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Abstract 
In this paper, we introduce and study a new class of 
random generalized bi-linear mixed variational-like 
inequality for random fuzzy mappings. By using the 
minimax inequality and extending auxiliary principle, 
we prove an existence and uniqueness theorem of the 
solution for the random generalized bi-linear mixed 
variational-like inequality. 
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1. Introduction 
It is well known that variational inequality theories 
are very effective and powerful tools for studying a 
wide class of linear and nonlinear problems arising in 
many diverse fields of pure and applied sciences such 
as mechanics, physics, optimization and control, 
nonlinear programming, economics and 
transportation equilibrium, and engineering sciences, 
etc. In recent years, classical variational inequality 
theories have been generalized and applied in various 
directions, the readers refer to [1]-[3] and the 
references therein. A useful and important 
generalization of variational inequalities is the mixed 
variational-like inequalities, which have potential and 
significant applications in optimization theory [4,5], 
structural analysis [6], and economics [7,8]. It is 
noted that there are many effective numerical 
methods for finding approximate solutions of various 
variational inequalities. Among these methods, the 
projection method and its variant forms is the most 
effective numerical technique. However, the 
projection type technique cannot be used to study 
mixed variational-like inequalities, since it is not 
possible to find the projection of the solution. These 
facts motivated Glowinski et al. [7] to suggest 
another technique, which does not depend on the 
projection. The technique is called the auxiliary 
principle technique. Very recently, Huang et al. [9] 
and Ding [10] extend the auxiliary principle 
technique to study generalized nonlinear mixed 
variational-like inequalities. 

On the other hand, in 1989, Chang and Zhu [11] 
introduced the concept of variational inequality for 
fuzzy mappings, which was extended by Lassonde 
[8], Shih and Tan [12]. Recently, the random 
variational inequalities have been introduced and 

studied (see [13, 14,15]-[17]).  
Inspired and motivated by recent works 

[18,19,14,16,17], we introduce and study a class of 
random generalized bi-linear mixed variational-like 
inequality for random fuzzy mapping. By using the 
minimax inequality and extending auxiliary principle, 
we prove the existence and uniqueness theorem of 
the solution for the random generalized bi-linear 
mixed variational-like inequality. Our results 
improve and generalize many known corresponding 
results presented in [10,13,20,14,9].  

2. Preliminaries 
Throughout this paper, let H  be a real Hilbert 
space with norm and inner product denoted by |||| ⋅  
and >⋅⋅< , , respectively, and D  be a nonempty 
closed convex subset of H . We denote by H2 and 

)(HCB  the families of all the nonempty subsets 
and the families of the nonempty bounded closed 
subsets of H , respectively. ( , )H ⋅ ⋅ represents the 
Hausdorff metric on )(HCB . 

Let ),( ΣΩ  be a measurable space, where Ω  
is a set and Σ  is −σ algebra of subsets of Ω . 
We denote by ( )Hβ  the class of Borel 
−σ fields in H . 

Definition 2.1. A mapping :f HΩ→ is said to 
be measurable if for any ( )C Hβ∈ and 
      1( ) { : ( ) }f C t f t C− = ∈Ω ∈ ∈Σ . 
Definition 2.2. A mapping :f H HΩ× → is 
called a random operator if for any 

, ( , ) ( )w H f t w w t∈ =  is measurable. A random 
operator :f H HΩ× →  is said to be continuous 
if for any t∈Ω , the mapping ( , ) :f t H H⋅ →  is 
continuous. 
Definition 2.3. A multivalued mapping 

: ( )A CB HΩ→  is said to be measurable if for 
any ( )C Hβ∈ and 

1( ) { : ( ) }A C t A t C− = ∈Ω ∩ ≠ Φ ∈Σ . 
Definition 2.4. A mapping :u HΩ→ is called a 
measurable selection of the multivalued measurable 
mapping : ( )A CB HΩ→  if u is a measurable 
mapping and , ( ) ( )t u t A t∈Ω ∈ . 
Definition 2.5. A mapping : ( )T H CB HΩ× →  
is called a random multivalued mapping if for any 

, ( , )w H T w∈ ⋅  is measurable. A random multi- 
valued mapping : ( )T H CB HΩ× →  is said to 
be Ĥ − continuous if for any , ( , )t T t∈Ω ⋅ is 
continuous in the Hausdorff metric. 

