( , ) ( ) ( , )

( ) 0

k k k k k k

k

k

h K i h

K i

    
   

 
          (6) 

It is important to note that ki  in (6) refers to the 

effective sampling instant. Only packets sampled at that 
instant successfully transmits from sensor to actuator. 
Since time varying sampling principle is adopted based on 
(2), ZOH will be updated only once between two effective 
sampling instants by control signal. Thus, during any 
sampling interval, only two control signals will be acted on 

the plant: 
1( )ku i 

and ( )ku i .   

Time delays and packet dropouts are dealt with in a 
more natural way without any assumptions and limitations. 
Since the behavior of ZOH and the time varying sampling 
principle, the original random delays are transformed to a 
relative determinate delay which is always less than one 
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sampling period. Packet dropouts can be seen as an infinite 
long time delay.  

It can be seen that the newly generated augmented 
model is a discrete switched linear system with infinite 
switching rules. Therefore, the problem of stabilizing 
control for NCS is changed into the stabilization problem 
of discrete switched linear system.  

III. ASYMPTOTICAL STABILITY ANALYSIS AND 

CONTROLLER DESIGN 

Based on the selection principle of sampling instants 

proposed in section II, it can be supposed that as soon as 

the packet reaches actuator, the next sampling event is 

driven at sensor. Therefore, 
k  takes value from a finite set 

max{ ,2 , , }l l T   and the length of interval between two 

successive effective updating instants 
kh can be written 

into: 

max *k k kh T d                             (7) 

where  
kd was defined as the number of dropped packet 

between two successive effective updating instants. 

 Thus, (5) can be viewed as a discrete switched system 

with the particularity that the switching rule defined by
k  

in (5) which is not known a priori but its instantaneous 

value is available in real time. However, the total number 

of switching rules is finite and the value is
max*( 1)N d  . 

Let us define a compact set I where switching rules of (5) 

lie in, then we can get
max{1,2,3..., *( 1)}I N d  , Denote 

ˆ
iA  as the switching rule determined by 

k and
kd , then, 

augmented system (11) can be written into a discrete 

switched system . 
ˆ( 1) ( ),iz k A z k i I                       (8) 

where 

,0 ,1ˆ
0

i i i i

i

i

K
A

K

   
  
 

                  (9) 

Considering the switching nature of our system (5), 
LMI-based quadratic Lyapunov function for asymptotic 
stability is introduced to check system stability and design 
stabilizing controller. 

Theorem 1: If there exists 
max*( 1)N d  symmetric 

positive definite matrices 
max1 2 *( 1), , , N dS S S   and matrices 

iR ( i I  ) satisfying 

ˆ
0, ( , )

ˆ

j i i

T T T

i i i i i

S A R
i j I

R A R R S

 
   

   

     (10) 

then the system (5) is asymptotically stable. 

Proof:  If (10) is feasible, then 0T

i i jR R S   . It 

means iR is of full rank. As iS is symmetric positive 

definite, we have: 
1( ) ( ) 0T

i i i i iS R S S R           (11) 

which is equivalent to 
1T T

i i i i i iR S R R R S          (12) 

Then if (10) holds, then we have 

1

ˆ
0, ( , )

ˆ

j i i

T T T

i i i i i

S A R
i j I

R A R S R

 
   

  

 (13) 

which is equivalent to: 
1 1

1 1

0 0
0

0 0

j jj j i

T T

i ii j i

S SS S A

G GA S S

 

 

    
    

     
      (14) 

Let us denote 1

i iP S  and 1

j jP S  , then (14) is 

equivalent to 

ˆ
0, ( , )

ˆ

T

j i j

j i i

P A P
i j I

P A P

 
    
  

             (15) 

Choose the following form of the Lyapunov function: 

( ) ( ) ( )T

iV k z k Pz k                  (16) 

The difference of Lyapunov function is given by  

( 1) ( )

( 1) ( 1) ( ) ( )

ˆ ˆ( ) ( ) ( ) ( )

ˆ ˆ( )( ) ( )