Let ( )F H  be a collection of fuzzy sets over 



 

H . A mapping F~  from Ω  into ( )F H is called a 

fuzzy mapping. If F~  is a fuzzy mapping on H , for 
any t∈Ω , ( )F t% (denote it by tF%  in the sequel) 

is a fuzzy set on H  and ( )tF z%  is the membership 

function of z  in tF% . Let ( )M F H∈ , 

]1,0[∈q , then the set  

 ( ) { : ( ) }qM u H M u q= ∈ ≥   

is called a q -cut set of M . 

Definition 2.6. A fuzzy mapping : ( )F F HΩ→%  
is called measurable if for any [0,1], ( ( )) :aa F∈ ⋅%  

2HΩ→  is a measurable multivalued mapping. 
Definition 2.7. A fuzzy mapping :F HΩ× →%  

( )F H  is called a random fuzzy mapping if for any 
w H∈ , ( , ) : ( )F w F H⋅ Ω→%  is a measurable 
fuzzy mapping. 

Clearly, the random fuzzy mapping includes 
multi-valued mappings, random multivalued 
mappings and fuzzy mappings as the special cases. 

Let , : ( )A T H F HΩ× →% %  be two random 
fuzzy mappings satisfying the following condition (I): 
if there exist two mappings , : [0,1]a c H →  such 
that 

, ( )( , ) , ( ) ( ),t w a wt w H A CB H∀ ∈Ω× ∈%   
                , ( )( ) ( ).t w c wT CB H∈%  

By using the random fuzzy mappings A%  and 
T% , we can define two random multi-valued 
mappings A  and T  as follows: 

( , )t w H∀ ∈Ω×  

, ( ): ( ), ( , ) ( ) ,t w a wA H CB H t w AΩ× → → %                       

, ( ): ( ), ( , ) ( ) .t w c wT H CB H t w TΩ× → → %  
So A  and T are called the random multi-valued 
mappings induced by the random fuzzy mappings 
A%  and T% , respectively. 

Given mappings , : [0,1]a c H → , the 
random fuzzy mappings , : ( )A T H F HΩ× →% %  
satisfy the condition (I). Let , :N H H Hη × → be 
two mappings. Let : ( , ]b H H× → −∞ +∞ be a 
real-valued function. We shall study the following 
problem: Find measurable mappings , , :u x y Ω  

H→  such that  

, ( ) ( ( )) ( ( )),t u tA x t a u t≥%
, ( ) ( ( )) ( ( ))t u tT y t c u t≥%  

and  
( ( ), ( )), ( , ( ))N x t y t v u tη< >  

( ( ), ) ( ( ), ( )) 0,b u t v b u t u t+ − ≥    (2.1) 
for all t∈Ω  and v H∈ , where the function 

),( ⋅⋅b  is nondifferential and satisfies the following 

conditions: 
(i) for any , , ( , )w v H b w v∈ is line in the first 

argument; 
(ii) for each , ( , )w H b w∈ ⋅  is a convex 

function; 
(iii) for any , , ( , )w v H b w v∈ is bounded, that is, 

there exists a constant 0>γ such that 
  ( , )b w v w vγ≤ ⋅ ;  

(iv) for all , ,w v z H∈  
( , ) ( , ) ( , )b w v b w z b w v z− ≤ − . 

Remark 2.1. 
 (1)  for any ,w v H∈ , ( , ) ( , )b w v b w v− = − and 

( , )b w v w vγ− ≤ ⋅  hold from condition (i) and 
(iii), respectively. So ( , )b w v w vγ≤ ⋅ .  
 (2)  for any , ,w v z H∈ , ( , ) ( , )b w v b w z− ≤  

w v zγ ⋅ − from condition (ii) and (iv). So 
( , )b w v  is continuous with respect to second 

argument. 
Inequality (2.1) is called random generalized 

bi-linear mixed variational-like inequality for random 
fuzzy mappings. The set of measurable mappings 
( , , )u x y  is called a random solution of the random 
generalized bi-linear mixed variational-like 
inequality. 

Special cases: 
(1) If ( ( ), ( )) ( , ( )) ( , ( )),N x t y t P t x t F t y t= −  

( , ( )) ( , ( ))v u t v g t u tη = − , where ,F f g= −  
, , :P f g H HΩ× → , and ( , ) ( )b u v vφ=  for 

all ,u v H∈ , the problem (2.1) reduces to the 
following random generalized nonlinear mixed 
variational inclusions for random fuzzy mappings: 
Find measurable mappings , , , :u x y w HΩ→ , 
such that for all , ( ), ( ) , ( ( ))t u tt u t H A x t∈Ω ∈ ≥%  

( ( )),a u t , ( ) ( ( )) ( ( ))t u tT y t c u t≥% , , ( ) ( ( ))t u tS w t ≥  
( ( ))d u t , ( , ( )) ( )g t w t dom φ∂ ≠ ΦI  and  

( , ( )) { ( , ( )) ( , ( ))}, ( , ( ))P t x t f t y t g t w t v g t w t< − − − >

   ( ( , ( ))) ( ), .g t w t v v Hφ φ≥ − ∀ ∈     (2.2) 
The problem(2.2) was studied by Ahmad and Bazan 
[13]. 

(2)  If ( ( ), ( )) ( , ( )) ( , ( ))N x t y t f t x t p t y t= − ,  
( , ( )) ( , ( ))v u t v g t u tη = −  and ( , ) ( )b u v vφ=  

for all ,u v H∈ , the problem (2.1) reduces to the 
following random generalized nonlinear variational 
inclusions for random fuzzy mappings: Find 
measurable mappings , , :u x y HΩ→ , such that 
for all , ( ), ( ) , ( ( )) ( ( )),t u tt u t H A x t a u t∈Ω ∈ ≥%  

, ( ) ( ( )) ( ( ))t u tT y t c u t≥%  
and  

( , ( )) ( , ( )), ( , ( ))f t x t p t y t v g t u t< − − >        



 

( ( , ( ))) ( ), .g t u t v v Hφ φ≥ − ∀ ∈   (2.3) 
The problem(2.3) was studied by Huang [14]. 
    (3) If in Banach space, let , :A T DΩ×% %  

B→ be measurable mappings, ( , ) ( )N T⋅ ⋅ = ⋅ −  

( )A ⋅  and the real-valued function ( , ) ( )b u v f v=  

for all ,u v D∈ , then the problem (2.1) reduces to 

the following random mixed variational-like 

inequality problem: v B∀ ∈  

( , ( )) ( , ( )), ( , ( ))T t u t A t u t v u tη< − >                                           

( ( )) ( )f u t f v≤ − .              (2.4) 
The problem (2.4) was considered by Ding [20]. 

(4) If in reflexive Banach spaces, let 
, :A T D B→% %  and : D D Bη × →  be 

mappings, then the problem (2.1) reduces to the 
following nonlinear mixed variational-like inequality: 
for a given w B∈ , find u D∈ such that 

( , ) , ( , ) ( , ) ( , )N Tu Au w v u b u v b u uη< − > + −  
0,≥   v B∀ ∈ .                   (2.5) 

The problem (2.5) was considered by Ding [10]. 
It is noted that the problems (2.2)–(2.5) are 

special cases of the problem (2.1). In brief, problem 
(2.1) is the most general and unifying one, which is 
also one of the main motivations of this paper. 
Definition 2.8. Let D  be a nonempty closed 
convex subset of H , a mapping DDD →×:η  
is called σ − Lipschitz continuous, if there exists a 
constant 0>σ such that 

|| ( , ) || || ||,u v u vη σ≤ −      , .u v D∀ ∈  
Definition 2.9. Let D be a nonempty closed convex 
subset of H , let DDD →×:η and ( , ) :N D⋅ ⋅  

D D× →  be two mappings. 
(1) ( , )N ⋅ ⋅ is said to be Lipschitz continuous in 

first argument, if there exists a constant 0>r  such 
that 

|| ( , ) ( , ) || || ||,N u N v r u v⋅ − ⋅ ≤ −   , .u v D∀ ∈  
 (2) ( , )N ⋅ ⋅  is said to η − strongly monotone in 

first argument with respect to the random multi- 
valued mapping A , if there exists a constant 0>δ  
such that for any t∈Ω ,  