T T

j i

T T T

i j i i

T T

i j i i

V V k V k

z k P z k z k Pz k

z k A P A z k z k Pz k

z k A P A P z k

   

   

 

 

         (17) 

According to the Schur complement formula, (15) is 
equivalent to 

ˆ ˆ 0T

i i j iP A P A                   (18) 

Thus, if condition (10) holds, then 0V  , which 

implies that system (5) is asymptotically stable.  
The following part will study the design of stabilizing 

controller for NCS.  
Let us denote the following matrixes: 

 

,1 ,0
, ,

0 0

0

i i i

i i

i i

A B
I

K K

     
    
   



            (19) 

Then, system (5) can be rewritten into the following 
form: 

( 1) ( ) ( )i i iz k A B K z k             (20) 

Theorem 2: If there exists symmetric positive definite 

matrices
iG and

iV , matrices , ,i i iM N Q  ( i I  ) satisfying  

,0 ,10

* 0
0, ,

* * 0

* * *

j i i i i i i

j i

T

i i i

T

i i i

G M Q N

V Q
i j I

M M G

N N V

   
 
    
  
 

   

 (21) 
then the state feedback control given by (3) with 

1,i i iK Q M i I                      (22) 

stabilizes asymptotically the system (5). 
Proof: Assume that there exist symmetric positive 

definite matrices iG and iV , matrices matrices , ,i i iM N Q  

( i I  ) such that (21) is satisfied. From (22) we get  

,i i iQ K M i I                     (23) 

Replacing iQ in (21) by i iK M , we can get 
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,0 ,10

* 0
0, ,

* * 0

* * *

j i i i i i i i

j i i

T

i i i

T

i i i

G M K M N

V K M
i j I

M M G

N N V

   
 
    
  
 

   

 (24) 
Let us denote 

,
i i

i i

i i

G M
S R

V N

   
    
   

                (25) 

And notice that  
 

 ,0 ,1 ,1 ,0
0

0 0 0

i i i i i i i

i i i i

i

K
K A B K

K I

          
        
    

 (26) 
Then replacing related item in (24) by (26) (27), we 

can get 

( )
0, ( , )

( )

j i i i i

T T T

i i i i i i i

S A B K R
i j I

R A B K R R S

 
   

   
  

(27) 

Thus, Theorem 1 indicates the sufficient condition for 

asymptotic stability of closed-loop NCS (5). 

IV. EXPONENTIAL STABILITY AND THE BOUND OF 

DECAY RATE 

Theorem 3: If there exists 
max*( 1)N d  symmetric 

positive definite matrices 
max1 2 *( 1), , , N dS S S   and matrices 

iR ( i I  ) satisfying 

 
ˆ

0, ( , )
ˆ

j i i

T T T

i i i i i

S A R
i j I

R A R R S





 
   

   

   (28) 

then the closed-loop NCS (5) is exponentially stable with a 
decay rate . 

Proof: Choose the following form of the Lyapunov 
function: 

( ) ( ) ( )T

iV k z k Pz k  

Define ( ) ( )kk z k   and choose another Lyapunov 

function: 

( ) ( ) ( )T

iW k k P k   

Then the difference for ( )W k  is given by  

   2( 1) 2

2( 1) 2

2 2

( 1) ( )

( 1) ( 1) ( 1) ( ) ( )

( 1) ( 1) ( 1) ( ) ( )

ˆ ˆ( ) ( ) ( ) ( )

ˆ ˆ( )( ) ( )

T T

j i

k T k T

j i

k T T k T

i j i i

k T T

i j i i

W W k W k

k P k k k P k

z k P k z k z k Pz k

z k A P A z k z k Pz k

z k A P A P z k

   

 

 

 





   

    

    

 

 

          

According to the Schur complement formula and 

Theorem 1, (28) is equivalent to 2 ˆ ˆ 0T

i i j iP A P A  . 

Then we can obtain that 0W  , which 

implies ( ) (0)W k W . Thus we have 

 2 2 2( ) ( ) (0) (0)k k kV k W k W V          (29) 

By the result of theorem 1in [15], we can come to the 
conclusion that the closed-loop NCS (5) is exponentially 
stable with a decay rate  . This completes the proof. 