2
1 2 1 2 1 2( , ) ( , ), ( , ) || || ,N x N x u u u uη δ< ⋅ − ⋅ >≥ −

     ,, 21 Huu ∈∀ 1 1 2 2( , ), ( , ).x A t u x A t u∈ ∈  
   Similarly, we can define Lipschitz continuity and 
the η − strongly monotonicity of ( , )N ⋅ ⋅ in second 
argument with respect to the random multi-valued 
mappingsT . 
Definition 2.10. Let , : ( )A T H CB HΩ× →  be 

two random multi-valued mappings induced by the 

random fuzzy mappings A%  and T% , respectively, 

and DDD →×:η be mapping. The mappings 

))(),(( tytxNu → and η  are said to have 0−  

diagonally concave relation, if for any t∈Ω , the 

function ],(: +∞−∞→××Ω DDφ  defined by  

),()),(),((),,( vutytxNuvt ηφ =   
has 0− diagonally concave in v ,  where ( )x t ∈  

( , ), ( ) ( , )A t u y t T t u∈ , i.e., for any t∈Ω , any 

finite set Dvvv m ⊂},...,,{ 21 and i

m

i
ivu ∑

=

=
1
λ  

( 1,0
1

=≥ ∑
=

m

i
ii λλ ), 

1
( , , ) 0

m

i i
i

t v uλφ
=

≤∑ . 

3. Existence uniqueness theorem 
At first, we give the following Lemmas. 
Lemma 3.1. [21] Let : ( )T H CB HΩ× →  be a 
Ĥ − continuous random multivalued mapping, then 
for measurable mapping :u HΩ→ , the multi- 
valued mapping ( , ( )) : ( )T u CB H⋅ ⋅ Ω→  is 
measurable. 
Lemma 3.2. [20] Let ),( ΣΩ  be a measurable 
space, and D  be a nonempty convex subset of a 
topologi- cal vector space. Let 

],[: +∞−∞→××Ω DDϕ  be a real-valued 
function such that 

(1)  for each ( , ) , ( , , )v u D D t t v uϕ∈ × → is 
measurable mapping; 

(2)  for each ( , ) , ( , , )t v D u t v uϕ∈Ω× →  is 
continuous on each nonempty compact subset of 
D ; 

(3)  for each ( , ) , ( , , )t u D v t v uϕ∈Ω× → is 
lower semicontinuous on each nonempty compact 
subset of D ; 

(4)  for each t∈Ω , each nonempty finite set 

Dvvv m ⊂},...,,{ 21  and for each i

m

i
ivu ∑

=

=
1
λ

（
1

0, 1
m

i i
i

andλ λ
=

≥ =∑ ）, 0),,(min
1

≤
≤≤

uvt imi
ϕ ; 

(5) for each t∈Ω , there exists a nonempty 
compact convex subset 0D of D and a nonempty 

compact subset K of D  such that for each 
\u D K∈ , there is a }){( 0 uDcov ∪∈  with 

0),,( >uvtϕ . 
Then there exists a measurable mapping :u DΩ→  
such that ( , , ( )) 0t v u tϕ ≤  for all v D∈  and 
t∈Ω . 

Now we now state the main result of this paper. 
Theorem 3.1. Let ),( ΣΩ  be a measurable space, 
and D  be a nonempty convex subset of H . Let 
random fuzzy mappings , : ( )A T H F HΩ× →% %  



 

satisfy the condition (I), and A  and T be the 
random multi-valued mappings induced by the 
random fuzzy mappings A%  and T% , respectively. 
Let , :N D D Dη × →  be two mappings. Let 

: ( , ]b D D× → −∞ +∞  be a real-valued function 
such that  

(1) for each t∈Ω , the mapping ( , ), ( ,A t T t⋅  
)⋅  is Ĥ − continuous with constant 1 20 , 1λ λ< ≤ , 

respectively; 
(2) the mapping η  is Lipschitz continuous 

with constant 0σ > ; the mapping ),( vuη is 
continuous in first argument and semicontinuous in 
second argument , and for all , , ( , )u v D u vη∈ =  

( , )v uη− ; 
(3) the mapping ( , )N ⋅ ⋅ is Lipschitz continuous 

and η − strongly monotone with respect to the ran- 
dom multi-valued mapping A  in first argument 
with constant 11 0k >  and 021 >k  respectively. 

( , )N ⋅ ⋅ is Lipschitz continuous and η − strongly 
monotone with respect to the random multi-valued 
mapping T  in second argument with constant 

12 0k >  and 22 0k >  respectively, too; 
   (4) for each t∈Ω , the mappings (u N→  

( ), ( ))x t y t  and η  have the 0− diagonally con- 
cave relation; 

(5)  the function ),( ⋅⋅b satisfies conditions (i)
–(iv) where ),0( 2221 kk +∈γ .  
Then the problem (2.1) has a unique random solution 
ˆ ˆ ˆ ˆ ˆ( ) , ( ) ( , ( )), ( ) ( , ( )),u t D x t A t u t y t T t u t∈ ∈ ∈

 i.e. 
ˆ ˆ ˆ ˆ( ( ), ( )), ( , ( )) ( ( ), )N x t y t v u t b u t vη + −  

ˆ ˆ( ( ), ( )) 0, , .b u t u t v D t≥ ∀ ∈ ∈Ω  

Proof.  Firstly we prove that for each fixed 
Dtu ∈∗ )( , there exists a unique 

))(ˆ,()(ˆ)),(ˆ,()(ˆ,)(ˆ tutTtytutAtxDtu ∈∈∈
 such that 

ˆ ˆ ˆ( ( ), ( )), ( , ( )) ( ( ), )N x t y t v u t b u t vη ∗+ −   
ˆ( ( ), ( )) 0, ,b u t u t v D t∗ ≥ ∀ ∈ ∈Ω     (3.1) 

For any fixed Du ∈∗ , we define a function :ϕ  
( , ]D DΩ× × → −∞ +∞  by 

( , , ) ( ( ), ( )), ( , ) ( , )t v u N x t y t u v b u uϕ η ∗= + −
               ( , ), , , ,b u v v u D t∗ ∀ ∈ ∈Ω  
where ( ) ( , ), ( ) ( , )x t A t u y t T t u∈ ∈ . 

Since A  and T are the random multi-valued 
mappings induced by the random fuzzy mappings 
A%  and T% , respectively, i.e. for each u D∈ , 

( , )A u⋅ and ( , )T u⋅ are measurable mappings, so for 
any fixed ( , ) , ( , , )v u D D t t v uϕ∈ × →  is mea- 
sureable. 

For any v D∈ , the mapping ( , )u u vη→  

is continuous. Then for each v D∈  and any 
sequence { }nu D⊂  with nu u→ , we have 

( , ) ( , ) ( )nu v u v nη η→ →∞ . Since for each 
t∈Ω , the mappings ( , ), ( , )A t T t⋅ ⋅ are Ĥ −  
continuous, it follows for any fixed ( , )t v D∈Ω×  
that 

),()),(),((),()),(),(( vutytxNvutytxN nnn ηη −
( ( ), ( )) ( ( ), ( )), ( , )n n nN x t y t N x t y t u vη≤ − +

     ( ( ), ( )), ( , ) ( , )nN x t y t u v u vη η−  
( ( ), ( )) ( ( ), ( )), ( , )n n n nN x t y t N x t y t u vη≤ − +

   ( ( ), ( )) ( ( ), ( )), ( , )n nN x t y t N x t y t u vη− +  

( ( ), ( )), ( , ) ( , )nN x t y t u v u vη η−  
( ( ), ( )) ( ( ), ( )) ( , )n n n nN x t y t N x t y t u vη≤ − ⋅ +

    
( ( ), ( )) ( ( ), ( )) ( , )n nN x t y t N x t y t u vη− ⋅ +  

( ( ), ( )) ( , ) ( , )nN x t y t u v u vη η⋅ −  

11 ( ) ( ) ( , )n nk x t x t u vη≤ − ⋅ +  

12 ( ) ( ) ( , )n nk y t y t u vη− ⋅ +  

( ( ), ( )) ( , ) ( , )nN x t y t u v u vη η⋅ −  

11 1 ( , )n nk u u u vλ η≤ − ⋅ +   

12 2 ( , )n nk u u u vλ η− ⋅ +  

( ( ), ( )) ( , ) ( , )nN x t y t u v u vη η⋅ −
  0 ( ).n→ →∞  

Therefore for each fixed Dvt ×Ω∈),( , the 
function ),()),(),(( vutytxNu η→  is 
continuous on D , where ( ) ( , ), ( )x t A t u y t∈ ∈ .  