V. NUMERICAL EXAMPLE 

In this section, numerical examples will be given to 
demonstrate the effectiveness of the proposed methods for 
stabilizing NCS with uncertain time delays and packet 
dropouts, the bound of decay rate will be found by solving 
the LMI optimal problem, stability performance with 
decay rate will be analyzed based on the simulation results. 
Consider the following plant model: 

 

0 1 0

2 3 1

1 0

dx
x u

dt

y x

   
    

    



                    (30) 

A. Asymptotical stabilizing control law  

The objective of this example is to obtain asymptotical 
stabilizing feedback controller gains for the proposed NCS 
model (5). Suppose the length of gridded equidistant small 

interval l is 0.05 ms , the values of possible time delays 

are
1 2 30.05 , 0.1 , 0.15ms ms ms     ; for simplicity, 

we suppose the bound of consecutive dropped 

packets
max 2d  , which means {0,1,2}id  . According to 

permutation and combination, the total number of 
switching rules is 9. To obtain feedback gains, we can use 
the Matlab LMI Control Toolbox to solve the LMI feasible 
problem presented in (21). The results are as follows. 
Table 1 shows the combination results of switching rules 
and the results of controller gains.  

Fig. 2 shows the output trajectory of NCS with the 

feedback control law proposed in this paper. We can see 

that the networked control system is asymptotical stable. 

In the next example, we will discuss how the decay rate 

impacts the stabilizing performance of NCS.  

 
Figure 2.  Output trajectory of NCS under asymptotical stabilizing 

control law 

B. Performance analysis with decay rate  

 The objective of this example is to obtain the bound 
of decay rate of the closed-loop NCS (5) and analyze the 
stabilizing performance of the system with different decay 
rate. We still use the plant model (32) and apply the same 
gridding rules with the sample A). By solving the LMI 
optimal problem with Matlab LMI GEVP solvers, we can 

get the minimum 1/ 0.5042 (0 1)       . Thus, the 

range of decay rate 1/   is from 1.0000 to 1.9833.  Fig.  

3 shows the stabilizing performance of the system with 
different decay rate. We can see that decay rate determines 
the setting time of the output trajectory towards constant 
value which is the system stable state. The larger the decay 
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rate is, the shorter time the system needs to reach the stable 
state with better stabilizing performance. 

Stabilizing control law obtained in example A) can 

only guarantees NCS to be asymptotically stable, while, 

The stabilizing performance of control law for NCS can be 

improved by setting parameter of decay rate in example B. 

 
Figure 3.  Stabilizing performance of the system with decay rate 

VI. CONCLUSIONS 

In this paper, a novel active time varying sampling 
period strategy is proposed to investigate stability and 
control design problems with performance analysis for 
networked control systems. 

This method makes sure the time delay between sensor 
and actuator is always less than one sampling interval, 
which simplifies the modeling of NCS with uncertain time 
delays and packet dropouts. An augmented state vector is 
introduced to successfully convert NCS into a discrete 
switched linear system. Sufficient conditions for 
asymptotical stability and exponential stability of proposed 
NCS model are given. To solve the LMIs for obtaining 
feedback gains and the bound of decay rate, the “gridding 
approach” is adopted to guarantee LMI set up for a 
discrete switched system with finite switching rules. 
Numerical examples illustrate the effectiveness of the 
proposed strategy for the asymptotical stabilizing and 
exponential stabilizing controller over NCS, finally the 
control performance with decay rate is analyzed based on 
the simulation results. 
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TABLE I.  COMBINATION RESULTS OF SWITCHING RULES AND RESULTS 

 1 0.05ms   
2 0.1ms   

3 0.15ms   

1 0d    1 -4.5191  -4.7528K    2 -2.9523  -3.1847K    3 -1.6277  -1.7985K   

2 1d    4 -2.0723  -2.3737K    5 -1.6946  -2.0218K    6 -1.2932  -1.5992K   

3 2d    7 -1.4100  -1.8404K    8  -0.7153  -0.9711K    9 -1.5746  -2.3864K   
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