( , )T t u . Since the function ),( uubu ∗→  is con- 
tinuous and convex on D  by the remark 2.1 (2), so 
for each fixed Dvt ×Ω∈),( , ( , , )u t v uϕ→  
is continuous on D . Since the function v →  

( , )b u v∗  is continuous on D  and for any ,u D∈  
( , )v u vη→  is semicontinuous , so for each fixed 

( , )t u D∈Ω× , ),,( uvtv ϕ→ is semicontinuous 
on D . Thus, we can confirm that the function 

( , , )t v uϕ satisfies the conditions (i)(ii)(iii) in Lem- 
ma 3.2.  

Now we prove that the function ( , , )t v uϕ  
satisfies the condition (iv) in Lemma 3.2. We 
suppose that the function ( , , )t v uϕ satisfies the 
condition (iv) of Lemma 3.2. If it is not true, there 
exists Ω∈0t , a finite set Dvvv m ⊂},...,,{ 21  

and ∑
=

=
m

i
iivu

1
λ （ 1,0

1
=≥ ∑

=

m

i
ii λλ ）, such that 

0( , , ) 0it v uϕ >  for all 1, 2,...i m= , that is 



 

0 0( ( ), ( )), ( , ) ( , ) ( , ) 0.i iN x t y t u v b u u b u vη ∗ ∗+ − >
It follows that 

0 0
1

( ( ), ( )), ( , ) ( , )
m

i i
i

N x t y t u v b u uλ η ∗

=

+ −∑

    
1

( , ) 0
m

i i
i

b u vλ ∗

=

>∑  

Noting that ),( vub  is convex in the second 
argument, that is 

),(),(),(
11

uubvubvub i

m

i
ii

m

i
i

∗

=

∗∗

=

=≥ ∑∑ λλ ,  

we have  

   0 0
1

( ( ), ( )), ( , ) 0.
m

i i
i

N x t y t u vλ η
=

>∑  

(3.2) 
Since for any t∈Ω , the mappings ( ( ),u N x t→  

( ))y t and η  have the 0− diagonally concave 
relation in v , so for any t∈Ω ,  

1
( ( ), ( )), ( , ) 0,

m

i i
i

N x t y t u vλ η
=

≤∑  

which contradicts (3.2). Therefore, for any t∈Ω , 
any finite set Dvvv m ⊂},...,,{ 21 , and 

∑
=

=
m

i
iivu

1
λ ( 1,0

1
=≥ ∑

=

m

i
ii λλ ), we have 

( , , ) 0it v uϕ ≤ ( 1, 2,... )i m= . Thus condition (iv) 
of lemma 3.2 holds.  

For each ,t∈Ω  let 

)))(),(((1

2221

∗∗∗ ⋅+⋅
+

= utytxN
kk

γαθ ， 

}||:||{ θ≤−∈= ∗uuDuK , }{0
∗= uD , 

then K  and 0D  are both compact convex subsets 

of D . By assumptions (1)–(4) of the theorem, for 

each \u D K∈ , there exist 0(u Co D∗ ∈ ∪  

{ }),u ( ) ( , ), ( ) ( , )x t A t u y t T t u∗ ∗ ∗ ∗∈ ∈ such that  

( , , ) ( ( ), ( )), ( , ) ( , ) ( , )t u u N x t y t u u b u u b u uϕ η∗ ∗ ∗ ∗ ∗= + −
( ( ), ( )) ( ( ), ( )), ( , )N x t y t N x t y t u uη∗ ∗= − +  

( ( ), ( )) ( ( ), ( )), ( , )N x t y t N x t y t u uη∗ ∗ ∗ ∗− +
       ( ( ), ( )), ( , )N x t y t u uη∗ ∗ ∗ +  

 ( , ) ( , )b u u b u u∗ ∗ ∗−  
2 2

21 22 ( ( ), ( ))k u u k u u N x t y tα∗ ∗ ∗ ∗≥ − + − − ⋅

       u u u u uγ∗ ∗ ∗− − ⋅ −  

21 22[( )u u k k u u∗ ∗= − ⋅ + − −  

     ( ( ), ( )) ] 0N x t y t uα γ∗ ∗ ∗− > . 

Hence condition (5) of Lemma 3.2 is also satisfied. 
By Lemma 3.2, there exists a measurable mapping 
$ :u DΩ→ , such that $( , , ( )) 0t v u tϕ ≤  for 

all v D∈ and t∈Ω . 
We know the mapping ( , )N ⋅ ⋅ is Lipschitz 

continuous in first argument and in second argument, 
and the mappings ( , ), ( , )A t T t⋅ ⋅ are Ĥ −  
continuous. Based on Lemma3.1, we obtain that for 
the measurable mapping $ :u DΩ→ , there exist 
ˆ ˆ ˆ ˆ( ) ( , ( )), ( ) ( , ( ))x t A t u t y t T t u t∈ ∈  such that  

ˆ ˆ ˆ ˆ( ( ), ( )), ( , ( )) ( ( ), ) ( ( ), ( ))N x t y t v u t b u t v b u t u tη ∗ ∗+ −

   0≤ .                ,v D t∀ ∈ ∈Ω  
By ))(,()),(( tuvvtu ηη −= , we have 

ˆ ˆ ˆ ˆ( ( ), ( )), ( ( ), ) ( ( ), ( ))N x t y t u t v b u t u tη ∗+ −
    ( ( ), ) 0, ,b u t v v D t∗ ≥ ∀ ∈ ∈Ω  
This implies that for any t∈Ω and for each fixed 
measurable mapping Dtu ∈∗ )( , the measurable 
mapping ˆ : ,u DΩ→  ˆ ˆ ˆ( ) ( , ( )), ( )x t A t u t y t∈ ∈  

ˆ( , ( ))T t u t is a random solution of the Auxiliary 
problem (3.1). 

Now we prove that for any t∈Ω , the measure- 
able mapping )(ˆ tut → , ˆ ˆ ˆ( ) ( , ( )), ( )x t A t u t y t∈ ∈  

ˆ( , ( ))T t u t is a unique random solution of the auxi- 
liary problem (3.1). Supposing the measurable 
mappings ,)(1 Dtu ∈ 1 1 1( ) ( , ( )), ( )x t A t u t y t∈ ∈  

1( , ( ))T t u t and Dtu ∈)(2 , )),(,()( 22 tutAtx ∈  
))(,()( 22 tutTty ∈  are two random solutions of 

problem (3.1), we have the conclusion that for 
all ,v D t∈ ∈Ω , 

1 1 1( ( ), ( )), ( , ( ))N x t y t v u tη +    

1( ( ), ) ( ( ), ( )) 0,b u t v b u t u t∗ ∗− ≥    (3.3) 

2 2 2( ( ), ( )), ( , ( ))N x t y t v u tη +  

2( ( ), ) ( ( ), ( )) 0b u t v b u t u t∗ ∗− ≥     (3.4) 
Taking )(2 tuv = in (3.3) and )(1 tuv = in (3.4) 
and adding two inequalities, by the assumption on 
the function b , we obtain 

1 1 2 1( ( ), ( )), ( ( ), ( ))N x t y t u t u tη +   

2 2 1 2( ( ), ( )), ( ( ), ( )) 0N x t y t u t u tη ≥  
Since for all , , ( , ) ( , )u v D u v v uη η∈ = − , we have  

2 2 1 1 2 1( ( ), ( )) ( ( ), ( )), ( ( ), ( ))N x t y t N x t y t u t u tη−     
0≤  

Noting that ( , )N ⋅ ⋅ is η − strongly monotone 
with respect to the random multi-valued mapping A  
in first argument with constant 21 0k > , and η −  
strongly monotone with respect to the random multi- 
valued mapping T  in second argument with cons- 
tant 22 0k > , we get 



 

2
122221 )()()( tutukk −+  

2 2 1 2 2 1( ( ), ( )) ( ( ), ( )), ( ( ), ( ))N x t y t N x t y t u t u tη≤ − +  

1 2 1 1 2 1( ( ), ( )) ( ( ), ( )), ( ( ), ( ))N x t y t N x t y t u t u tη−  

0.≤  
Since 0, 2221 >kk , we have 1 2( ) ( )u t u t= . 

Further, let  

1 1 2 2( ) ( , ( )), ( ) ( , ( ))x t A t u t x t A t u t∈ ∈  
and 

1 1 2 2( ) ( , ( )), ( ) ( , ( ))y t T t u t y t T t u t∈ ∈ , 
we have 

1 2 1 2( ) ( ) ( ( , ( )), ( , ( )))x t x t H A t u t A t u t− ≤  

1 1 2( ) ( ) ,u t u tλ≤ −  

1 2 1 2( ) ( ) ( ( , ( )), ( , ( )))y t y t H T t u t T t u t− ≤  
             2 1 2( ) ( ) .u t u tλ≤ −  
So we get 1 2( ) ( )x t x t=  and )()( 21 tyty = , 
which imply that for any t∈Ω  and the measurable 
mapping ( )u t D∈ , the mappings $( )u t D∈ , 

))(ˆ,()(ˆ)),(ˆ,()(ˆ tutTtytutAtx ∈∈ (denote it by 
w  in the sequel) is a unique random solution of the 
auxiliary problem (3.1). Thus we have proved that 
for each t∈Ω  and the measurable mapping 

( )u t D∈ , there exists a unique solution w  
satisfying (3.1). Defining a mapping :F D D→  
by ( ) ( ( ))u t w u t∗ → , we will prove that the 
mapping F  is a contraction mapping. Indeed, for 
any 1 2( ), ( )u t u t D∗ ∗ ∈ , there exist unique 1w =  

1( ( )),F u t∗
2 2( ( ))w F u t∗= , for all v D∈ and 

t∈Ω  such that 

1 1 1( ( ), ( )), ( , ( ))N x t y t v u tη +    
  1 1 1( ( ), ) ( ( ), ( )) 0,b u t v b u t u t∗ ∗− ≥    (3.5) 

2 2 2( ( ), ( )), ( , ( ))N x t y t v u tη +  

2 2 2( ( ), ) ( ( ), ( )) 0b u t v b u t u t∗ ∗− ≥ .  (3.6) 
Taking )(2 tuv =  in (3.5) and )(1 tuv =  in (3.6) 
and adding two inequalities, we have 

1 1 2 1( ( ), ( )), ( ( ), ( ))N x t y t u t u tη +  

2 2 1 2( ( ), ( )), ( ( ), ( ))N x t y t u t u tη +  

1 2 2 1 2( ( ) (t), ( )) ( ( ) ( ),b u t u u t b u t u t∗ ∗ ∗ ∗− − −  
   1( )) 0u t ≥ . 

By ( , ) ( , )u v v uη η= − and the assumption on 

),( ⋅⋅b ,  we have 
2

122221 )()()( tutukk −+  

1 1 2 1 1 2( ( ), ( )) ( ( ), ( )), ( ( ), ( ))N x t y t N x t y t u t u tη≤ − +

2 1 2 2 1 2( ( ), ( )) ( ( ), ( )), ( ( ), ( ))N x t y t N x t y t u t u tη−
))(),()(())(,(t))(( 121221 tututubtuutub ∗∗∗∗ −−−≤

1 2 1 2( ) ( ) ( ) ( ) ,u t u t u t u tγ ∗ ∗≤ − ⋅ −  
which derives 

1 2 1 2
21 22

( ) ( ) ( ) ( ) ,u t u t u t u t
k k

γ ∗ ∗− ≤ −
+

 

(3.7) 

1 2 1 2( ) ( ) ( ( , ( )), ( , ( )))x t x t H A t u t A t u t− ≤  

1
1 2

21 22

( ) ( ) ,u t u t
k k
λ γ ∗ ∗≤ −
+

         

(3.8) 

1 2 1 2( ) ( ) ( ( , ( )), ( , ( )))y t y t H T t u t T t u t− ≤           

2
1 2

21 22

( ) ( ) .u t u t
k k
λ γ ∗ ∗≤ −
+

 

(3.9) 
The inequalities (3.7, (3.8) and (3.9) together with 

),0( 2221 kk +∈γ and 1 20 , 1λ λ< ≤  result in 
that F  is a contraction mapping. Hence, there 
exists a unique point ˆ( )u t D∈  such that 
ˆ ˆ( ) ( ( ))u t F u t=  and   

ˆ ˆ ˆ ˆ( ( ), ( )), ( , ( )) ( ( ), )N x t y t v u t b u t vη + −  
ˆ ˆ( ( ), ( )) 0, ,b u t u t v D t≥ ∀ ∈ ∈Ω  

Now we know 
))(ˆ,()(ˆ)),(ˆ,()(ˆ,)(ˆ tutTtytutAtxDtu ∈∈∈

is the unique solution of the problem (2.1). 
This completes the proof. 
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